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Multicolour synthesis in lanthanide-doped
nanocrystals through cation exchange in water
Sanyang Han1, Xian Qin2, Zhongfu An3, Yihan Zhu4, Liangliang Liang1, Yu Han4, Wei Huang3,5 & Xiaogang Liu1,2,6

Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad

range of fields hinges upon the development of a robust synthetic protocol that provides

rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped

luminescent nanomaterials have relied on direct synthesis requiring stringent controls over

crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a

cation exchange strategy for expeditiously accessing large classes of such nanocrystals.

By combining the process of cation exchange with energy migration, the luminescence

properties of the nanocrystals can be easily tuned while preserving the size, morphology

and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us

to achieve upconversion luminescence in Ce3þ and Mn2þ -activated hexagonal-phased

nanocrystals, opening a gateway towards applications ranging from chemical sensing to

anti-counterfeiting.
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W
ith the rapid development of nanoscience and
nanotechnology, lanthanide-doped upconversion nano-
crystals1–5 have recently emerged as an important class

of luminescent materials, owing to their potential applications
ranging from biological imaging6–8 and multiplexing sensing9–11

to security encoding12–14 and volumetric display15. Despite
significant progress made, the vast majority of approaches
for making upconversion nanocrystals have involved de novo
synthetic techniques such as hydrothermal reaction16,17,
co-precipitation18–20 and thermal decomposition21–23. To access
different colour emissions24–26, one has to perform a new set of
reactions and require stringent control over a variety of experimental
conditions, including the amount of dopant precursors and
surfactants, solvent type, reaction time and temperature. This
practice is clearly time-consuming and resource-intensive, and often
leads to variation in particle size, phase and morphology16,20.

Cation exchange reactions at the nanoscale have recently
emerged as a powerful tool for controlling composition and phase
in colloidal semiconductor nanocrystals27–31. These reactions
present an alternative solution for modulating emission colours in
upconversion nanocrystals. However, different from the band-gap
luminescence nature of quantum dots32–36, the emission from
the upconversion nanocrystals stems directly from the
lanthanides infused in the host lattice37–41. It is important to
note that realizing efficient upconversion luminescence typically
requires the homogeneous placement of sensitizer and activator
ions in rather close proximity, as is the case for NaYF4

nanoparticles co-doped with Yb3þ and Er3þ (ref. 4). Although
a high doping concentration of Yb3þ theoretically favours
luminescence enhancement42–44, upconversion nanocrystals with
a large Yb3þ content (for example, NaYbF4) are highly sensitive
to the concentration quenching effect that depletes excitation
energy and thus suppresses luminescence. This dilemma
makes the cation exchange strategy practically unsuitable for
emission colour modulation using conventional host materials
(for example, NaYF4, NaLuF4 and NaYbF4; refs 45–48).

It has been well-established that Gd3þ -based host materials
could effectively bridge the gap of energy transfer from sensitizers
to activators through long-range energy migration in the
sub-lattice24,41. Because of its large energy gap (B4.0 eV)
between the ground state (8S7/2) and the lowest excited state
(6P7/2), the Gd3þ ion also serves as an ideal energy reservoir to
suppress the concentration quenching of sensitized luminescence
in crystalline nanophosphors.

Here we reason that utilization of a Gd3þ -based host lattice may
leverage multicolour synthesis in upconversion nanocrystals through
cation exchange under mild conditions. By making use of myriad
energy transfer pathways between dopant ions, our approach proves
useful for accessing a plethora of optical nanomaterials of uniform
size, shape and phase (Fig. 1). In particular, we achieve
upconversion emission from Ce3þ or Mn2þ doped in hexago-
nal-phased nanocrystals. This allows us to generate a record long-
lived luminescence of B600 ms for Mn2þ -activated nanocrystals.

Results
Synthesis and characterization. In a typical procedure, hexagonal
phase NaGdF4:Yb/Tm@NaGdF4 core-shell nanocrystals were
firstly synthesized as a model system by a co-precipitation
procedure (Supplementary Fig. 1; ref. 24). Subsequently, surface-
bound oleic acid molecules were removed by the treatment of HCl
to generate ligand-free nanocrystals (Supplementary Figs 2 and 3).
Cation exchange was then induced by mixing an aqueous solution
containing a TbCl3 precursor with the as-prepared colloidal sample
under ambient conditions for 1 h. High-resolution transmission
electron microscopic (TEM) imaging reveals the single-crystalline
hexagonal structure of the resulting nanocrystals after cation
exchange (Fig. 2a and Supplementary Fig. 4). Low-resolution
TEM imaging and the size distribution analysis of the nanocrystals
before and after cation exchange show no obvious changes in
the particle size and morphology (Fig. 2b and Supplementary
Figs 5–7). In addition, X-ray diffraction of the samples confirms
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Figure 1 | Rational design for emission tuning in lanthanide-doped nanocrystals through cation exchange. (a) Schematic representation of a typical

cation exchange process, occurring at the particle surface, between lanthanide (Ln3þ ) and exchange (Xnþ ) ions. (b) Proposed energy management

process for cation exchange-mediated luminescence tuning in the nanocrystals. The energy transfer process mainly comprises energy harvesting, energy

migration and energy trapping through different types of lanthanides. DC and UC represent downconversion and upconversion processes, respectively.

(c) Typical luminescent ions used for cation exchange-mediated luminescence tuning and their main emitting transitions in the ultraviolet and visible part of

the electromagnetic spectrum.
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that the hexagonal phase is completely preserved after the
post-synthetic treatment (Fig. 2c, Supplementary Figs 8 and 9 and
Supplementary Note 1).

Electron energy loss spectroscopy analysis on a single
nanoparticle reveals that the Tb3þ ions are mainly located
within the outmost layers of the core-shell nanocrystals
(Fig. 2d–f and Supplementary Fig. 10). To further substantiate
the occurrence of cation exchange, we carried out inductively
coupled plasma mass spectroscopy analysis of the colloidal
sample after cation exchange. For a series of experiments,
we found that the amount of Gd3þ ions discharged from the
core-shell nanocrystals increases with increasing Tb3þ concen-
tration (Supplementary Figs 11–14 and Supplementary Note 2).

Spectroscopic study of cation-exchanged nanocrystals. Through
Gd3þ -mediated energy migration in the core-shell structure, the
excitation energy could be efficiently transferred from the Yb/Tm
pair in the core layer to the activator ions in the shell layers upon
cation exchange (Fig. 3a and Supplementary Figs 15 and 16).

The cation exchange process can be visualized by monitoring the
emission colour change of the colloidal samples before and
after addition of the Tb3þ or Eu3þ precursor (Fig. 3b and
Supplementary Movies 1 and 2). The luminescence spectra of the
samples measured at room temperature show an increase in
Tb3þ or Eu3þ emission intensity but a decrease in Gd3þ

intensity with increasing concentrations of the exchange ions
(Supplementary Figs 17 and 18).

The cation exchange process is generally controlled by
three parameters: reaction time, temperature, and the ion
concentration used for exchange in the solution (Supplementary
Note 3). In our study, Tb3þ -exchanged nanocrystals were taken
as an example to study the influence of these three parameters on
optical properties. We first investigated the time-dependent
cation exchange at ambient conditions by monitoring
the emission of a colloidal sample (NaGdF4:Yb/Tm@NaGdF4;
26.2 mg) after addition of TbCl3 (20 mmol). As shown in Fig. 3c,
the intensity of Tb3þ emission gradually increased over time
and reached a plateau after 8 min, at which time the cation
exchange reached a dynamic equilibrium (Supplementary
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Figure 2 | Structural characterization of NaGdF4:Yb/Tm@NaGdF4 nanoparticles before and after cation exchange. (a) Typical high-resolution

transmission electron microscopic (TEM) image of a nanoparticle treated with TbCl3 at room temperature. (b) Low-resolution TEM images and

corresponding size distributions of the as-prepared NaGdF4:Yb/Tm@NaGdF4 nanoparticles, obtained before (top panel) and after (bottom panel)

incubation with TbCl3. (c) Corresponding powder X-ray diffraction patterns of the core-shell nanoparticles. Note that all peaks can be well indexed in

accordance with hexagonal-phase NaGdF4 structure (Joint Committee on Powder Diffraction Standards file number 27-0699). (d) Typical scanning

transmission electron microscopic (STEM) image of the nanoparticles treated with TbCl3. (e) Electron energy loss spectroscopy (EELS) point analysis

collected, respectively, from green and red circle marked in d. (f) EELS line profile recorded by scanning along the white line shown in d. Note that both

elemental analyses in e,f reveal that more Tb content is present at particle outer layer, while more Gd content exists at particle inner layer. Scale bar, 5 nm

for panel a, scale bar, 50 nm for panel b, scale bar, 10 nm for panel d.
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Fig. 19). We further performed the controls at different
temperatures, and found that the emission can be greatly
enhanced by increasing reaction temperature (Fig. 3d and
Supplementary Fig. 20), indicating that high temperatures favour
the cation exchange process. The emission intensity can also be
boosted by slightly enriching the concentration of the exchange
ions (Fig. 3e). The optimal concentration of Tb3þ for maximum
particle emission was estimated to 5 mM (Supplementary Fig. 21).

Based on the above-mentioned optimization of reaction
conditions, we successfully prepared Gd3þ -based upconversion
nanocrystals containing various types of activators (Eu3þ , Dy3þ ,
Ce3þ , Mn2þ ) by the cation exchange approach (Fig. 3f,
Supplementary Fig. 22, Supplementary Table 1 and
Supplementary Note 4). It is worth noting that the upconversion
emission of Ce3þ and Mn2þ is observed for the first time in
hexagonal-phased NaGdF4 host materials (Supplementary
Figs 23–27). Significantly, we obtained a record long-lived
Mn2þ luminescence of B600 ms (lifetime: B56.7 ms) (Fig. 3g).
The long decay time of Mn2þ emission can be used to resolve the
spectral overlapping issue between Mn2þ and Tm3þ emissions
by the time-gated spectroscopy (Fig. 3h). Interestingly, an emission

colour change from cyan to green could be discerned by the naked
eye on switching off of the 980-nm excitation source
(Supplementary Movie 3).

Mechanistic investigation. The observation of optical emissions
in cation-exchanged nanocrystals and inductively coupled plasma
mass spectroscopy analysis reveal that the cation exchange
process is dependent critically upon the nature of the exchanged
ion; for example, ionic radius and valence charge (Supplementary
Fig. 28). To facilitate the exchange of the Gd3þ host lattice with
Mn2þ , an elevated temperature of 90 �C is needed to overcome
the charge imbalance and lattice strain due to the size mismatch.
To understand the cation exchange process, we carried out
first-principles calculations by estimating the formation energies
of hexagonal-phased NaGdF4 nanocrystals doped with
various ions (Supplementary Fig. 29 and Supplementary Table 2;
refs 49,50). Our calculations indicate that lanthanides can readily
replace Gd atoms at ambient conditions. By comparison, doping
of Mn atoms into the NaGdF4 lattice at room temperature
requires a large excess of energies (B1.82 eV). We further
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Figure 3 | Optical investigation of Gd-based upconversion nanocrystals through cation exchange. (a) Schematic representation of energy transfer

process in NaGdF4:Yb/Tm@NaGdF4 nanocrystals after cation exchange with an activator ion (denoted as X). (b) Photoluminescence images showing the

change in the emission colour of NaGdF4:Yb/Tm@NaGdF4 colloidal solutions upon addition of Tb3þ or Eu3þ ions at room temperature. (c–e) Emission

intensity profiles of the nanocrystal solution measured as a function of cation exchange time, reaction temperature and Tb3þ concentration, respectively.

Note that the emission of Tb3þ at 546 nm is used for intensity measurement. (f) Typical photoluminescence spectra of the nanocrystals treated with

TbCl3, EuCl3, MnCl2, DyCl3 and CeCl3, respectively. Note that the activator emissions are highlighted with colour. All spectra were recorded under

the irradiation of a 980 nm laser with a pump power of 1 W. (g) Lifetime decay curve of Mn2þ emission at 550 nm from the MnCl2-treated nanocrystals.

(h) A transient photoluminescence decay image of the MnCl2-treated nanocrystals. The colour change from red to blue indicates the decrease in

emission intensity.
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investigated the charge transfer within the doped nanocrystals by
employing charge distribution analysis. It was found that the
amount of charge transfer from the doped lanthanides (Eu, Dy,
Ce, Tb) to the surrounding F atoms is comparable to that between
Gd and F atoms. However, the calculated amount of charge
transfer from Mn to F decreased by about 0.5448e relative to that
between Gd and F, giving rise to reduced dipole polarizability
and increased formation energy in Mn-doped nanocrystals. In
addition, the significant difference in ionic size between Mn2þ

and Gd3þ (B13.8 pm) is another major factor that hinders the
cation-exchange process.

Apart from the enhancement of cation exchange at the particle
surface, the thermal fluctuation at a high temperature is likely to
accelerate the diffusion of the exchanged ions from a particle’s
surface to its inner region, so that an improved luminescence
from the exchanged ions can be observed51,52. To confirm our
hypothesis, we first mixed aqueous solutions of TbCl3 and
NaGdF4:Yb/Tm@NaGdF4 at room temperature and then isolated
the Tb3þ -modified nanocrystals. Subsequently, we heated the

nanocrystals at 90 �C for 1 h. As anticipated, we observed an
increase in Tb3þ emission after heat treatment (Supplementary
Fig. 30). Our calculations also suggest that the diffusion of
doped ions (Tb3þ , Eu3þ , Dy3þ , Ce3þ and Mn2þ ) in the
NaGdF4 lattice can occur with ease (Supplementary Fig. 31).
Taken together, these data indicate that the cation exchange and
diffusion at elevated temperatures synergistically contribute to the
increased emission of the exchanged cations (Supplementary
Fig. 32 and Supplementary Note 5).

We next explored the applicability of this cation exchange
approach to colour-tuning in other upconversion and
downconversion systems. For instance, we observed an
emission colour change for NaYbF4:Tb@NaTbF4 upconversion
nanocrystals from green to yellow upon cation exchange of
Tb3þ with Eu3þ at the particle’s surface (Fig. 4a, Supplementary
Figs 33–35 and Supplementary Note 6). In the cases where
a downconversion process was demonstrated, the substitution
of Gd3þ in NaGdF4:Ce@NaGdF4 nanocrystals by a series
of activators (Tb3þ , Eu3þ , Dy3þ , Mn2þ ) resulted in
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Figure 4 | Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange. (a) Upconversion luminescence spectra of
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(b) Downconversion luminescence spectra of NaGdF4:Ce@NaGdF4 nanocrystals treated with TbCl3, EuCl3, MnCl2 and DyCl3. Inset shows the corresponding

energy transfer mechanism in the nanocrystals. Under the ultraviolet excitation, the excited state of Ce3þ is firstly populated. Subsequently, an energy

migration process in the Gd sub-lattice bridges energy transfer from Ce3þ to exchange ions (X¼Tb3þ , Eu3þ , Mn2þ or Dy3þ ). (c) Commission

Internationale de l’Eclairage (CIE) chromaticity coordinates of the emissions measured for the as-synthesized colloidal solutions. (d) Corresponding
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Ce3þ -sensitized multicolour emissions (Fig. 4b, Supplementary
Fig. 36 and Supplementary Note 7). Importantly, the capability of
our approach to modulating emission colours in lanthanide-
doped nanocrystals allowed rapid access to a myriad of different
colour spaces with minimum sample processing time (Fig. 4c,d).

Discussion
The combination of cation exchange and energy migration in
lanthanide-doped nanocrystals enables us to precisely tailor the
luminescence to the colours of interest, providing the
possibility to achieve long-lived luminescence in unexplored
regimes of lifetime and without concerning variation in particle
size, phase and morphology. As with any methodology, there are
seemingly obvious drawbacks. For example, it requires a subset of
lanthanide ions capable of participating in the energy migration.
However, our data suggest that the advantages of the presented
approach far outweigh its limitations. In particular, our approach
allows the development of a general, green protocol for preparing
multicolour nanoprobes, combining efficient and rapid
sample synthesis with significantly reduced solvent and reagent
consumption. As such it is anticipated that this technique
will greatly expand the repertoire of possible upconversion
nanomaterials, with relevant applications for fields as diverse as
chemical sensing, biological imaging, photodynamic therapy and
anti-counterfeiting.

Methods
Nanocrystal synthesis. Cation-exchanged nanocrystals were prepared by
incubating aqueous solution containing ligand-free template nanocrystals and
activator ions at ambient conditions for 1 h. Additional experimental details are
provided in the Supplementary Methods.

Characterization. Ultraviolet–visible spectra were measured on a SHIMADZU
ultraviolet-3600 spectrophotometer. Fourier transform infrared spectroscopy
spectra were recorded on a Varian 3100 fourier transform infrared spectrometer.
Low-resolution TEM images were taken on a JEOL-1400 transmission electron
microscope operating at an acceleration voltage of 100 kV. Scanning electron
microscopy was carried out on a FEI NOVA NanoSEM 230 scanning electron
microscope operated at 5 kV. Powder X-ray diffraction data was obtained on a
Siemens D5005 X-ray diffractometer with Cu Ka radiation (l¼ 1.5406 Å).
The upconversion luminescence spectra were recorded in an Edinburgh FSP920
equipped with a photomultiplier, in conjunction with 980 nm diode laser
and a xenon arc lamp (Xe900). The measurement of luminescence lifetime was
conducted using a lifetime spectrometer (FSP920, Edinburgh) equipped with a
microsecond flash lamp as the excitation source. Upconversion luminescence
microscopic images were obtained on an Olympus BX51 microscope with a Nikon
DS-Ri1 imaging system adapted to a 980 nm diode laser. Digital photographs were
taken with a Nikon D700 camera.

Data availability. The authors declare that the data that support the findings of
this study are available within the article and its Supplementary Information files.
All other relevant data are available from the corresponding author upon request.
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