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Ecological studies require quality data to describe the nature of ecological processes and to advance understanding of ecosystem change. 
Increasing access to big data has magnified both the burden and the complexity of ensuring quality data. The costs of errors in ecology include 
low use of data, increased time spent cleaning data, and poor reproducibility that can result in a misunderstanding of ecosystem processes and 
dynamics, all of which can erode the efficacy of and trust in ecological research. Although conceptual and technological advances have improved 
ecological data access and management, a cultural shift is needed to embed data quality as a cultural practice. We present a comprehensive data 
quality framework to evoke this cultural shift. The data quality framework flexibly supports different collaboration models, supports all types of 
ecological data, and can be used to describe data quality within both short- and long-term ecological studies.
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In the past two decades, ecology has begun a    
 transformation toward open science (Hampton et al. 2013). 

Remote-sensing platforms, in situ sensor networks, monitor-
ing networks, and community science initiatives have all con-
tributed to an explosion in the kinds, amounts, and frequency 
of environmental data that are publicly available (Farley et al. 
2018). This surge in ecological data is led by collaborative 
efforts such as the National Ecological Observatory Network 
(NEON), the US Long Term Ecological Research Network 
(LTER), the US Bureau of Land Management’s Assessment 
Inventory and Monitoring strategy (BLM AIM), and the US 
National Phenology Network. The availability of new data 
streams via monitoring networks, data repositories, and aggre-
gators (e.g., DataOne, Global Biodiversity Information Facility, 
FLUXNET), provide opportunities to understand ecosystem 
processes in new ways (Poisot et al. 2016, White et al. 2019). 
Data availability and new ecosystem research approaches are 
also facilitating an increase in transdisciplinary, interagency, 
and remote collaborations (e.g., Webb et  al. 2016) and new 
subdisciplines such as macroecosystem ecology and ecological 
forecasting are developing rapidly (Poisot et  al. 2016, Dietze 
et al. 2018). Advances in data integration and modeling in col-
laboration with community scientists and land managers pro-
vide new opportunities to synthesize, predict, test, and revise 
our understanding of ecosystems across spatial and temporal 
scales (Campbell et  al. 2016, Dietze et  al. 2018, Peters et  al. 
2018, Carter et al. 2020). Specific advances include integrating 

community science phenology observations into models seek-
ing to understand vegetation responses to climate change 
(Taylor et  al. 2019) and broadscale standardized rangeland 
monitoring programs that inform land management decisions 
at local and national scales (Toevs et al. 2011). However, these 
advances bring new challenges for ecological studies and data-
driven decision-making.

Improving and developing new analysis techniques is not 
possible without quality data, which in turn can improve 
ecological models (e.g., Webb et al. 2016) and forecasts (e.g., 
Taylor et al. 2019, White et al. 2019). Addressing data quality 
extends beyond improving data management to the broader 
ways in which ecologists interact with data. Concerns of 
reproducibility and replicability are heightened as data com-
plexity increases and ecologists are using new kinds of data 
(Bond-Lamberty et  al. 2016, Powers and Hampton 2019). 
Whereas high quality data sets are celebrated jewels within 
the ecological community, erroneous data sets become 
increasingly problematic as errors propagate across scales, 
users, and applications (Foster et  al. 2012). For example, 
Van Niel and Austin (2007) found errors in digital eleva-
tion models propagated in vegetation habitat models that 
undermined model accuracy for predicting rainforest tree 
cover. Typically, approaches to managing data quality are 
developed in small-team settings that rely heavily on inter-
personal trust and tools such as lab notebooks. However, 
because there is not a tradition of developing data quality 
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approaches in a consistent way, data quality practices devel-
oped in small research team settings do not scale well to 
large data repositories, networked monitoring, and large col-
laborative research efforts (Farley et al. 2018). Similarly, data 
quality approaches that are successful for large, networked 
data collection efforts (e.g., NEON, LTER, BLM AIM) rely 
on dedicated data management staff who may not be avail-
able in small research teams (Laney et al. 2015). Breakdowns 
in data quality management can have dire consequences for 
the rigor of inferences drawn from data analyses, our under-
standing of ecosystems, and the predictive power of models 
and their uncertainty (Beck et  al. 2014). Such breakdowns 
can also increase the risk of ill-conceived data-driven man-
agement decisions. For instance, Vauhkonen (2020) found 
that tree-level inventories derived from airborne methods 
underdetect small trees and, therefore, underpredict harvest 
profits, resulting in misleading future profit expectations for 
managers. Similarly, Brunialti and colleagues (2012) dem-
onstrated limited comparability of lichen diversity estimates 
because of variability in protocol interpretation, data collec-
tor skill sets, and training procedures, which resulted in a 
restricted ability to monitor changes in lichen biodiversity 
in response to ecological drivers that would inform manage-
ment. As the diversity and volume of data and ecological 
analyses increases, ecology needs to adopt both cultural and 
technological frameworks to improving and ensuring data 
quality throughout the data lifecycle.

Fortunately, there are a plethora of technical solutions 
available to improve data quality, made possible by advances 
in hardware and software that have increased both data stor-
age capacity and processing speeds (Goda and Kitsuregawa 
2012). Electronic data capture, which reduces data transcrip-
tion and management errors, is now standard for both sensor 
systems and observational programs through customizable 
mobile applications platforms (e.g., ODK, Fulcrum, ESRI 
Survey123). Programming and automation tools, such as R 
and Python, are now readily available to ecologists with a 
relatively low barrier of entry thanks in part to the Data and 
Software Carpentries (Teal et  al. 2015, Wilson 2016) and 
other data and code training programs. These software tools 
increase the speed of data examination, cleaning, and error 
evaluation. As a result, ecologists can automate tradition-
ally error-prone aspects of the data workflow by restricting 
data entry to valid ranges and enabling on-the-fly analysis 
(Yenni et al. 2019). The development of reproducible com-
puting frameworks, including Jupyter Notebooks and R 
Markdown, and containerization (e.g., Docker, Singularity), 
allows ecologists to track and easily share analysis processes, 
thereby reducing errors when replicating analyses (Peng 
2011). Standards such as the Ecological Metadata Language, 
repositories such as the Environmental Data Initiative, 
and aggregators such as DataOne provide an opportunity 
for documenting and archiving data long after collection 
(Fegraus et  al. 2005, Michener et  al. 2012). For example, 
NEON uses the Fulcrum app for standard, electronic data 
collection of observational data, and R scripts managed 

in Docker containers to automate sensor data processing 
(Metzger et  al. 2019). Cleaned NEON data are then pub-
lished along with metadata to a data portal.

Technology integration to improve data quality is possible 
in large organizations and data collection efforts that have 
dedicated resources to build organized workflows. However, 
in smaller projects (e.g., long-tail science; Laney et al. 2015), 
implementing these technologies in a coordinated approach 
to manage data quality can still be overwhelming without 
an overarching cultural framework to inform who, how, and 
why to best implement different technical solutions. It is the 
experience of the authors in working with NEON, LTER, 
BLM AIM, and long-tail science data that there is uneven 
adoption of technologies to prevent errors and few processes 
available for correcting errors in source data sets, even if 
they are resolved prior to analyses. Given the rapid growth 
of data collection, the rising prominence of data aggregation 
through repositories, and the call for improved synthetic 
studies that draw from data integration efforts, there is an 
urgent need for all ecologists (scientists, academics, data 
managers, data collectors, students) to adopt a more com-
prehensive framework that incorporates both technological 
and cultural data quality practices.

Data quality is foundational to improving trust and ensur-
ing the legacy of current ecological research and optimizing 
management. Following a review of the current data quality 
approach, encapsulated in the DataOne data lifecycle, we 
present a conceptual data quality framework that explicitly 
identifies quality assurance and quality control steps to 
improve data quality across a range of collaboration models, 
data types, and ecological studies. Although some of the 
topics discussed in the present article may be familiar to 
data managers, designated data managers may not be avail-
able in every lab or research partnership (Laney et al. 2015). 
Data quality is an issue that concerns all ecologists, not just 
data managers, so we address how all members of a team, 
regardless of career stage, can participate in improving data 
quality throughout the data lifecycle. We also discuss, for the 
benefit of all ecologists, how the framework can be applied 
to evaluate data quality roles within the data lifecycle and 
how approaches for ensuring data quality differ among data 
types. Finally, we explore how the data quality framework 
can be used to evaluate data quality over time to improve our 
ability to detect and understand ecosystem trends.

Current data quality approach
The current data quality approach in ecology is focused on 
improving information management via the data lifecycle, 
which describes how data are created, preserved, and used. 
The DataOne lifecycle (figure 1), which includes steps 
for planning, collecting, assuring, describing, preserving, 
discovering, integrating, and analyzing, is a common data 
management approach embraced in ecology (Michener 
and Jones 2012). Many funding agencies, including the US 
National Science Foundation, now require data manage-
ment plans that specifically address the DataOne lifecycle. 
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Simultaneously, ecologists have developed best practices for 
navigating the data lifecycle, including building data man-
agement plans (Michener 2015), data sharing and repro-
ducibility (White et  al. 2013, Powers and Hampton 2019), 
data reformatting or creating tidy data (Wickham 2014), 
scientific computing (Wilson et al. 2014, 2017), and work-
ing with community scientists (Kosmala et  al. 2016). The 
DataOne lifecycle provides a useful organizational structure 
for how data moves through the research life cycle. The 
benefit is that it illustrates how data can be shared through 
repositories (preserve) and so encourages broader collabora-
tion, use and reuse of data. However, the DataOne life cycle 
was developed in an era in which broad data sharing was 
new and it does not capture the extent of active data quality 
processes needed to support data transfer from one ecolo-
gist to another. In the current data sharing environment, 
the approach of relying on institutional knowledge of data 
quality processes during a single assurance step is no longer 
sufficient for ensuring data quality. In the collective experi-
ence of the authors, the DataOne lifecycle does not reflect 
successful data quality practices used by many ecologists 
such as reviewing data for errors prior to analysis. Therefore, 
it has become increasingly important for everyone to play a 
role in ensuring data quality throughout the data lifecycle. 
A central issue in modernizing the DataOne lifecycle is the 
need to expand how quality assurance and quality control 
processes are incorporated into ecological data culture in a 
coordinated manner that expands on current successful data 
quality practices and applications of technology.

The principles of quality assurance and quality control 
can provide a framework for organizing appropriate tools 
and technologies to ensure data quality. Quality assurance is 
an active anticipatory process to minimize the chance of an 
error being inserted into data (Herrick et al. 2018, Michener 
2018). Conversely, quality control is a reactive process to 
detect, describe, and, if possible, address inaccuracies that 
occur at any point in the data lifecycle (Herrick et al. 2018, 
Michener 2018). The desired outcome of quality assurance 
is fewer errors in data or analysis products, whereas quality 
control provides active validation of quality within data or 
analysis products, documentation and correction of errors, 
and an account of any errors that may remain (Zuur et al. 
2010). Quality assurance is a continuous process throughout 
the scientific method and data lifecycle (Herrick et al. 2018, 
Michener 2018). Data management, written protocols, train-
ing, and calibration steps are all components of quality assur-
ance. The driving questions of quality assurance include the 
following: What could go wrong? How will we prevent errors? 
How will we address errors when they do occur? Quality 
assurance tasks are often similar among ecological subfields, 
projects, data types, and career stages. In contrast, quality 
control tasks are often discipline specific, asking whether 
the data are complete, correct, and consistent. If the answer 
is no, then steps are taken to address those issues if possible. 
Quality control tasks occur at distinct points within the data 
lifecycle, including immediately after data collection, during 
archiving, and prior to analysis. Quality control tasks can 
often be automated to detect missing data and flag erroneous 
values (Rüegg et al. 2014, Yenni et al. 2019).

The current data quality paradigm, encapsulated in the 
DataOne lifecycle, inadequately incorporates quality assur-
ance and quality control as it aggregates and isolates quality 
assurance and quality control to a single Assure or quality 
assurance/quality control (QA/QC) step within the data 
lifecycle (figure 1; Michener and Jones 2012, Rüegg et  al. 
2014). The single Assure stage emphasizes data quality 
associated directly with data collection, but fails to properly 
acknowledge opportunities for preventing, introducing, 
detecting, and addressing errors at other stages of the data 
lifecycle. Although the data manager and the data collec-
tor in the data lifecycle certainly have a responsibility for 
data quality, every individual who interacts with data has 
an opportunity to improve or degrade data quality. A new 
framework would encourage all ecologists and land manag-
ers, who increasingly rely on found data and may not have 
a personal relationship with the study initiators or data 
collectors (e.g., Poisot et al. 2016) to participate in ensuring 
data quality.

The second issue with isolating quality assurance and 
quality control as a discrete step in the data management life-
cycle is that quality assurance and quality control are easily 
conflated. The current framework misses unique opportuni-
ties to prevent and detect errors throughout the data lifecycle 
by treating quality assurance and quality control as a single 
process. For example, a principal investigator adds a new 

Figure 1. Traditional data lifecycle diagrams isolate quality 
assurance and quality control at a single stage as Assure 
or quality assurance/quality control in (QA/QC) the data 
workflow, generally following data collection. Modified 
from the DataOne lifecycle (Michener et al. 2012).
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species cover method to a study at the last minute. The data 
management plan is not updated to include this data type in 
the study, and the data collectors improvise a data sheet in 
the field that inadvertently omits key data elements. When 
the data are digitized, the handwritten data sheet is difficult 
to read, so a species name is incorrectly entered. The original 
data collector has left the team and the transcription error is 
not caught during quality control. The data manager uploads 
the data to a repository without documentation of the data 
type in the data management plan and the incorrect version 
of the field protocol document. The data user discovers the 
data set and makes an additional data processing error that 
leads the data user to believe the data is another kind of data 
(e.g., species presence rather than species cover), and incor-
rectly parameterizes a model. In this hypothetical study, 
the DataOne lifecycle accurately describes how the data 

moved; however, every team member 
made an error of omission or commis-
sion that was not caught during qual-
ity control. Communicating data quality 
steps and detecting gaps in data quality 
is difficult, especially in large, transdisci-
plinary teams. The consequences of such 
errors include erroneous conclusions 
(Morrison 2016), lack of reproducibility 
(Peng 2011, Powers and Hampton 2019), 
retraction (Evaristo and McDonnell 
2020), and effects on management deci-
sions (Vauhkonen 2020). A comprehen-
sive data quality approach is needed to 
adequately represent both technological 
and cultural aspects of producing and 
maintaining high quality ecological data.

Effectively separating quality assur-
ance and quality control and ensuring 
that data quality processes are imple-
mented more widely than the single 
assurance step requires broader changes 
than simply splitting quality assurance 
and quality control within the DataOne 
lifecycle. These changes include the 
need to identify successful cultural 
and technological data quality prac-
tices and where they are most appropri-
ately applied, clearly articulate roles and 
responsibilities for data quality prac-
tices beyond the data collector and data 
manager, and establish approaches for 
describing data quality shortcomings, 
reviewing weaknesses as a team, and 
working to improve existing and future 
data sets. A cultural change in data 
quality requires a supporting frame-
work that evolves the DataOne life cycle 
from a mechanistic description of data 
movement (e.g., data collector to data 

repository) to a set of community actions that all ecologists 
can participate in to ensure data quality.

An improved data quality framework
Although the DataOne lifecycle and other technological 
advances have improved data quality in the realm of infor-
mation management, a framework is needed that identifies 
successful data quality practices, supports research col-
laboration culture, and addresses all aspects of the research 
and resource management lifecycle. We present a quality 
assurance and quality control framework (QA&QC) that 
builds on previous advances but explicitly considers qual-
ity assurance and quality control as distinct and important 
processes that encompass the data lifecycle (figure 2). In 
this framework, quality assurance scaffolds the entire data 
lifecycle to reduce errors from planning to analysis. Quality 

Figure 2. The quality assurance and quality control (QA&QC) framework, 
which follows the data lifecycle (inner circle) with explicit quality assurance and 
quality control incorporated at each stage. Quality assurance (middle circle) 
is a continuous process, with explicit steps at each stage of the data lifecycle. 
Quality control (outer half circle) processes begin after data are collected. For 
simplicity we have only identified five lifecycle stages. However, this framework 
can easily be expanded or contracted to accommodate a different number of 
lifecycle stages (e.g., figure 1; Michener et al. 2012).
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control begins after data are acquired and follows both 
quality assurance and the data lifecycle from data review to 
analysis. Although we identify example quality assurance 
and quality control tasks in figure 2, the quality assurance 
and quality control framework is largely conceptual to pro-
voke discussion among ecologists about how to prevent, 
detect, and document errors at every data lifecycle stage.

The quality assurance and quality control framework 
provides a collaborative communication tool to identify data 
quality actions and improve data-driven ecological research 
and management. Ecologists can use the framework as an 
assessment tool to document the relative effort or infra-
structure currently in place for their study and to isolate 
vulnerabilities within current data workflows. The quality 
assurance and quality control framework can improve the 
rigor of ecological research and strengthen collaborations by 
identifying required data quality steps and who will execute 
those steps throughout the data lifecycle. This framework 
can also be used to communicate how data quality work-
flows differ among data types. The final benefit of the frame-
work is that it can be applied retroactively to describe which 
quality assurance and quality control steps have or have not 
been taken in longitudinal and found data sets.

Data quality through roles and responsibilities.  Ecology is an 
increasingly collaborative and transdisciplinary science. 
Although each team member who interacts with data has 
an opportunity to influence data quality, each person who 
interacts with data is not equally responsible for both qual-
ity assurance and quality control at every stage of the data 
lifecycle. The quality assurance and quality control frame-
work enables ecologists to examine how quality assurance 
and quality control responsibilities differ by role within a lab 
group, interdisciplinary collaboration, or national monitor-
ing program (box 1). Project leaders or principal investiga-
tors oversee data quality at all levels and ensure that adequate 
plans are developed to maintain data quality (figure 3). These 
tasks may include planning data collection and error check-
ing timelines, organizing observer training and calibration, 
ordering and calibrating field equipment and sensors, and 
sample design preparation. The data collector is primarily 
focused on preventing errors during the data collection and 
review stages. The data manager is typically engaged with all 
stages of the data workflow and ensures that adequate data 
management is planned, verifies that other team members 
know how to interact with the data management systems, 
and conducts data review. Analysts lead the final review of 
the data and maintain error free analysis and interpretation.

The advantage of conceptualizing quality assurance and 
quality control tasks by roles is that the framework enables 
communication between roles and leadership and enables 
opportunity for iterative improvement. For instance, the 
quality assurance and quality control framework clearly 
communicates to project leaders that they have respon-
sibility for data quality and oversight at each level of the 
data workflow (figure 3). Expressing quality assurance and 

quality control roles through the quality assurance and qual-
ity control framework (figure 3a) demonstrates the value 
of the data management team who plays a critical role in 
ensuring data quality at all stages. If there are breakdowns 
in data quality during one field season, the framework can 
be used to identify communication improvements among 
personnel or if additional personnel are needed to maintain 
data workflow and data quality. Although not every team 
or partnership may have a fulltime data manager, analyst, 
or data collector, we encourage ecologists to identify the 
individual who will take on those tasks. Formalizing roles 
and responsibilities for data quality with this framework 
is applicable to teams of any size that collect, manage, or 
analyze data. Successful implementation of this framework 
will build a culture in which all team members are continu-
ously applying quality assurance and quality control to every 
aspect of the data lifecycle.

A data quality workflow for different data types.  Ecologists often 
use a mixture of sensor and observational data to understand 
ecosystem processes. In repeated observational studies (e.g., 
the North American Breeding Bird Survey), in which an 
emphasis on quality assurance prior to data collection is criti-
cal, the current paradigm can miss opportunities to address 
data quality at other stages of the data lifecycle. The quality 
assurance and quality control framework supports develop-
ing an integrated approach to data quality that recognizes 
that there is no global quality assurance and quality control 
protocol for all data types. Quality assurance is a common 
element through planning, calibration, and training of the 
data collection team in observational studies, sensor net-
works, and remote sensing platforms (box 2). However, there 
are differences in the amount of quality assurance and quality 
control effort required between these data types. In observa-
tional studies, quality assurance through training and cali-
bration is the primary opportunity to reduce errors, whereas 
there are few opportunities during quality control (Sauer 
et al. 1994). Sensors require equal quality assurance and qual-
ity control efforts to prevent, detect, and correct anomalous 
readings (Sturtevant et al. 2018). Differentiating data quality 
practices by data type is not only important in data collection 
and data curation but also during analyses in which prepro-
cessing steps, outlier checks, and pathways to resolving errors 
vary. The quality assurance and quality control framework 
formalizes management and documentation of different data 
types, preventing data quality lapses that can have significant 
financial and scientific costs (e.g., Hossain et al. 2015).

Understanding data quality in longitudinal data.  Understanding 
ecosystem change in response to climatic and anthropogenic 
drivers is a major focus of contemporary ecological research. 
Changes in observers or sensors, incomplete digitization, 
and shifting data management practices can affect appar-
ent trends (box 3). Therefore, it is critical to identify where 
data quality influences variability in longitudinal studies, 
to describe how shifts in data management might mitigate 
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Box 1. Using quality assurance and quality control to manage roles and responsibilities in the  
Bureau of Land Management’s Assessment, Inventory, and Monitoring Program.

One example of how roles and responsibilities vary is in national monitoring programs. The BLM AIM program is a 
standardized monitoring program that collects data across dryland, aquatic, and wetland ecosystems on federal lands in 
the United States (figure 3; Toevs et al. 2011). Each year, 3000–5000 monitoring locations are sampled through a federated 
data collection effort (figure 3b). Sampling is conducted by approximately 400 data collectors and managed by 150 local 
project leaders at BLM field offices. These project leaders are coordinated through one of 20 monitoring coordinators 
located at BLM state or regional offices. A national BLM AIM team of natural resource scientists, data managers, ana-
lysts, and statisticians manage centralized training, data collection workflows, data management, and support analyses 
at national, regional, and local scales. Ensuring data quality across all individuals involved in AIM data collection and 
management is successful because the program clearly articulates the role of each individual who interacts with the data, 
works to ensure that those individuals are aware and equipped to complete their data quality responsibilities, and iterates 
on the basis of feedback from team members (figure 3a; Bureau of Land Management 2020). Although not all ecological 
teams will operate at the scale of the BLM AIM team, the process for clearly identifying team members’ roles and ensuring 
that team members are supported with training and resources to complete their data quality-related tasks can be extended 
to every ecological team and collaboration.

Figure 3. Comparison of data quality roles and responsibility by team member within the quality assurance and 
quality control framework for the BLM AIM program (a). Because of this collaboration between project leads, data 
managers, data collectors, and analysts, over 35,000 monitoring locations have been sampled since 2011 (b) in 
wetland, aquatic, and terrestrial ecosystems (c). Refer to figure 2 for a description of the lifecycle represented in panel 
(a). Photograph: Bureau of Land Management.
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Box 2. Understanding quality assurance and quality control for different data types.

The US National Science Foundation’s National Ecological Observatory Network (NEON) is a long-term, continental scale ecologi-
cal monitoring effort of 81 terrestrial and aquatic sites across the United States (Keller et al. 2008). At each NEON site, biological, 
chemical, and physical data are collected through monthly observational sampling, continuous in situ instrument systems, and from 
an airborne observation platform (figure 4). NEON collects and manages over 175 data products along with more than 100,000 bio-
logical, genomic, and environmental samples collected each year. Although each data type requires different quality assurance and 
quality control approaches, each system follows the same operational data lifecycle, requiring careful planning and calibration, data 
collection, initial review, data maintenance, and publication on the NEON Data Portal for open access use in ecological analysis (figure 
4b; Sturtevant et al. 2018). NEON also promotes analysis quality assurance through a training series that facilitates the exploration 
and analysis of NEON data. The challenges of collecting, managing, and using more than one kind of data are common throughout 
ecological research and land management. Ecologists will benefit from NEON’s approach of identifying core data and quality assurance 
and quality control procedures, but then building parallel workflows that are specific to each data type. When the data are brought 
together in analysis, it is particularly important that data users understand the differences in data structures and how data errors might 
manifest differently among data types.

issues, and to provide detailed documentation to accompany 
the data. Data providers can use the quality assurance and 
quality control framework to detect and describe data qual-
ity shifts through the data lifespan, whereas data users might 
leverage the framework to evaluate data for errors, structural 
problems, and other issues affecting data quality. Often these 
shifts are known to individuals on the project but not easily 

accessed by new collaborators. Using the quality assurance 
and quality control framework, an evolving team can proac-
tively reduce or even eliminate knowledge gaps due to per-
sonnel turnover. Detailed lab notes and records are valuable 
in documenting shifts in data quality, but the quality assur-
ance and quality control framework offers an approach to 
synthesize the data quality history. Without quality assurance 

Figure 4. Three types of data are collected at NEON sites, observational, sensor, 
and airborne remote sensing (a). Each data system follows the same general 
data lifecycle, including careful planning and calibration, data collection, 
initial review, data maintenance, analysis, and publication. However, the 
amount of quality assurance and quality control applied at each step varies by 
data type (b). Refer to figure 2 for a description of the lifecycle represented in 
panel (b). Photograph: National Ecological Observatory Network
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and quality control documentation published alongside data 
in repositories, data sets may be lost entirely or become unus-
able in future ecological research (Laney et al. 2015). This is 
a significant cost to the ecological community, in terms of 
wasted resources and unnecessary information gaps critical 
to understanding rapidly changing ecosystems. Evaluating 
longitudinal data through the quality assurance and quality 

control framework will enable data strengths and weaknesses 
to be communicated to the ecological community to support 
the use of valuable long-term data sets.

How can ecologists adapt to improve data quality?
In every data set, there are opportunities for ecologists 
to improve data quality. By working through the quality 

Box 3. Applying the quality assurance and quality control framework to understand longitudinal data quality.

Consistent application of quality assurance and quality control is especially critical for long-term ecological research. The Jornada 
Quadrat study (figure 5) is a long-term vegetation study of 122 quadrats established to investigate livestock grazing effects on plant 
community dynamics as well as vegetation responses to variable climatic conditions in the Chihuahuan Desert (Chu et  al. 2016). 
Quadrats were charted consistently from 1915 to 1947, with only a portion of the quadrats charted intermittently between 1947 and 
1979. Sampling resumed in 1995 and continues every 5–6 years (figure 5b). As data collectors change and technology evolves through-
out the study, examples of quality assurance and quality control successes and challenges were found during repeat sampling efforts, 
digitizing historical data sheets, and analyzing long-term trends.

Data quality has varied across the Jornada Quadrat study. An effort is underway to flag data quality issues in the data set to help infer-
ence limitations and assumptions necessary in future analyses (figure 5a). Between 1915 and 1947, quality assurance included laying 
out the sample design and developing a consistent method for charting. Known quality control steps were limited to tracking the chain 
of custody for errors between data collectors and documented error checking. Quadrat sampling from 1947 to 1979 was sporadic and 
data quality during this period is the poorest in the record. Woody species cover fluctuated dramatically, which is highly unlikely given 
shrub encroachment records from the same period (figure 5c). Since 1995, stricter protocols for sampling the quadrats have been 
implemented and documented. The same set of data collectors have recorded information since 2001, therefore interobserver vari-
ability is the lowest for this period of the overall data set. Future data collection events will follow the newly developed documentation 
to minimize observer variability.

Figure 5. The Jornada Quadrat study is an ongoing longitudinal study of vegetation pattern and trends from 1915 
to present. Data quality has varied throughout the data set (a) as different data collectors and data managers 
participated in the study (b). This has resulted in anomalies in the data set, including an unlikely decline and 
increase in Prosopis glandulosa (c). Refer to figure 2 for a description of the lifecycle represented in panel (a). 
Photograph: USDA-ARS Jornada Experimental Range.
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assurance and quality control framework, ecologists can 
identify strengths and weaknesses in their data lifecycle and 
opportunities for iterative improvement. An assessment of 
roles and responsibilities may reveal gaps or unbalanced 
workloads in ensuring data quality. The increasingly inte-
grative nature of ecology means that developing a quality 
assurance and quality control workflow for one data type 
may spark ideas for improving another. For example, the 
standard error checking processes common in sensor data 
(Rüegg et  al. 2014) can be adapted to observational data 
lifecycles (Yenni et al. 2019). In ongoing longitudinal studies 
and network research programs, improvements in quality 
assurance and quality control can be directly applied to the 
next data collection cycle and to future studies. Future soft-
ware and hardware advances may change how we interact 
with data and conduct ecological analyses, which are likely 
to affect the scientific culture of using data and ensuring 
data quality. This will require iterative improvement of data 
workflows, training resources, education, and communica-
tion media. Adjusting to these technology shifts is an oppor-
tunity to evaluate and document the current data quality 
regime (box 3) before adopting new hardware and software.

The iterative nature of data quality is a cultural value that 
the ecological community should embrace. As a data-driven 
science, we can work to improve the quality of the data that 
are advancing the field of ecology. We encourage ecologists 
to use the quality assurance and quality control framework to 
evaluate their data sets and ecological studies, from planning 
through analysis. Grant proposal guidelines could provide 
adequate space for applicants to address quality assurance 
and quality control, in addition to data management. Project 
status reports might include data quality issues found dur-
ing data collection, storage, and analysis and might describe 
how those issues were overcome. Data users who leverage 
ecological repositories and other sources of found data can 
use the quality assurance and quality control framework 
during initial data exploration to clearly identify data types, 
describe data provenance, and document assumptions that 
might affect data quality and subsequent analyses.

Current ecological education could be expanded to 
include frequent discussions of quality assurance and qual-
ity control. For instance, data education resources, such as 
the Data and Software Carpentries (Teal et al. 2015, Wilson 
2016) can include the quality assurance and quality control 
framework in their data modules together with technical 
solutions (e.g., coding, reproducibility, data management). 
In the academic realm, lab exercises could include a reflec-
tion section encouraging students to identify what went well 
and what could be improved from a data quality perspective. 
In exercises in which data are provided, students should be 
encouraged to ask questions about the data quality history, 
structure, and how known errors might affect their results 
and interpretation. If different kinds of data are presented 
in a university course, students could be encouraged to 
compare and contrast data quality challenges and successes 
among data sets as a final exercise. We also encourage 

graduate students and advisors to build quality assurance 
and quality control into graduate education culture, which 
might include data quality as a topic in reading group dis-
cussions, requiring a quality assurance and quality control 
plan as part of graduate research proposals, and asking 
thesis defense questions that require students to reflect on 
quality assurance and quality control. Finally, we call on 
postdoctoral fellows and faculty to facilitate a supportive 
data quality culture in which making mistakes is normalized 
as a learning tool and all members of a lab work together to 
prevent and correct errors. Expanding ecological education 
to include the quality assurance and quality control frame-
work in addition to data management will equip the next 
generation of ecologists to harness the wealth of ecological 
data available to them.

Evolving the DataOne lifecycle to include the quality 
assurance and quality control framework, however, requires 
active engagement in the ecological community beyond 
ecological education. All ecologists, in the research and 
management communities, should consider building on 
existing data management habits by describing their quality 
assurance and quality control workflow as a critical com-
ponent of meeting study objectives. When establishing col-
laborative projects, we encourage ecologists to identify and 
periodically revisit the quality assurance and quality control 
tasks and goals of their projects. It is the experience of the 
authors that clearly defined quality assurance and quality 
control duties and expectations facilitate a more inclusive 
environment in which new and junior team members’ con-
tributions are broadly recognized for supporting data quality 
(e.g., in data collection), and there is a defined process for 
identifying areas of improvement that the entire team should 
address. Whereas data quality expectations have histori-
cally been an unspoken component of ecology, adopting the 
quality assurance and quality control framework is one way 
to describe ecological data expectations within the diverse 
ecological community.

Conclusions
Maintaining trust within the new cultural paradigm of 
transdisciplinary scientific collaboration requires an effec-
tive data quality culture. Continuous quality assurance 
and active quality control steps need to be included in the 
scientific process alongside collection, management, and 
analysis skill sets. Although the DataOne lifecycle has uni-
fied the ecological community in preserving and sharing 
data, it insufficiently represents data quality workflows. The 
quality assurance and quality control framework presented 
in the present article provides a much-needed structure 
for all members of the ecological community to ensure 
data quality at every data life stage, for every data type, and 
throughout the lifespan of a data set. This structure enables 
ecologists to implement practical data quality approaches 
to different kinds of data, identify roles and responsibilities 
within a team, and evaluate and improve long-term eco-
logical data sets. Publishing quality assurance and quality 
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control workflows alongside data and analysis will increase 
transparency in open, reproducible science thereby increas-
ing trust in the scientific process. Although the next steps 
of action will be discipline, project, and data set specific, 
the imperative to take these steps is global. The quality 
assurance and quality control framework can enhance exist-
ing ecological data and collaboration approaches, reduce 
errors, and increase efficiency of ecological analysis thereby 
improving ecological research and management.
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