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Determination of k‑mer density 
in a DNA sequence and subsequent 
cluster formation algorithm based 
on the application of electronic 
filter
Bimal Kumar Sarkar1,6, Ashish Ranjan Sharma2,6, Manojit Bhattacharya3, Garima Sharma4, 
Sang‑Soo Lee2* & Chiranjib Chakraborty5*

We describe a novel algorithm for information recovery from DNA sequences by using a digital filter. 
This work proposes a three‑part algorithm to decide the k‑mer or q‑gram word density. Employing a 
finite impulse response digital filter, one can calculate the sequence’s k‑mer or q‑gram word density. 
Further principal component analysis is used on word density distribution to analyze the dissimilarity 
between sequences. A dissimilarity matrix is thus formed and shows the appearance of cluster 
formation. This cluster formation is constructed based on the alignment‑free sequence method. 
Furthermore, the clusters are used to build phylogenetic relations. The cluster algorithm is in good 
agreement with alignment‑based algorithms. The present algorithm is simple and requires less 
time for computation than other currently available algorithms. We tested the algorithm using beta 
hemoglobin coding sequences (HBB) of 10 different species and 18 primate mitochondria genome 
(mtDNA) sequences.

Over the last two decades, available DNA sequence data has grown exponentially. The understanding of the 
biological information and their implication with huge amount of DNA data has emphasized the crucial need 
for supportive sequencing methodologies. The development of cost-effective, efficient, and fast methods for 
sequence study is highly demanded. Substantial information for DNA sequence that put forward the arrange-
ment of sequences variability indicates that the quantum of sequences that might have occurred throughout 
history is fewer in comparison to all possible  sequences1,2. For example, considering 100 bp DNA sequence, one 
can construct as much as  4100 possible sequences. It demonstrates that only few of them thus exist in reality. The 
four letters A, C, G and T which denotes the four nucleotides, make the alphabetic sequence for coding genetic 
information. The genome sequences which consist of different gene can be readable by computer. Dealing with 
DNA sequence with computer becomes one of the prime domains in bioinformatics. It has vast application in 
data mining, comparative genomics, molecular phylogeny and genome annotation.

There are two types of methodology followed in sequence analysis-one is based on alignment and other 
is alignment free. In case of closely related sequence comparison, alignment-based methods are generally 
used. While dealing with divergent sequence it is better to use alignment free  method3–6. On the other hand, 
alignment-based approach needs multiple or pairwise sequence alignments. Analyzing large datasets with an 
alignment-based method can surpass computational resources. Even sometimes, the combinatorics of genomic 
reorganisations makes the alignment of whole genomes quite difficult. A comparison of the alignment-based 
and alignment-free algorithm is given in Table 1.
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The alignment-free approach is independent in respect to the position of the strings. It is advantageous to 
compare sequences avoiding the biasness which arises from the order of strings within the  sequences7. Two 
alignment-free methods, (a) graphical representation and (b) q-mer/word frequency estimation, are very popular 
for sequence similarity analysis. The visual inspection of data can be done through graphical representation. It 
facilitated to comparison of DNA sequences as well similarity  analysis8–10. Different graphical representation has 
been reported to determine multi-dimensional mode for DNA  characterization11–18 which are mostly two- and 
three-dimensional in nature. Li et al., reported 2D graphical representation of DNA sequence to constructed a 
coronavirus  phylogeny19. Similarly, two-dimensional representation was described in dual nucleotides sequenc-
ing by Liu et al.20. Randic and Bai used triplet codons to obtained 2D graphical plot of protein  sequences21,22. On 
the other hand three-dimensional graphical representation was used for different sequences. In this way RNA 
secondary structure was described using 3D graphical  representation23. Cao et al. used dual nucleotide coding 
in three-dimensional  representation24. Tri-nucleotide coding was also used in 3D graphical  representations25. 
4D/5D graphical representation was also reported by some workers to determining similarity index between 
two  sequences26–28.

On the other hand, q-mer/word frequency estimation is based on the fact that the more alike two sequences 
are, higher the number of features that are common to two sequences. Blaisdell determined sequence compari-
sons based on frequency statistics It is very useful for the comparision of long sequences based on alignment-free 
statistic  D229.  D2 analysis is based on finding correlation between the occurrences of all q-mers which appear in 
two sequences. But,  D2 calculation is sensitive to noise arising from the sequence randomness. It results in low 
statistical power to determine relationship in the comparison of two  sequences30. Sometimes word frequency 
measurement has low sensitivity when determining the statistical significance of a word’s frequency in the 
 sequence31–33.

To reduce the computational complexity and find a more realistic method for the recovery of DNA sequence 
information, in this paper, we propose a digital signal processing (DSP)  technique34–36. We impose a DSP-based 
finite impulse response (FIR)  filter37 on a DNA sequence to calculate the k-mer or q-gram word density via 
sequence-free analysis. K-mer is highly important to understand the landscape of NGS read  dataset38. The DSP 
technique is advantageous as it deals with the general structures of coding, and it is quite different from organism 
dependence. The four letter alphabet A, C, G, T are the basis to construct the genetic word of different lengths, 
viz., {AA, …, TT}, {AAA, …, TTT}. The first set of word is of length 2 and the latter set is of length 3. These are 
the examples of two letters and three letters word respectively. Generally, a q-nucleotide word is termed as k-mer 
or q-gram. As the set of DNA alphabet contains four letters, the quantity of all possible q-grams is 4q. We use a 
dynamic window of width W to slide over the sequence to count the frequency (or occurrence) of each k-mer or 
q-gram. The window slides over one by one site. While existing on W number sites, digital filter technique is used 
to calculate the density of the word through the sequence. The distribution of word density along the sequence 
is taken as input for evaluation Principal Component Analysis (PCA), which helps finding the dissimilarity 
between the sequences. PCA projects the multi-dimensional data sets into low dimension without damaging the 
original data matrix’s  reliability39,40. To examine the validity of the method, we have taken two different groups, 
beta hemoglobin genes (HBB) and mitochondria genomes (mtDNA).

Materials and methods
Nucleotide Density. We have used W-size window which slides over the sequence in a base-by-base means 
between position i = 1 to n along the DNA strand. Window performs the counting of genetic word to find the 
word density in the sequence. The method relies upon the observations through sliding ‘counter’ of size W over 
the DNA sequence. A particular number of q-grams, herein called bins, are taken into consideration for the 
formation of the counter. The following definitions are helpful to calculate the word density distribution in a 
sequence.

Definition 1. q‑gram of Sequence Consider a counter of length q moves along a sequence segment ‘seq’ and 
it will count the signature of a q-gram. Thus, it will count a total number of 

∣

∣seq
∣

∣−
(

q− 1
)

 q-grams over the 
sequence ‘seq’.

Table 1.  Comparison of the alignment-based and alignment-free algorithm (present study).

Alignment based method Alignment free method (Present Study)

Processing time It needs vast CPU time which is proportional to  NK. K is the number of 
sequences for alignment and N is the length of each sequence

It is based on successive two-dimensional dynamic programme for 
nucleotide density determination. It takes less CPU time which is 
proportional to  N2

Handling in divergent sequence
Alignment-based approach works well for closely related sequences. 
In case of divergent sequences, a reliable alignment is difficult to be 
obtained

Alignment-based approach is workable for divergent sequences 
efficiently

Editing in sequence This method requires editing in the sequence This method does not require any editing in the sequence

Nature of algorithm It requires dynamic programming, which is computationally expensive, 
to obtain alignment with optimal score

It relies on dynamic programmingby indexing word counts, without any 
optimization

Homology search This method assumes the contiguity of homologous regions in the 
sequence

The assumption of homologous region contiguity is not required in 
alignment-free method
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Since there are four basis of genetic alphabet, one can construct a total number of  4q possible q-grams or 
bins. The bins are arranged in lexicographical order. If ith bin is denoted by bi in this order, the set of all possible 
bins are denoted as

Example 1 B1 = {A, C, G, T}, consisting of 4 bins, represents the set of One-gram bins. For two-gram bins, there 
are 16 bins as represented by B2 = {AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT}.

Definition 2. Bin signature Bin signature represents the presence or absence of a bin bj 
(

bj ∈ Bq; j = 1, 2, ..., 4q
)

 
at a position α in the sequence. It can be expressed as  Sj , which is a mapping of bin bj with is signature at a posi-
tion α in the sequence. For a sequence segment ‘seq’, there are 
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∣seq
∣
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∣bj
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)

 number of bits in  Sj.

Example 2 Consider a sequence, seq = “AAC TCG ”. The mono-gram (q = 1) bin signatures are  SA = [1 1 0 0 0 0] for 
the letter A,  SC = [0 0 1 0 0 0] for the letter C,  SG = [0 0 0 0 0 1] for the letter G, and  ST = [0 0 0 1 0 0] for the letter 
T. There are 4 mono-gram bin signatures. Similarly, the two-gram (q = 2) bin signatures are  SAA = [1 0 0 0 0], 
 SAC = [0 1 0 0 0],  SAG = [0 0 0 0 0],  SAT = [0 0 0 0 0], …, and  STT = [0 0 0 0 0]. There are 16 two-gram bin signatures.

Definition 3. Filter An input sequence x[n] undergoes a filter through weighted sliding window b to produce 
an output sequence y[n] by applying convolution summation, as follows:

where b does not depend on x[n] and y[n], and n is the time-like index. y[n] is the response of the filter to the 
input signal x[n]. The finite impulse response (FIR) type filter is taken into consideration. The finite impulse 
response arises because the filter output is calculated as a weighted, finite term sum of the past and present.

Example 3 The weighted filter output of  SA with the window b = [0.2 0.1 0.3 0.4] is illustrated as follows:
SA = [1 1 0 0 0 0].

yA[n] =
3
∑

0

bkSA[n− k] With  b0 = 0.2,  b1 = 0.1,  b2 = 0.3,  b3 = 0.4.

yA = [0.2 0.3 0.4 0.7 0.4 0]; similarly the output for other nucleotides, viz., C, G, T, is computed as:
yC = [0.2 0.0 0.2 0.1 0.5 0.5]; yG = [0.0 0.0 0.0 0.0 0.0 0.2]; yT = [0.0 0.0 0.0 0.2 0.1 0.3].

In the present work, we have considered uniformly distributed window of unit value for nucleotide density 
calculation. As elucidated, the output in the form of convolution summation denotes the nucleotide density 
distribution. The algorithms for bin structure, bin signature, and filter process are discussed as presented in 
different table (table S1, table S2, and table S3, correspondingly).

Sequence analysis. Based on the density distribution of the DNA sequences, one can find the similarity/
dissimilarity measure between two density distributions, di and dj such that dk = (yk1, yk2, …, ykn). A data matrix D 
is constructed by including all density distributions [d1, d2, d3, ...dm]′ , where m is the total number of sequences. 
Thus, D becomes a m-by-n matrix. We wanted to locate the coordinates of the species in 2D and 3D representa-
tion. But the m-by-n D matrix cannot visualize the coordinates due to the higher dimensionality of the data set. 
In that case, reducing dimensionality to the utmost 3-dimension help visualization of the coordinates. In this 
scenario, we have used Principal Component Analysis (PCA) to reduce the multidimensional data sets to lesser 
dimensions without losing the consistency of the original data matrix. PCA helps estimating the scores between 
the density distributions. All the sequences under consideration are taken as a default query sequence in NCBI 
BLAST alignment as sense strands. In such a case, the nucleotide density distribution study is sufficient without 
emphasis on whether the strand is sense (positive) or antisense (negative).

The scores in the first three principal components are used to determine the dissimilarity between two 
sequences. Hence a score matrix, S, of m-by-3 order is constructed. Ordered pair of rows of the score matrix 
is taken for computation of the Euclidean distance between the pairs of sequences. Rows of S corresponding 
to sequences are the observations. On the other hand, the columns corresponding to the position index in the 
sequence are the variables. Since there are m number of observations, one can construct m(m–1)/2 number 
of Euclidean distances, corresponding to pairs of observations in S. The Euclidean distances are organized 
in the order (2, 1), (3, 1), …, (m, 1), (3, 2), …, (m, 2), …, (m, m–1) and they are arranged in a row matrix of 
1-by- m(m–1)/2 order, which is further used for building dissimilarity matrix in clustering or multidimensional 
scaling. In our case, the low dimensional data in the first three components are taken for computation of the 
Euclidean distance between the pairs of sequences. Hence PCoA, K-medoid, or MDS are not required for further 
 analysis61. A phylogenetic tree is constructed by employing Unweighted Pair Group Method with Arithmetic 
mean (UPGMA) on the PC scores as included in S matrix. The entire process is displayed as a flowchart in Fig. 1.

Bq = {b1, b2, . . . b4q}

(1)y[n] =

k
∑

i=0

bix[n− i]

yA[n] = b0SA[n]+ b1SA[n− 1]+ b2SA[n− 2]+ b3SA[n− 3]
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Results and discussions
Sequences. We have tested the algorithm with two sets of sequences- beta hemoglobin coding sequences 
(HBB) of 10 different species and 18 primate mitochondria genome (mtDNA) sequences. The detail of the 
sequences is given in Table S4 and S4 respectively. The sequences are obtained from NCBI genetic sequence 
database, which is publicly available, and it does not need any ethical approval. We have taken the Nucleotide 
database from NCBI. The nucleotide sequence is used to determine the nucleotide density distribution over 
the sequence. We considered sequences of beta hemoglobin coding genes (HBB) of 444 base-pair length from 
different organisms, such as primates, ungulates, rodents, and birds, to examine our algorithm. Similarly, the 
second set of sequence data of 337 base-pair length is taken from some primates’ HVR-2 mitochondria genome. 
The sequences are of equal length. The study limits the comparison of sequences with different lengths. It can 
be overcome by normalizing sequence distribution. Moreover, in our case, a multiple sequence alignment algo-
rithm is used to identify the aligned regions between the sequences.

FIR filtering. Employing FIR filter, the spatial distribution of nucleotide density is generated as dk = (yk1, yk2, …, 
ykn), where k = 1 to 10 and n = 444. We calculated the density distribution for one-, two-, three-, … gram nucleo-
tides for different organisms. Figure S1 displays the spatial variation of the nucleotide density along the HBB 
sequence for 10 organisms. The G nucleotide distribution demonstrates a rich density in base position between 
70 and 100 for all organisms except Gallus gallus. The same distribution for the T nucleotide demonstrates a rich 

Figure 1.  Execution flowchart of the algorithm.
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density of approximately 150 bp for most of the organisms except Gallus gallus and Sus scrofa. Mus musculus and 
Rattus norvegicus are enriched with A nucleotides in the region between 200 and 240 bp, but Gallus gallus shows 
enrichment of the A nucleotide in the region between 240 and 280 bp. Gallus gallus also shows enrichment of the 
C nucleotide in the region between 145 and 200 bp. This type of variation in nucleotide density profiles indicates 
the occurrence of evolution among organisms. In the subsequent discussion, we will elaborate on the variations 
through the formation of phylogenetic relations.

Di-nucleotide density distribution. We calculated 16 two-gram nucleotide densities along HBB sequences for 
10 organisms. Figure S2 presents the AA and AC density distributions along the sequence for all organisms. Mus 
musculus and Rattus norvegicus show a high density of AA in the region between 195 and 245 bp. Gallus gallus 
shows enrichment of the AA di-nucleotide in the region between 245 and 285 bp. The density distribution of AC 
for Homo sapiens and Gallus gallus both show enrichment of approximately 275 bp.

Tri-nucleotide density distribution. We determined 64 three-gram nucleotide density profiles. Figure S3 shows 
two three-gram nucleotide distributions along the HBB sequences for 10 organisms. In the ACT distribution, 
Macaca mulatta and Pan troglodytes have high density regions at the very beginning of the sequence. Homo sapi-
ens gas a high density at approximately 280 bp. In the ACT distribution, Sus scrofa has a high density at 225 bp 
and Gallus gallus has the same at approximately 290 bp, but Callithrix jacchus, Equus caballus, Homo sapiens, and 
Sus scrofa have high densities at approximately 325 bp.

Principal component analyses (PCA). Two component analysis. Principal Component Analyses (PCA) 
is a vital technique frequently used in multivariate analysis to compare patterns by extracting information from 
a higher dimension to a lower  dimension41–43. It is used in geometric morphometric shape analysis and conse-
quently to determine trait-based phylogenic trees. PCA on phenotypic variance are found in the  literature44–46. 
In our case, genome-wide patterns are taken as input to PCA which has been employed on the nucleotide density 
distribution along the sequences. PCA converts the information in multidimensional data sets into principal 
components (PC), which reduces the multidimensional data sets to a lesser dimension without losing the con-
sistency of the original data matrix. Instead of considering all PCs, very few of the principal components are 
used to capture most of the original dataset variation. The data can then be represented in a 2D or 3D scatter 
plot, taking two or three principal component axes, respectively. This PCA plot helps visualization of groups of 
observations in the original dataset. First Principal Component (PC1) includes the most variation, PC2 repre-
sents the second most variation, and so on. In this way, the first two or three PCs are sufficient to capture most 
of the variation. We have considered a data set of m-by-n matrix for PCA, where m is the number of sequences 
and n is the length of each sequence. Each of m rows is projected on n number principal component basis. A 
scatter plot of the first two PC values dealing with HBB nucleotides of 10 organisms is displayed in Fig. 2. It 
was found that the majority of the variance is populated in the first three principal components. An average of 
51.42% of the total variance is present in the first component. An average of 26.69% of the total variance is pre-
sent in the second component, and an average of 13.89% of the total variance is present in the third component. 
Supplementary Table S7 exhibits the computed eigenvectors of the dataset along with the variance. The plot of 
two component PC values demonstrates the formation of cluster among the species. For example, the organisms 
Homo sapiens, Rattus norvegicus, Pan troglodytes, Papio anubis, Sus scrofa, Mus musculus, and Callithrix jacchus 
compose a cluster in PC values for the A nucleotide. The three other organisms, namely, Equus caballus, Macaca 
mulatta, and Gallus gallus, are isolated clusters. However, this type of cluster formation is not in agreement with 
the phylogenetic tree of HBB sequences, as reported by L. Yang et al.47. They showed the formation of four dis-
tinct clusters. Their clusters are (1) Equus caballus, Sus scrofa; (2) Macaca mulatta, Papio anubis, Pan troglodytes, 
Callithrix jacchus, Homo sapiens; (3) Mus musculus, Rattus norvegicus; and (4) Gallus gallus. After noticing this 
disagreement, we considered all four nucleotide density distributions simultaneously, in the same data matrix, 
and then performed three components PCA on the entire data matrix. We have included the script of the MAT-
LAB code in the supplementary section (Script S1).

Three component analysis. As mentioned earlier, a data set of the m-by-4n matrix is considered for 3D princi-
pal component analysis (3D-PCA). One can notice that instead of n columns, the data set contains 4n columns. 
It is due to the inclusion of four nucleotide density distribution in a single row of each sequence. Out of 4n 
columns, we have considered three columns, as three PCs contain most of the variation. Other columns (4n-3) 
are discarded as their contribution is less in the information acquirement. Finally, a data set of m-by-3 matrix 
is taken for 3D principal component plot as shown in Fig. 3. The PCA with simultaneous nucleotide density 
distributions is in good agreement with the phylogeny reported  elsewhere47. Figure 3 clearly shows the forma-
tion of four clusters. Cluster 1 is composed of Equus caballus and Sus scrofa. Five organisms, Homo sapiens, 
Callithrix jacchus, Pan troglodytes, Macaca mulatta, and Papio Anubis, are included in cluster 2. Two organisms, 
Mus musculus and Rattus norvegicus, are grouped into cluster 3. Cluster 4, comprising only Gallus gallus, is far 
from the other clusters.

Dissimilarity matrix calculation. The dissimilarity value (DV) between any two organisms was estimated 
based on the first 3 principle components (> 90% of the total variability) by computing the Euclidean distance 
between organisms. The obtained DV is used to find the dissimilarity between two sequences, as presented in 
table S5. Additionally, the obtained dissimilarity matrix is shown in Fig. 4. We observe that the DV of Homo 
sapiens from Callithrix jacchus, Macaca mulatta, Pan troglodytes and Papio anubis are, respectively, 0.063, 0.041, 
0.077 and 0.049. On the other hand, the DV of Homo sapiens from the other species is greater than 0.15. The 
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hemoglobin coding sequences of the organisms Homo sapiens, Callithrix jacchus, Macaca mulatta, Pan troglo-
dytes and Papio anubis are very close, which is commensurate with the fact that they are all primates. The five 
primates constitute cluster 2, as mentioned in the PC scatter plot. The dissimilarity matrix for HBB sequences 
(Fig. 4) reveals dissimilarity between Equus caballus and Homo sapiens (DV = 0.151), which demonstrates two 
distant neighbor sequences. Equus caballus belongs to ungulates, which are different from primates. The organ-
ism Mus musculus, existing in the rodent species, maintains a DV of 0.189 from Homo sapiens. We also notice 
that Gallus gallus creates a very large DV with all of the organisms, with the smallest DV value being 0.324, which 

Figure 2.  PC plot of for single nucleotide of 10 organisms. Circle: A nucleotide, Circle: C nucleotide, Triangle: 
G nucleotide, X: T nucleotide; Colour code represents different species as indicatedin the legend. Individual PC 
value for A and G nucleotide are shown in in panel (b) and (c) respectively.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13701  | https://doi.org/10.1038/s41598-021-93154-3

www.nature.com/scientificreports/

Figure 3.  Scatter plot of three PC values. Circle (aqua color): Cluster 1 consists of Equus caballus, Sus scrofa; 
Circle (indigo color): Cluster 2 consists of Homo sapiens, Callithrix jacchus, Pan troglodytes, Macaca mulatta, 
Papio anubis; Circle (yellow color): Cluster 3 consists of Mus musculus, Rattus norvegicus; Circle (maroon color): 
Cluster 4 consists of Gallus gallus.

Figure 4.  The dissimilarity matrix for beta HBB sequences derived from 10 organisms. The diagonal shows zero 
value, because diagonal element represents dissimilarity between an organism and organism itself.
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is quite obvious that Gallus gallus is a bird species. We have studied similarity based on Principal Component 
Analysis. PCA is not scale invariant. As a result, similarity rates are indicative.

Phylogenetic tree. Taking HBB sequences as a basis, we get the phylogenetic tree of the organisms with the 
Unweighted Pair Group Method’s help with the Arithmetic mean (UPGMA) method as applied on the dissimi-
larity matrix. The phylogenic tree, as found from our algorithm, is displayed in panel A of Fig. 5. The same phylo-
genetic relationship is obtained by applying the CLUSTALW alignment-based method. It is indicated in panel B 
of Fig. 5. The two phylogenic tree as constructed based on two methods are in good agreement. Both the figures 
show the same nature of cluster formation. Cluster 1 includes two Ungulates accessions (Equus caballus and Sus 
scrofa). Two members of cluster 1 are at a genetic distance (GD) of 0.307 from each other, which is relatively large 
in comparison to members in other clusters. This large GD between Equus caballus and Sus scrofa is shown to be 
relevant to the morphological criteria of different sides, namely, headgear, dentition, and foot  structure48,49. They 
are mainly segregated on the basis of their foot morphology—whether they are even-toed or odd-toed hoofed 
mammals. Equus caballus is an odd-toed ungulate, and Sus scrofa is an even-toed ungulate. Cluster 2 contains 
five primates, namely, Homo sapiens, Callithrix jacchus, Macaca mulatta, Pan troglodytes and Papio anubis. They 
are close to one another in the tree, which means that primates maintain less GD in comparison to the other 
clusters. For example, the Homo sapiens and Pan troglodytes HBB sequences are almost identical, with a likeness 
of approximately 98.8% of their  genome50. Phylogenic studies have established the relationships, presenting the 
common chimpanzee (Pan troglodytes) and bonobo (Papio anubis) as our neighboring evolutionary  relatives51. 
However, some major interspecies evolutionary changes are not reflected in the short GD  relationship52. It is 
found that Gallus gallus is genetically far away from the other organisms, with a GD as high as 0.7, which is in 
support of the fact that Gallus gallus is only non-mammalian species among the 10 species in the present study.

Validation of the algorithm with another set of data. To further demonstrate the applicability of 
our method, we give emphasis to the origin of the human species. After the discovery of fossilized Neanderthal 
skeletons in Europe, many questions arose regarding the origin of human beings, from which the subject of 
our relation to Neanderthal is foremost. We apply the present sequencing method to study the mitochondrial 
genomes of primate origins. We choose mtDNA because of its rapid mutation  rate53 and because it is worthwhile 
to elucidate the evolutionary relationships among species based on mtDNA sequence analysis. We consider the 
displacement loop (D-loop), which is a non-coding section of mtDNA. It comprises two regions, viz., hyper 
variable region 1 (HVR-1) and hyper variable region 2 (HVR-2), which represent variations between species. We 
have taken sequences from HVR-2. The associated mitochondrion genome sequences are downloaded from the 
GenBank database (table S6).

We examined the HVR-2 in the D-loop region of 18 species of primates, including four humans (Berber, 
Chinese, Georgean, and Yoruba), Neanderthal, three common chimpanzees, two pygmy chimpanzees, three 
gorillas, two Sumatran orangutans, two Bornean orangutans, and a gibbon, in an attempt to estimate the diver-
gence of mtDNAs and to determine the relationship between them. We calculated the four nucleotide density 
distribution matrix followed by performing principal component analysis. The first three principal components 
for 18 primates are shown in Fig. 6. We observed that seven clusters were formed. Cluster 1 comprises five 
Homo sapiens (Berber, Chinese, Georgean, Yoruba, and Neanderthal). Three chimpanzees (Pan_troglodytes_1, 
Pan_troglodytes_2, Pan_troglodytes_3) are included in cluster 2. Two pygmy chimpanzees (Pan_paniscus_1, Pan_
paniscus_2) are grouped into cluster 3. Cluster 4 is built with three gorillas (Gorilla_gorilla_1, Gorilla_gorilla_2, 
Gorilla_gorilla_gorilla). Sumatran orangutans (Pongo_pygmaeus_abelii_1, Pongo_pygmaeus_abelii_1) appear in 

Figure 5.  The phylogenetic tree of the hemoglobin coding sequences. (A) Phylogenetic tree is constructed with 
our algorithm (Alignment Free method). The similar sequences are grouped into cluster. Clusters are shown 
with different colours. (B) Phylogenetic tree using clustalW (Alignment based method).
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cluster 5. Cluster 6 contains Bornean orangutans (Pongo_pygmaeus_1, Pongo_pygmaeus_2). Cluster 7 consists 
only of the gibbon (Hylobates_lar).

We have constructed a dissimilarity matrix of these sequences from the first three principal components, and 
the phylogenetic tree among the 18 organisms is obtained by using UPGMA algorithm. The phylogenic tree, 
as determined from the present algorithm, is shown in panel A of Fig. 7. It is also constructed by CLUSTALW 
alignment-based method. The latter tree is displayed in the panel B of Fig. 7. The two phylogenic trees as built 
by two methods show a good agreement. Both trees show the same nature of cluster formation. Our present 
phylogenetic analysis maintains consistency with the analysis reported by Cristianini and  Hahn54. The organisms 
Berber, Chinese, Georgean, and Yoruba are very close in cluster 1. Neanderthals is shown to be connected to a 
common ancestor of Neanderthals and modern humans. However, there is controversy regarding the relationship 
between Neanderthals and modern  humans55. Krings et al. described Neanderthal mtDNA to be far outside the 

Figure 6.  Scatter plot of the first three PC values. Circle (aqua color): Cluster 1 consists of Homo sapiens 
(Berber, Chinese, Georgean, Yoruba, and Neanderthal); Circle (blue color): Cluster 2 consists of chimpanzees 
(Pan_troglodytes_1, Pan_troglodytes_2, Pan_troglodytes_3); Circle (indigo color): Cluster 3 consists of pygmy 
chimpanzees (Pan_paniscus_1, Pan_paniscus_2); Circle (red color): Cluster 4 consists of gorillas (Gorilla_
gorilla_1, Gorilla_gorilla_2, Gorilla_gorilla_gorilla); Circle (yellow color): Cluster 5 consists of Sumatran 
orangutan (Pongo_pygmaeus_abelii_1, Pongo_pygmaeus_abelii_1); Circle (lime color): Cluster 6 consists of 
Bornean orangutan (Pongo_pygmaeus_1, Pongo_pygmaeus_2); Circle (maroon color): Cluster 7 consists of 
Gibbon (Hylobates lar). Note that some data points are coincident due to close PC values of the organisms in the 
same cluster.

Figure 7.  The mtDNA phylogenetic tree using 18 primate species sequences(test sequences). (A) Phylogenetic 
tree is constructed with our algorithm (Alignment Free method). The similar sequences are grouped into cluster. 
Clusters are shown with different colours. (B) Phylogenetic tree using clustalW (Alignment based method).
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phylogenetic tree connecting the mtDNAs of contemporary  humans56. On the other hand, Wolpoff reported a 
close relation between Neanderthal and  Europeans57. However, in our case, the mtDNA HVR-2 phylogenetic tree 
shows that Neanderthals are more closely related to modern humans than to any of the other extant Great Apes 
(chimpanzees, gorillas, orangutans) or Lesser Apes (gibbons). The GD between Neanderthals and the human 
line is 0.096687, whereas the GD between Neanderthals and chimpanzees is 0.29986. Gorillas and orangutans 
have GDs of 0.73339 and 0.91766, respectively, from Neanderthals. Gibbons are positioned at a GD of 0.77814 
from Neanderthals. The common chimpanzee and pygmy chimpanzee have a GD of 0.2506 between them. The 
Sumatran orangutan has a GD of 0.36534 from Bornean orangutans. Lesser Apes are distinct from Great Apes; 
for instance, the gibbon is far from chimpanzees (GD = 0.77814).

The present clustering algorithm has several advantages over alignment-based methods. It does not require 
any pre-editing of the sequences. Alignment-based similarity findings may result in some type of incorrect 
relationship in the case of divergent  sequences58. Comparisons of the existing alignment-based algorithms are 
provided in table S7. However Jemes et al. has developed a clustering for DNA sequences using clustering 
 algorithm59. The present algorithm also helpful for genetic grouping of different species subtype using DNA 
 sequence60.

Conclusion
We propose a novel algorithm for the determination of the occurrence of k-mer or q-gram words in a DNA 
sequence for information recovery in sequence dynamics. The present algorithm counts the prevalence of each 
k-mer or q-gram occurrence by using dynamic window which slides over the sequence. Using digital signal 
processing (DSP) technique and based on the operation of a FIR type filter, we have calculated the density 
distribution which is further used for PCA. The present method is of sequence alignment-free and does not 
require graphical representation. The cluster algorithm based on the FIR operation validates its applicability. 
Application of the FIR algorithm demonstrates its applicability to two data sets with evolutionary importance, 
beta hemoglobin coding sequences (HBB) and HVR-2 mtDNA sequences. Our algorithm can be useful for 
various evolutionary analyses and will be very helpful for future biological communities that are working in 
the area of molecular phylogenetics and also helpful for genetic grouping of different subtype of a species using 
DNA sequence.
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