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With the vast amount of immunological data available, immunology research is entering the big data era. These data vary in
granularity, quality, and complexity and are stored in various formats, including publications, technical reports, and databases.The
challenge is to make the transition from data to actionable knowledge and wisdom and bridge the knowledge gap and application
gap. We report a knowledge-based approach based on a framework called KB-builder that facilitates data mining by enabling
fast development and deployment of web-accessible immunological data knowledge warehouses. Immunological knowledge
discovery relies heavily on both the availability of accurate, up-to-date, and well-organized data and the proper analytics tools. We
propose the use of knowledge-based approaches by developing knowledgebases combining well-annotated data with specialized
analytical tools and integrating them into analytical workflow. A set of well-defined workflow types with rich summarization and
visualization capacity facilitates the transformation from data to critical information and knowledge. By using KB-builder, we
enabled streamlining of normally time-consuming processes of database development.The knowledgebases built using KB-builder
will speed up rational vaccine design by providing accurate and well-annotated data coupled with tailored computational analysis
tools and workflow.

1. Introduction

Data represent the lowest level of abstraction and do not
have meaning by themselves. Information is data that has
been processed so that it gives answers to simple questions,
such as “what,” “where,” and “when.” Knowledge represents
the application of data and information at a higher level of
abstraction, a combination of rules, relationships, ideas, and
experiences, and gives answers to “how” or “why” questions.
Wisdom is achieved when the acquired knowledge is applied
to offer solutions to practical problems. The data, informa-
tion, knowledge, andwisdom (DIKW) hierarchy summarizes
the relationships between these levels, with data at its base
and wisdom at its apex and each level of the hierarchy being
an essential precursor to the levels above (Figure 1(a)) [1, 2].
The acquisition cost is lowest for data acquisition and highest
for knowledge and wisdom acquisition (Figure 1(b)).

In immunology, for example, a newly sequenced molec-
ular sequence without functional annotation is a data point,

information is gained by annotating the sequence to answer
questions such as which viral strain it originates from,
knowledge may be obtained by identifying immune epitopes
in the viral sequence, and the design of a peptide-based
vaccine using the epitopes represents the wisdom level.
Overwhelmed by the vast amount of immunological data,
to make the transition from data to actionable knowledge
and wisdom and bridge the knowledge gap and application
gap, we are confronted with several challenges.These include
asking the “right questions,” handling unstructured data, data
quality control (garbage in, garbage out), integrating data
from various sources in various formats, and developing
specialized analytics tools with the capacity to handle large
volume of data.

The human immune system is a complex system com-
prising the innate immune system and the adaptive immune
system. There are two branches of adaptive immunity,
humoral immunity effected by the antibodies and cell-
mediated immunity effected by the T cells of the immune
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Figure 1: The DIKW hierarchy. (a) The relative quantities of data,
information, knowledge, and wisdom. (b) The relative acquisition
cost of the different layers. (c)The gap between data and knowledge
and (d) the gap between knowledge and wisdom.

system. In humoral immunity, B cells produce antibodies for
neutralization of extracellular pathogens and their antigens
that prevent the spread of infection. The activation of B cells
and their differentiation into antibody-secreting plasma cells
is triggered by antigens and usually requires helper T cells
[3]. B cells identify antigens through B-cell receptors, which
recognize discrete sites on the surface of target antigens called
B-cell epitopes [4].

Cellular immunity involves the activation of phagocytes,
antigen-specific cytotoxic T-lymphocytes (CTLs), and the
release of various cytokines in response to pathogens and
their antigens. T cells identify foreign antigens through their
T-cell receptors (TCRs), which interact with a peptide antigen
in complex with a major histocompatibility complex (MHC)
molecule in conjunction with CD4 or CD8 coreceptors [5,
6]. Peptides that induce immune responses, when presented
by MHC on the cell surface for recognition by T cells, are
called T-cell epitopes. CD8+ T cells control infection through
direct cytolysis of infected cells and through production of
soluble antiviral mediators. This function is mediated by
linear peptide epitopes presented by MHC class I molecules.
CD4+ T cells recognize epitopes presented by MHC class
II molecules on the surface of infected cells and secrete
lymphokines that stimulate B cells and cytotoxic T cells. The
Immune Epitope Database (IEDB) [7] hosts nearly 20,000 T-
cell epitopes as of Feb. 2014.

The recognition of a given antigenic peptide by an indi-
vidual immune system depends on the ability of this peptide
to bind one or more of the host’s human leukocyte antigens
(HLA-human MHC). The binding of antigenic peptides to
HLA molecules is the most selective step in identifying
T-cell epitopes. There is a great diversity of HLA genes
with more than 10,000 known variants characterized as of
Feb. 2014 [8]. To manage this diversity, the classification of
HLA into supertypes was proposed to describe those HLA
variants that have small differences in their peptide-binding
grooves and share similar peptide-binding specificities [9, 10].

Peptides that can bind multiple HLA variants are termed
“promiscuous peptides.” They are suitable for the design
of epitope-based vaccines because they can interact with
multiple HLA within human populations.

The concept of reverse vaccinology supports identifica-
tion of vaccine targets by large-scale bioinformatics screening
of entire pathogenic genomes followed by experimental
validation [11]. Using bioinformatics analysis to select a small
set of key wet-lab experiments for vaccine design is becoming
a norm.The complexity of identification of broadly protective
vaccine targets arises from twoprincipal sources, the diversity
of pathogens and the diversity of human immune system.The
design of broadly protective peptide-based vaccines involves
the identification and selection of vaccine targets composed
of conserved T-cell and B-cell epitopes that are broadly
cross-reactive to viral subtypes and protective of a large host
population (Figure 2).

Fuelled by the breakthroughs in genomics and pro-
teomics and advances in instrumentation, sample processing,
and immunological assays, immunology research is entering
the big data era. These data vary in granularity, quality,
and complexity and are stored in various formats, including
publications, technical reports, and databases. Next gener-
ation sequencing technologies are shifting the paradigm of
genomics and allowing researchers to perform genome-wide
studies [12]. It was estimated that the amount of publically
available genomic data will grow from petabytes (1015) to
exabytes (1018) [13]. Mass spectrometry (MS) is the method
for detection and quantitation of proteins. The technical
advancements in proteomics support exponential growth
of the numbers of characterized protein sequences. It is
estimated that more than 2 million protein variants make
the posttranslated human proteome in any human individual
[14]. Capitalizing on the recent advances in immune pro-
filing methods, the Human Immunology Project Consor-
tium (HIPC) is creating large data sets on human subjects
undergoing influenza vaccination or who are infected with
pathogens including influenza virus, West Nile virus, herpes
zoster, pneumococcus, and the malaria parasite [15]. Systems
biology aims to study the interactions between relevant
molecular components and their changes over time and
enable the development of predictive models. The advent
of technological breakthroughs in the fields of genomics,
proteomics, and other “omics” is catalyzing advances in sys-
tems immunology, a new field under the umbrella of system
biology [16]. The synergy between systems immunology and
vaccinology enables rational vaccine design [17].

Big data describes the environment where massive data
sources combine both structured and unstructured data
so that the analysis cannot be performed using traditional
database and analytical methods. Increasingly, data sources
from literature and online sources are combined with the
traditional types of data [18] for summarization of complex
information, extraction of knowledge, decision support, and
predictive analytics. With the increase of the data sources,
both the knowledge and application gaps (Figures 1(c) and
1(d)) keep widening and the corresponding volumes of
data and information are rapidly increasing. We describe
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Figure 2:The process of rational vaccine discovery using knowledge-based systems.The design of broadly protective peptide-based vaccines
involves identification and selection of vaccine targets composed of conserved T-cell and B-cell epitopes that are broadly cross-reactive to
pathogen subtypes and protective of a large host population.

a knowledge-based approach that helps reduce the knowledge
and application gaps for applications in immunology and
vaccinology.

2. Materials and Methods

In the big data era, knowledge-based systems (KBSs) are
emerging as knowledge discovery platforms. A KBS is an
intelligent system that employs a computationally tractable
knowledgebase or repository in order to reason upon data in
a targeted domain and reproduce expert performance relative
to such reasoning operations [19]. The goal of a KBS is to
increase the reproducibility, scalability, and accessibility of
complex reasoning tasks [20]. Some of the web-accessible
immunological databases, such as Cancer Immunity Peptide
Database that hosts four static data tables containing four
types of tumor antigens with defined T-cell epitopes, focus on
cataloging the data and information and pay little attention
to the integration of analysis tools [21, 22]. Most recent web-
accessible immunological databases, such as ImmuneEpitope
Database (IEDB) that catalogs experimentally characterized
B-cell and T-cell epitopes and data on MHC binding and
MHC ligand elution experiments, started to integrate some
data analysis tools [7, 23]. To bridge the knowledge gap
between immunological information and knowledge, we
need KBSs that tightly integrate data with analysis tools to
enable comprehensive screening of immune epitopes from
a comprehensive landscape of a given disease (such as

influenza, flaviviruses, or cancer), the analysis of crossreac-
tivity and crossprotection following immunization or vac-
cination, and prediction of neutralizing immune responses.
We developed a framework called KB-builder to facilitate
data mining by enabling fast development and deployment of
web-accessible immunological data knowledge warehouses.
The framework consists of seven major functional modules
(Figure 3), each facilitating a specific aspect of the knowl-
edgebase construction process. The KB-builder framework
is generic and can be applied to a variety of immunological
sequence datasets. Its aim is to enable the development
of a web-accessible knowledgebase and its corresponding
analytics pipeline within a short period of time (typically
within 1-2 weeks), given a set of annotated genetic or protein
sequences.

The design of a broadly protective peptide-based vaccine
against viral pathogens involves the identification and selec-
tion of vaccine targets composed of conserved T-cell and B-
cell epitopes that are broadly cross-reactive to a wide range
of viral subtypes and are protective in a large majority of host
population (Figure 2).The KB-builder facilitates a systematic
discovery of vaccine targets by enabling fast development
of specialized bioinformatics KBS that tightly integrate the
content (accurate, up-to-date, and well-organized antigen
data) with tailored analysis tools.

The input to KB-builder is data scattered across pri-
mary databases and scientific literature (Figure 3). Module 1
(data collection and processingmodule) performs automated
data extraction and initial transformations. The raw antigen
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Figure 3: The structure of KB-builder.

data (viral or tumor) consisting of protein or nucleotide
sequences, or both, and their related information are col-
lected from various sources.The collected data are then refor-
matted and organized into a unified XML format. Module
2 (data cleaning, enrichment, and annotation module) deals
with data incompleteness, inconsistency, and ambiguities due
to the lack of submission standards in the online primary
databases. The semiautomated data cleaning is performed
by domain experts to ensure data quality, completeness,
and redundancy reduction. Semiautomated data enrichment
and annotation are performed by the domain experts fur-
ther enhancing data quality. The semiautomation involves
automated comparison of new entries to the entries already
processed within the KB and comparison of terms that are
entered into locally implemented dictionaries. Terms that
match the existing record annotations and dictionary terms
are automatically processed. New terms and new annotations
are inspected by a curator and if in error they are corrected,
or if they represent novel annotations or terms they are added
to the knowledgebase and to the local dictionaries. Module 3
(the import module) performs automatic import of the XML
file into the central repository. Module 4 (the basic analysis
toolset) facilitates fast integration of common analytical tools
with the online antigen KB. All our knowledgebases have
the basic keyword search tools for locating antigens and T-
cell epitopes or HLA ligands. The advanced keyword search
tool was included in FLAVIdB, FLUKB, and HPVdB, where
users further restrict the search by selecting virus species,
viral subtype, pathology, host organism, viral strain type, and
several other filters. Other analytical tools include sequence
similarity search enabled by basic local alignment search tool
(BLAST) [24] and color-coded multiple sequence alignment
(MSA) tool [25] on user-defined sequence sets as shown in
Figure 4. Module 5 (the specialized analysis toolset) facil-
itates fast integration of specialized analysis tools designed
according to the specific purpose of the knowledgebase and

the structural and functional properties of the source of the
sequences. To facilitate efficient antigenicity analysis, in every
knowledgebase and within each antigen entry, we embedded
a tool that performs on-the-fly binding prediction to 15
frequent HLA class I and class II alleles. In TANTIGEN,
an interactive visualization tool, mutation map, has been
implemented to provide a global view of all mutations
reported in a tumor antigen. Figure 5 shows a screenshot
of mutation map of tumor antigen epidermal growth factor
receptor (EGFR) inTANTIGEN. InTANTIGENandHPVdB,
a T-cell epitope visualization tool has been implemented
to display epitopes in all isoforms of a tumor antigen or
sequences of a HPV genotype. The B-cell visualization tool
in FLAVIdB and FLUKB displays neutralizing B-cell epitope
positions on viral protein three-dimensional (3D) structures
[26, 27]. To analyze viral sequence variability, given aMSA of
a set of sequences, a tool was developed to calculate Shannon
entropy at each alignment position. To identify conserved
T-cell epitopes that cover the majority of viral population,
we developed and integrated block entropy analysis tool
in FLAVIdB and FLUKB to analyze peptide conservation
and variability. We developed a novel sequence logo tool,
BlockLogo, optimized for visualization of continuous and
discontinuous motifs, fragments [28, 29]. When paired with
the HLA binding prediction tool, BlockLogo is a useful tool
for rapid assessing of immunological potential of selected
regions in a MSA, such as alignments of viral sequences or
tumor antigens.

A workflow is an automated process that takes a request
from the user, performs complex analysis by combining data
and tools preselected for common questions, and produces
a comprehensive report [30]. Module 6 (workflow for inte-
grated analysis to answer meaningful questions) automates
the consecutive execution of multiple analysis steps, which
researchers usually would have to perform manually, to
answer complex sequential questions. Two workflow types,
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Figure 4: A screenshot of the result page generated by the color-
coded MSA tool implemented in the FLAVIdB. The residues
are color-coded by frequency: white (100%), cyan (second most
frequent), yellow (third most frequent residues), gray (fourth most
frequent residues), green (fifth most frequent residues), purple
(sixth most frequent residues), and blue (everything less frequent
than the sixth most frequent residues).

Figure 5: A screenshot ofmutationmap of tumor antigen epidermal
growth factor receptor (EGFR) in TANTIGEN.The numbers are the
amino acid positions in the antigen sequence and the top amino acid
sequence is the reference sequence of EGFR.The highlighted amino
acids in the reference sequences are positions where pointmutations
took place. Clicking on the amino acids below the point mutation
positions links to the mutated sequence data table.

the summary workflow and the query analyzer workflow,
were implemented in FLAVIdB. Three workflow types, the
vaccine target workflow, the crossneutralization estimation
workflow, and B-cell epitope mapper workflow, were imple-
mented in FLUKB. Module 7 (semiautomated update and
maintenance of the databases) employs a semiautomated
approach to maintain and update the databases.

3. Results and Discussion

Using the KB-builder, we built several immunovaccinology
knowledgebases including TANTIGEN: Tumor T-cell
Antigen Database (http://cvc.dfci.harvard.edu/tadb/),
FLAVIdB: Flavivirus Antigen Database [31], HPVdB: Human
Papillomavirus T-cell Antigen Database [32], FLUKB: Flu

Figure 6: A screenshot of the conservation analysis result page of
T-cell epitope E7

11−19
in HPVdB.

Virus Antigen Database (http://research4.dfci.harvard.edu/
cvc/flukb/), Epstein-Barr Virus T-cell Antigen Database
(http://research4.dfci.harvard.edu/cvc/ebv/), and Merkel
Cell Polyomavirus Antigen Database (http://cvc.dfci.harvard
.edu/mcv/).These knowledgebases combine virus and tumor
antigenic data, specialized analysis tools, and workflow for
automated complex analyses focusing on applications in
immunology and vaccinology.

The Human Papillomavirus T-cell Antigen Database
(HPVdB) contains 2781 curated antigen entries of antigenic
proteins derived from 18 genotypes of high-risk HPV and 18
genotypes of low-risk HPV. It also catalogs 191 verified T-cell
epitopes and 45 verified HLA ligands. The functions of the
data mining tools integrated in HPVdB include antigen and
epitope/ligand search, sequence comparison using BLAST
search, multiple alignments of antigens, classification of HPV
types based on cancer risk, T-cell epitope prediction, T-cell
epitope/HLA ligand visualization, T-cell epitope/HLA ligand
conservation analysis, and sequence variability analysis.

HPV regulatory proteins E6 and E7 proteins are often
studied for immune-based therapies as they are constitu-
tively expressed in HPV-associated cancer cells. First, the
prediction of A∗0201 binding peptides (both 9-mers and 10-
mers) of HPV16 E6 and E7 proteins was performed compu-
tationally. Based on the prediction results, 21 peptides were
synthesized and ten of them were identified as binders using
an A∗0201 binding assay. The ten A∗0201-binding peptides
were further tested for immune recognition in peripheral
blood mononuclear cells isolated from six A∗0201-positive
healthy donors using interferon 𝛾 (IFN 𝛾) ELISpot assay.
Two peptides, E7

11−19
and E6

29−38
, elicited spot-forming-unit

numbers 4-5-fold over background in one donor. Finally,
mass spectrometrywas used to validate that peptide E7

11−19
is

naturally presented onHPV16-transformed, A∗0201-positive
cells. Using the peptide conservation analysis tool embedded
in HPVdB, we answered the question howmany HPV strains
contain this epitope.The epitope E7

11−19
is conserved in 16 of

17 (94.12% conserved) HPV16 E7 complete sequences (Fig-
ure 6). A single substitution mutation L15V in HPV001854
(UniProt ID: C0KXQ5) resulted in the immune escape.
Among the 35 HPV16 cervical cancer samples we analyzed,
only a single sample contained the HPV001854 sequence
variant. The conserved HPV T-cell epitopes displayed by
HPV transformed tumors such as E7

11−19
may be the basis of

http://cvc.dfci.harvard.edu/tadb/
http://research4.dfci.harvard.edu/cvc/flukb/
http://research4.dfci.harvard.edu/cvc/flukb/
http://research4.dfci.harvard.edu/cvc/ebv/
http://cvc.dfci.harvard.edu/mcv/
http://cvc.dfci.harvard.edu/mcv/
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Figure 7: Block entropy analysis of envelope proteins of dengue subtypes 1–4 in the FLAVIdB. (a) A screenshot of the input page of block
entropy analysis in the FLAVIdB. (b) The number of blocks needed to cover 99% of the sequences variation. 𝑥-axis is the starting positions
of blocks and 𝑦-axis is the number of blocks required. The blocks with gap fraction above 10% are not plotted.

a therapeutic T-cell based cancer vaccine.This example shows
the combination of bioinformatics analysis and experimental
validation leading to identification of suitable vaccine targets
[33, 34].

Flaviviruses, such as dengue and West Nile viruses, are
NIAID Category A and B Priority Pathogens. We developed
FLAVIdB that contains 12,858 entries of flavivirus antigen
sequences, 184 verified T-cell epitopes, 201 verified B-cell
epitopes, and 4 representative molecular structures of the
dengue virus envelope protein [31]. The data mining sys-
tem integrated in FLAVIdB includes tools for antigen and
epitope/ligand search, sequence comparison using BLAST
search, multiple alignments of antigens, variability and con-
servation analysis, T-cell epitope prediction, and charac-
terization of neutralizing components of B-cell epitopes. A
workflow is an automated process that takes a request from
the user, performs complex analysis by combining data and
tools preselected for common questions, and produces a
comprehensive report to answer a specific research question.
Two predefined analysis workflow types, summary workflow
and query analyzer workflow, were implemented in FLAVIdB
[31].

Broad coverage of the pathogen population is particularly
important when designing T-cell epitope vaccines against
viral pathogens.Using FLAVIdBwe applied the block entropy
analysis method to the proteomes of the four serotypes
of dengue virus (DENV) and found 1,551 blocks of 9-mer
peptides, which cover 99% of available sequences with five or
fewer unique peptides [35]. Many of the blocks are located
consecutively in the proteins, so connecting these blocks
resulted in 78 conserved regions which can be covered with
457 subunit peptides. Of the 1551 blocks of 9-mer peptides,
110 blocks consisted of peptides all predicted to bind toMHC
with similar affinity and the sameHLA restriction. In total, we
identified a pool of 333 peptides as T-cell epitope candidates.

This set could form the basis for a broadly neutralizing
dengue virus vaccine. The results of block entropy analysis of
dengue subtypes 1–4 from FLAVIdB are shown in Figure 7.

Influenza virus is a NIAID Category C Priority Pathogen.
We developed the FLUKB that currently contains 302,272
influenza viral protein sequence entries from 62,016 unique
strains (57,274 type A, 4,470 type B, 180 type C, and 92
unknown types) of influenza virus. It also catalogued 349
unique T-cell epitopes, 708 unique MHC binding peptides,
and 17 neutralizing antibodies against hemagglutinin (HA)
proteins alongwith their 3D structures.Thedetailed informa-
tion on the neutralizing antibodies such as isolation informa-
tion, experimentally validated neutralizing/escape influenza
strains, B-cell epitope on the 3D structures, are also provided.

Approximately 10% of B-cell epitopes are linear peptides,
while 90% are formed from discontinuous amino acids that
create surface patches resulting from 3D folding of proteins
[36]. Characterization of an increasing number of broadly
neutralizing antibodies specific for pathogen surface pro-
teins, the growingnumber of known3D structures of antigen-
neutralizing antibody complexes, and the rapid growth of
the number of viral variant sequences demand systematic
bioinformatics analyses of B-cell epitopes and cross-reactivity
of neutralizing antibodies. We developed a generic method
for the assessment of neutralizing properties of monoclonal
antibodies. Previously, dengue virus was used to demonstrate
a generalized method [27]. This methodology has direct
relevance to the characterization and the design of broadly
neutralizing vaccines.

Using the FLUKB, we employed the analytical methods
to estimate cross-reactivity of neutralizing antibodies (nAbs)
against surface glycoprotein HA of influenza virus strains,
both newly emerging or the existing ones [26]. We developed
a novel way of describing discontinuous motifs as virtual
peptides to represent B-cell epitopes and to estimate potential
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Figure 8: (a) Sequence logo of neutralizing epitopes by neutralizing antibody F10 on influenza virus HA protein. (b) BlockLogo of the
discontinuous residues in F10 neutralizing epitope. (c)The structure of influenzaAHAproteinwith neutralizing antibody F10 (PDB ID:3FKU)
and the conformational epitope shown in pink. (d) Discontinuous epitope on HA protein recognized by F10.

cross-reactivity and neutralizing coverage of these epitopes.
Strains labelled as potentially cross-reactive are those that
share 100% identity of B-cell epitopes with experimen-
tally verified neutralized strains. Two workflow types were
implemented in the FLUKB for cross-neutralization analysis:
cross-neutralization estimation workflow and B-cell epitope
mapper workflow.

The cross-neutralization estimation workflow estimates
the cross-neutralization coverage of a validated neutralizing
antibody using all full-length sequences of HA hosted in the
FLUKB, or using full-length HA sequences of a user-defined
subset by restricting year ranges, subtypes, or geographical
locations. Firstly, a MSA is generated using the full-length
HA sequences. The resulting MSA provides a consistent
alignment position numbering scheme for the downstream
analyses. Secondly, for each nAb, the HA sequence from its
3D structure and from the experimentally validated strains
is used to search for a strain with the highest similarity in
FLUKB using BLAST. Thirdly, a B-cell epitope is identified
from the validated antigen-antibody structures based on

the calculation of accessible surface area and atom distance.
Fourthly, using theMSA and the alignment position number-
ing, the residue position of the B-cell epitope is mapped onto
the HA sequences of validated strains to get B-cell epitope
motifs. Discontinuous motifs are extracted from all the HA
sequences in the MSA and compared to the B-cell epitope
motif. According to the comparison results, they are classified
to be either neutralizing if identical to a neutralizing discon-
tinuous motif, escape if identical to an escape discontinuous
motif, or not validated if no identical match was found.
The cross-neutralization coverage estimation of neutralizing
antibody F10 on all HA sequences from FLUKB is shown in
Figure 8.

For a newly emerged strain, the B-cell epitope map-
per workflow performs in silico prediction of its cross-
neutralization based on existing nAbs and provides pre-
liminary results for the design of downstream validation
experiments. Firstly, a discontinuous peptide is extracted
from its HA sequence according to positions on each known
B-cell epitope. Secondly, sequence similarity comparison
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is conducted between the discontinuous motifs and all
known B-cell epitopes from experimentally validated strains.
Themotifs identical to the knownneutralized or escape B-cell
epitope motifs are proposed as neutralized or escape strains,
respectively.

The cross-neutralization estimation workflow provides
an overview of cross-neutralization of existing neutralizing
antibodies, while B-cell epitope mapper workflow gives an
estimation of possible neutralizing effect of new viral strains
using known neutralizing antibodies. This knowledge-based
approach improves our understanding of antibody/antigen
interactions, facilitates mapping of the known universe of
target antigens, allows the prediction of cross-reactivity, and
speeds up the design of broadly protective influenza vaccines.

4. Conclusions

The big data analytics applies advanced analytic methods to
data sets that are very large and complex and that include
diverse data types.These advanced analyticsmethods include
predictive analytics, data mining, text mining, integrated
statistics, visualization, and summarization tools. The data
sets used in our case studies are complex and the analytics is
achieved through the definition of workflow. Data explosion
in our case studies is fueled by the combinatorial complexity
of the domain and the disparate data types. The cost of anal-
ysis and computation increases exponentially as we combine
various types of data to answer research questions.We use the
in silico identification of influenza T-cell epitopes restricted
by HLA class I variants as an example. There are 300,000
influenza sequences to be analyzed for T-cell epitopes using
MHC binding prediction tools based on artificial neural
networks or support vector machines [37–40]. Based on
the DNA typing for the entire US donor registry, there
are 733 HLA-A, 921 HLA-B, and 429 HLA-C variants, a
total of 2083 HLA variants, observed in US population [41].
These alleles combine into more than 45,000 haplotypes
(combinations of HLA-A, -B, and -C) [41]. Each of these
haplotypes has different frequencies and distributions across
different populations. The in silico analysis of MHC class I
restricted T-cell epitopes includes MHC binding prediction
of all overlapping peptides that are 9–11 amino acids long.This
task alone involves a systematic analysis of 300,000 sequences
that are on average 300 amino acids long.Therefore, the total
number of in silico predictions is approximately 300,000 ×
300 × 3 × 2083 (number of sequences times the average
length of each sequence times 3 times the number of observed
HLA variants) or a total of 5.6 × 1011 calculations. Predictive
models do not exist for all HLA alleles, so some analysis needs
to be performed by analysis of similarity of HLA molecules
and grouping them in clusters that share binding properties.
For B-cell epitope analysis, the situation is similar, except
that the methods involve the analysis of 3D structures of
antibodies and the analysis of nearly 100,000 sequences of
HA and neuraminidase (NA) and their cross-comparison
for each neutralizing antibody. A rich set of visualization
tools is needed to report population data and distributions
across populations. For vaccine studies, these data need to
be analyzed together with epidemiological data including

transmissibility and severity of influenza viruses [42]. These
functional properties can be assigned to each influenza
strain and the analysis can be performed for their epidemic
and pandemic potential. These numbers indicate that the
analytics methods involve a large amount of calculations that
cannot be performed using brute force approaches.

Immunological knowledge discovery relies heavily on
both the availability of accurate, up-to-date, and well-
organized data and the proper analytics tools. We pro-
pose the use of knowledge-based approaches by developing
knowledgebases combining well-annotated data with spe-
cialized analytical tools and integrating them into analyt-
ical workflow. A set of well-defined workflow types with
rich summarization and visualization capacity facilitates
the transformation from data to critical information and
knowledge. By using KB-builder, we enabled streamlining of
normally time-consuming process of database development.
The knowledgebases built using KB-builder will speed up
rational vaccine design by providing accurate and well-
annotated data coupled with tailored computational analysis
tools and workflow.
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