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Breast cancer (BC) is one of the most common cancers in women worldwide;

however, the successful treatment of BC, especially triple-negative breast

cancer (TNBC), remains a significant clinical challenge. Recently,

photothermal therapy (PTT), which involves the generation of heat under

irradiation to achieve photothermal ablation of BC with minimal invasiveness

and outstanding spatial–temporal selectivity, has been demonstrated as a novel

therapy that can overcome the drawbacks of chemotherapy or surgery.

Significantly, when combining PTT with chemotherapy and/or photodynamic

therapy, an enhanced synergistic therapeutic effect can be achieved in both

primary and metastatic BC tumors. Thus, this review discusses the recent

developments in nanotechnology-based photothermal therapy for the

treatment of BC and its metastasis to provide potential strategies for future

BC treatment.
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Introduction

Breast cancer (BC) is one of the most common malignancies in women worldwide,

and the 5-year survival rate of patients with stage III BC is approximately 50%, with an

average of only 4.9 years (Gradishar et al., 2020; Siegel et al., 2021; Afzal et al., 2022; An

et al., 2022; Luo et al., 2022). Due to genetic susceptibility, environmental factors, lifestyle,

etc., there are significant differences in the incidence and mortality of BC across countries

(Ginsburg et al., 2017; Hou et al., 2021). Previous studies have demonstrated that about

0.16 million patients were affected by BC in the United States in 2017 (Torre et al., 2016; Li

et al., 2020a). Since 2020, there have been 2.3 million new cases of BC worldwide every

year, and the total number of BC patients is predicted to increase by 50% by 2040 (Dias

et al., 2021; Shao and Varamini, 2022).
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At the molecular level, BC is mainly classified into four

different subtypes, luminal A, luminal B, HER2-enriched, and

triple-negative breast cancer (TNBC), based on the expression of

epidermal growth factor receptor 2 (HER2), estrogen receptor

alpha (ER), and progesterone receptor (PR) (Dai et al., 2015; Prat

et al., 2015; Azamjah et al., 2019). Clinically, ER- and/or PR-

positive and HER2-negative tumors are defined as luminal A,

ER- and/or PR-positive, and HER-positive with high

Ki67 expression is luminal B; HER2 overexpression with ER-

and PR-negative is HER2-enriched; and triple-negative breast

cancer (TNBC) is a subtype lacking ER, PR, and

HER2 expression but with high Ki67 expression (Cancer

Genome Atlas, 2012; Nagarajan and McArdle, 2018; Roswall

et al., 2018).

Patients diagnosed with different BC subtypes exhibit high

heterogeneity in prognosis. In addition to apocrine carcinoma,

lobular carcinoma, and metaplastic carcinoma, approximately

90% of TNBC cases exhibit ductal carcinoma infiltration

(Gonzalez-Angulo et al., 2011; Mendes et al., 2015; Salgado

et al., 2015). Although the 5-year survival rate of patients with

TNBC is more than 60%, the median survival of patients with

advanced TNBC is only 1 year (Pal et al., 2014; Pawar and

Prabhu, 2019). Aside from the lack of targeted therapy, patients

with TNBC usually have a higher risk of metastasis with poorly

differentiated grades among all BC subtypes (Chen et al., 2022a;

Chen et al., 2022b; Tan et al., 2022). Even with the development

of magnetic resonance imaging and positron emission

tomography with screening programs, the precise diagnosis of

TNBC at early stages remains a significant challenge in the clinic

because of the aggressiveness and rapid pathological process into

advanced stages. These factors significantly reduce the survival

rates of patients with TNBC. Therefore, it is important to find an

optimal strategy with desirable therapeutic effects for treating

TNBC and improving patient prognosis.

Photothermal therapy

The current therapeutic approaches for BC mainly consist of

chemotherapy, hormone therapy, and surgery (Aghanejad et al.,

2013; Kadkhoda et al., 2022; Zhong et al., 2022). However,

disadvantages such as adverse side effects for patients, drug

resistance, and residual tumor cells greatly limit their

therapeutic effect and may lead to cancer recurrence (Waks

and Winer, 2019; Kadkhoda et al., 2021). In addition, surgery

can only remove solid tumors from patients in the early stages,

and surgical trauma can induce systemic inflammatory responses

to promote micrometastatic growth. Photothermal therapy

(PTT) has been demonstrated to be an emerging therapeutic

method with low toxicity, minimal invasiveness, and outstanding

spatial–temporal selectivity, which could overcome these

drawbacks (Shakil et al., 2019; Mao and Liu, 2020; Peng et al.,

2021). By irradiating photothermal agents under near-infrared

(NIR) light, hyperthermia can be triggered to kill cancer cells in

target tissues by energy transfer through electron–phonon and

electron–electron relaxation of photothermal agents that increase

temperature, with both primary tumors and early local metastasis

being potential targets. PTT can effectively suppress BC by

activating apoptosis, autophagy, or suppressing cell signaling

to induce cell death with a shorter treatment time, which reduces

patient pain and possesses desirable therapeutic effects with

fewer side effects (Kadkhoda et al., 2022). Moreover, when

combining PTT with chemotherapy and/or photodynamic

therapy, an enhanced synergistic therapeutic effect can be

achieved in both primary and metastatic BC tumors (Zhou

et al., 2015b; Guo et al., 2015; Lin et al., 2015; Liu et al., 2019;

Deng et al., 2021) (Figure 1).

Photothermal therapy-triggered
apoptosis

Apoptosis is a highly regulated process of cell death distinct

from necrosis, which involves intracellular signals, such as DNA

damage or growth factor deprivation, and extracellular signals

produced during the immune response to cell damage or infection

(Pfeffer and Singh, 2018). It has been reported that PTT can also

suppress tumors by initiating cell apoptosis via the apoptosis

internal pathway, which makes PTT one of the most reliable

and powerful methods for cancer treatment (Li et al., 2022).

A recent study has shown that gold nanoparticles (AuNPs)

with epidermal growth factor receptor-targeting antibodies may

serve as a promising tool for NIR photothermal therapies for

cancer via apoptotic pathways. EGFRmAb-conjugated AuNPs

exhibited high selectivity and cytotoxicity against cancer cells,

where they entered the nucleus. NIR irradiation of AuNPs

induced cell apoptosis and DNA damage by inhibiting the

PI3K/AKT/mTOR pathway and upregulating the double-

strand DNA break repair proteins (Zhang et al., 2018).

Regarding breast cancer treatment, Shang et al. previously

reported an AuNP-based theranostic agent synthesized by

sequentially coating colloidal polystyrene spheres with

polydopamine and AuNPs. This colloidal polydopamine

(PDA)/Au agent can not only induce photothermal ablation

of breast cancer cells under NIR light but also provide

significant enhancement for ultrasound imaging in oncology

(Shang et al., 2020).

Shang et al. reported that a combination therapy of PTT and

chemotherapy is a promising strategy for breast cancer treatment

by equipping gold nanorods (GNRs) with hyaluronic acid/

chitosan and doxorubicin via a Schiff base linkage. The

hyaluronic acid corona improved the stability of the

polysaccharide-based nanoplatforms and allowed for the

effective targeting of the CD44 receptor in MCF-7 breast

cancer cells. Doxorubicin is released in acidic

microenvironments in the tumor to promote pH-responsive
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drug release behavior. The combined chemo-photothermal

therapy exhibited better therapeutic effects than either PTT or

doxorubicin individually (Xu et al., 2019).

The overexpression of epidermal growth factor receptor

(EGFR) in TNBC enables novel EGFR-targeted therapies for

TNBC. Based on clinical ultrasound and photoacoustic imaging,

Zhang et al. conjugated gold nanorods with an anti-EGFR

antibody to allow for the accurate detection of solid primary

tumors and lymph node metastases of TNBC in vivo with

efficient NIR photothermal therapy. PTT using anti-EGFR-

conjugated gold nanorods can also activate apoptosis in

TNBC by upregulating HSP70 and cleaved caspase-3 while

suppressing Ki-67 and EGFR (Zhang et al., 2017).

Although PTT can induce cell death pathways, such as

apoptosis and necrosis, apoptosis has been regarded as a more

effective method to remove cancer cells than necrosis, as it

protects the plasma membrane integrity of cells and avoids

inflammation. Xing et al. developed coral-shaped Au

nanostructures (Au NCs) with a high surface-to-volume ratio

to provide better photothermal conversion in the PPT treatment

of breast cancer. Under low-power NIR irradiation for 15 min,

Au NCs induced apoptosis in MCF-7 cells by upregulating Bax

nuclear-encoded proteins and suppressing Bcl-2 protein

expression in the apoptotic pathway, which successfully

inhibited cancer recurrence in vivo (Xing et al., 2019).

These findings demonstrate that functionalizing

photothermal agents with targeted moieties and combining

PTT with other effective therapies are gaining increasing

attention and have great potential for treating BC.

Photothermal therapy on BC
metastasis

Metastasis, including bone, lung, liver, and brain metastases,

in BC patients generally results in a poor prognosis, besides

removal of the primary tumor (Gong et al., 2017; Ling et al., 2021;

Zuo et al., 2022). Among all BC cases, 50% of BC in patients

progressed to liver metastases, and there is still no effective

therapy to treat liver metastatic estrogen receptor α (ERα)-
positive breast cancer, with these patients showing

correspondingly poor outcomes (Boudreau et al., 2021; Rashid

et al., 2021); however, despite considerable effort, the biological

mechanism of metastasis in BC remains unclear. Studies have

shown that patients with the HER2-positive or triple-negative

subtypes have a significantly higher risk of developing liver

metastases than patients with the HR+/HER2-subtype

(Kennecke et al., 2010; van de Water et al., 2012; Soni et al.,

2015). The reason for this phenomenon may be that HER2 can

activate the chemokine receptor CXCR4 and increase the

FIGURE 1
Photothermal therapy combined with chemotherapy or/and photodynamic therapy to achieve a synergistic therapeutic effect to inhibit breast
cancer primary tumor and metastasis.
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expression of fibroblast growth factor homologous factor

(FGF13) to promote the progression of liver metastasis

through the CXCL12/CXCR4 pathway in TNBC (Zlotnik

et al., 2011; Johnstone et al., 2020). In contrast, long

noncoding RNAs, a group of RNAs over 200 nucleotides in

length but which lack the ability to code for proteins, have been

recently demonstrated to promote invasion and metastasis of

cancer cells by initiating the epithelial to the mesenchymal

transition process in BC progression (Zhou et al., 2016;

Hussen et al., 2021; Hussen et al., 2022). Moreover, as cell

adhesion molecules (CAMs) play an important role in cancer

cell invasion and metastasis, one study showed that CD44 could

regulate PCF11 via the MAPK/ERK pathway or TGF-β signaling
pathway to promote metastasis in BC (Ouhtit et al., 2013; Al-

Mansoob et al., 2022).

Significantly, hyperthermia has been reported to have a

strong capacity to suppress the expression of metastasis-

related factors, such as vascular epithelial growth factor,

metalloproteinase, and TGF-β1, and hinder the invasion and

metastasis of cancer cells (Okuno et al., 2013; Zhou et al., 2015a;

Zou et al., 2016; Alamdari et al., 2022). He et al. developed a

photothermal nanoplatform by assembling 1,1-dioctadecyl-

3,3,3,3-tetramethylindotricarbocyanine iodide (DIR) into an

amphiphilic polymer of poly(ethylene glycol)-block-poly (2-

diisopropylmethacrylate) for PTT on BC metastasis. This

photothermal nanoplatform exhibited strong light-absorbing

capability upon 808 nm NIR irradiation, producing

hyperthermia to suppress the invasion of metastatic BC cells.

Compared to DIR alone, the nanoplatform showed significantly

improved accumulation, which facilitated the PTT in inhibiting

tumor progression and metastasis in vivo (He et al., 2015).

By simple mixing of an FDA-approved NIR dye, indocyanine

green (ICG), with human serum albumin (HSA) and paclitaxel

(PTX), biocompatible photothermal nanoparticles can be self-

assembled. The ICG moiety can generate mild photothermal

heating to improve intracellular uptake in 4T1 murine breast

cancer cells upon NIR irradiation to enhance the synergistic

therapeutic efficacy. This HSA-ICG–PTX photothermal

nanoparticle has excellent capacity to treat primary tumors

and, more importantly, suppress lung metastasis (Chen et al.,

2015).

Synergistic therapy of photothermal
therapy/chemotherapy

Therapies combining PTT with other treatments, such as

photodynamic therapy, chemotherapy, and exosome therapy,

have attracted the interest of many researchers worldwide owing

to their potential to further improve the PTT-based treatment for

cueing BC and distant metastasis (Zhou et al., 2015b; Guo et al.,

2015; Lin et al., 2015; Liu et al., 2019; Deng et al., 2021). For

example, Tian et al. developed a nanoparticle system by loading

ICG dye and DOX into porous silicon nanoparticles to achieve

chemo-photothermal therapy to inhibit the growth and

metastasis of BC. This drug delivery system was equipped

with a tumor cell-derived exosome membrane to enhance its

accumulation in tumor sites and intracellular uptake by cancer

cells. The heat produced by biomimetic nanoparticles under NIR

irradiation can effectively accelerate the release of DOX and

facilitate tumor ablation to suppress tumor growth and

metastasis in a BC tumor-bearing mouse model. This

nanosystem may serve as a promising tool for combination

therapies for BC (Tian et al., 2020).

Ma et al. developed another drug delivery system based on

ICG, HSA, and DOX. This nanoplatform can generate mild

hyperthermia to enhance the cellular uptake in cancer cells.

Furthermore, it can successfully induce T-cell responses by

increasing T-cell permeability and activating cytotoxic T cells

to suppress distant metastasis of BC, which demonstrates a

promising T-cell response-enhanced chemo-photothermal

therapy against BC (Ma et al., 2020).

As P-selectin proteins overexpressed on platelet membranes

can bind to CD44 receptors on BC cells, Ye et al. coated PLGA-

based photothermal nanoparticles with platelet membranes to

enhance the impact of both PTT and chemotherapy. ICG serves

as a PTA to provide NIR-induced hyperthermia, while DOX is a

chemotherapeutic agent. Favored by the interaction between

CD44 receptors on BC cells and P-selectin on nanoplatelets,

these PLGA nanoparticles could easily accumulate in MDA-

MB231 breast cancer cells and exhibited a strong capacity to

inhibit breast cancer metastasis in vivo (Ye et al., 2019).

Synergistic therapy of photothermal
therapy/photodynamic therapy

Photodynamic therapy (PDT) has been demonstrated as a

minimally invasive method to treat various types of cancer,

including breast cancer, melanoma, and lung cancer (Tang

et al., 2021; Ding et al., 2022; Jia et al., 2022; Obaid et al.,

2022; Pan et al., 2022; Zhang et al., 2022). The

photosensitizers can be activated under a light source to

generate reactive oxygen species (ROS) to kill cancer cells. In

particular, PDT can avoid systemic toxicity with fewer side effects

than chemotherapy due to its high spatiotemporal selectivity (Li

et al., 2018; Zhang et al., 2019; Nguyen et al., 2022). To achieve

synergistic therapeutic effects with different mechanisms for

eliminating breast cancer, combination therapies involving

both PDT and PTT have been developed (Su et al., 2015; Lee

et al., 2022; Xu et al., 2022).

For instance, Li et al. developed a Lyp-1 (CGNKRTRGC)-

modified micellar system by stabilizing negatively charged NIR

dye-IR820 with cationic PCL-grafted poly (ethylene imine) to

produce a combination PTT/PDT therapy for breast cancer. Lyp-

1 peptides precisely target the p32 protein overexpressed on
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breast cancer cells to enhance the targeting effect of the micellar

system. Importantly, PTT/PDT/chemotherapy exhibited

excellent inhibition of growth and metastasis in a 4T1 cancer

model in BALB/c nude mice (Li et al., 2016).

To overcome the drawbacks of drug resistance and

insufficient targeting ability in chemotherapy for TNBC, Li

et al. developed chlorin e6 (Ce6)-functionalized AuNPs for

synergistic PTT/PDT for the treatment of TNBC. By further

equipping nanoparticles with cRGD peptides and

triphenylphosphonium cationic moieties, the nanosystem can

specifically target TNBC cells and mitochondria to enhance their

accumulation in tumors, which facilitates hyperthermia and ROS

generation under NIR irradiation for synergistic anti-TNBC

effects in mice (Li et al., 2021).

Lung metastasis is one of the main causes of breast cancer

treatment failure (Guo et al., 2022; Houthuijzen and de Visser,

2022). To achieve desirable metastasis inhibition, Li et al.

synthesized theranostic gold nanostars with polydopamine

(PDA) and Ce6 conjugation for precise PTT and PDT to

inhibit 4T1 tumors and their lung metastasis. These

theranostic gold nanostars exhibited excellent stability and

photothermal conversion and further possessed simultaneous

photoacoustic imaging for an accurate therapeutic strategy (Li

et al., 2020b).

Conclusion and future perspectives

Many achievements have been made in the development of

intelligent nanosystems with PTT, even when combined with

other effective therapies to enhance the therapeutic effect against

breast cancer. However, several challenges limiting its efficacy

still remain, such as NIR penetration depth, the toxicity of

photothermal agents, and thermal resistance. To develop

photothermal agents, the cross-sectional area of absorption

and photothermal conversion efficiency should be increased.

Long-term biosafety, stability, and targeting ability should also

be considered to improve the efficacy in vivo. Thus, combination

therapy may enable the application of photothermal agents at

lower doses; however, the interaction and influence between

different components have not yet been elucidated.

Furthermore, current strategies have mainly focused on

directly killing breast cancer cells in both primary tumors and

metastases, whereas the tumor microenvironment plays a

significant role in tumor progression. Successful regulation of

immune responses in the TME may greatly improve outcomes.

In addition, underlying mechanisms and pathways involved in

PTT-triggered apoptosis or antimetastasis should be more clearly

evaluated. In summary, the design of multifunctional PTT

nanotools has been shown to be a promising direction for the

successful treatment of BC in the future.
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