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Abstract

To effectively and efficiently reduce the morbidity and mortality that may be caused by out-
breaks of emerging infectious diseases, it is very important for public health agencies to
make informed decisions for controlling the spread of the disease. Such decisions must
incorporate various kinds of intervention strategies, such as vaccinations, school closures
and border restrictions. Recently, researchers have paid increased attention to searching
for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks
when resources are limited. Most of the existing research work has been focused on how to
design an effective age-structured epidemic model and to select a suitable vaccine distribu-
tion strategy to prevent the propagation of an infectious virus. Models that evaluate age
structure effects are common, but models that additionally evaluate geographical effects
are less common. In this paper, we propose a new SEIR (susceptible—exposed—infec-
tious 8C recovered) model, named the hybrid SEIR-V model (HSEIR-V), which considers
not only the dynamics of infection prevalence in several age-specific host populations, but
also seeks to characterize the dynamics by which a virus spreads in various geographic dis-
tricts. Several vaccination strategies such as different kinds of vaccine coverage, different
vaccine releasing times and different vaccine deployment methods are incorporated into
the HSEIR-V compartmental model. We also design four hybrid vaccination distribution
strategies (based on population size, contact pattern matrix, infection rate and infectious
risk) for controlling the spread of viral infections. Based on data from the 2009—2010 H1N1
influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and
study the effects of different types of human behaviour in responding to epidemics.

Introduction

The rapid spread of an infectious disease can have a devastating impact on human welfare, low-
ering the quality of people’s lives and causing increased mortality. For example, during the
SARS outbreak in 2003, 299 people died, 1,755 persons were infected by the disease in Hong
Kong city, and the lives of millions of people were affected [1]-[3]. In the 2009 Hong Kong
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HIN1 epidemic, 36,896 people suffered from the flu [4]-[5]. The cholera epidemic in Haiti
from 2010 to 2011 led to 779,000 cases of the disease and 11,100 deaths [6]-[8].

To prevent an infectious disease from spreading, various epidemic models have been
designed to help public health agencies in making strategic decisions. Different intervention
strategies, such as vaccination, antiviral prophylaxis and treatment, area or household quaran-
tine or case isolation have been incorporated into various epidemic models. Some researchers
have focused on single-focus strategies [9]-[13]. For example, Ferguson et al. [9] studied the
effects of various particular strategies on disease control, including border restrictions, internal
travel restrictions, school closures, case isolations, household quarantines, treatment of clinical
cases, household-based prophylaxis and vaccination. Oles et al. [10] explored strategies such as
global preventive treatment, local treatment and palliative treatment to control the propagation
of an epidemic and to reduce its total cost. Tang et al. [11] developed community-based inter-
vention strategies such as quarantines, isolations, hygiene precautions, school closures and
travel precautions to reduce the effects of the 2009 HIN1 epidemic in China. Jackson et al. [12]
explored the effects of school closures on influenza outbreaks.

Other recent research work has emphasised analysing combinations of intervention strate-
gies [14]-[26]. For example, Lee et al. [14] explored the effects of combining different strategies
such as vaccinations, antiviral prophylaxis and treatment, area or household quarantines, case
isolations, social distancing measures and air travel restrictions for mitigating the effects of an
influenza pandemic. These authors concluded that combined strategies could be more effective
than individual strategies. Oles et al. [15] considered a balance of strategies focused on treat-
ment and recovery.

Moss et al. [19] integrated both diagnosis and antiviral intervention strategies into the SEIR
(susceptible—exposed—infectious $C recovered) model to prevent the propagation of an infec-
tious disease. Zhang et al. [20] adopted a strategy that combined the interventions of workforce
shifts and school closures.

Other studies have proposed optimal intervention strategies for situations with limited
available resources.

Dimitrov et al. [22] searched for the optimal antiviral strategies for distributing antiviral
medications from the U.S. Strategic National Stockpile (SNS) to prevent the transmission of
HINTI in the fall of 2009. These authors also studied the optimal use of the U.S. antiviral SNS to
prevent the spread of a pandemic influenza [23]. Wallinga et al. [25] explored an optimal inter-
vention strategy by adjusting the prioritisation of groups for intervention when encountering
new observations during an epidemic. In addition, some researchers have investigated how to
detect potential epidemics in their early stages [27]-[33].

Recently, many studies have explored different vaccine deployment strategies. These studies
have investigated how to identify the optimal approaches for distributing vaccine effectively.
Clearly, vaccination is one of the most effective and efficient intervention strategies for reduc-
ing morbidity and mortality and for preventing outbreaks of epidemic.

Unfortunately, vaccine stockpiles may not be adequate during the spread of an infectious
disease. The possible reasons for shortages of vaccine stockpiles can involve difficulties with
the identification of vaccine compositions [34], limitations in manufacturing [35], challenges
concerning logistics [35], or economic limitations [36]. To solve these various problems, the
World Health Organization (WHO) has recommended that several population groups with
high risk of death have priority for vaccination during epidemics in which vaccine resources
are limited. The question of how to make the fullest use limited vaccine stockpiles is gaining
increasing attention from researchers. For example, as explained in [37], the effectiveness of
vaccine distribution is related to three main factors: (1) vaccine coverage (the total number of
vaccine doses available), (2) vaccine releasing time (the starting date of vaccine deployment)
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and (3) vaccine deployment methods (the distribution of vaccine doses to different host popu-
lations). Liu et al. [38] designed an age-structured SEIR model to simulate the dynamics of epi-
demic expansion under various vaccine deployment conditions. These authors evaluated the
effects of vaccine deployment factors and identified vaccination priorities for different popula-
tion groups. Other researchers have sought to identify the priorities for the vaccination of vari-
ous populations in different regions or cities, rather than for age groups. For example, Araz

et al. [39] analysed the geographic spread of influenza and designed a modified SEIR model
based on both the populations in different age groups and in different regions. These authors
were able to identify a geographic prioritisation-based vaccine distribution strategy.

In general, most existing studies have considered either the spread of specific infectious dis-
eases among different age populations, or among the populations [40] [41] of different geo-
graphical regions [42] [43]. Few studies have incorporated both the age factor and the
geography factor into an infectious compartmental model. Our previous work in [38] investi-
gated how to model social contacts from census data. In this approach, we sought to capture
not only the hierarchical relationships of social contact patterns with respect to the geographic
factor, but also to characterise these relationships by considering both age and geography fac-
tors. Unfortunately, this study did not take the vaccine distribution strategy into account.
Therefore, we feel that developing an adaptive vaccine distribution strategy for host popula-
tions in terms of different age groups and different geographic districts is one of the most inter-
esting and important issues for researchers to investigate.

In this paper, we consider to the problem of how to effectively and efficiently distribute vac-
cines by taking into account the factors of both age and geography. We propose a new SEIR
model, named the hybrid susceptible—exposed—infectious—recovered—vaccinated (V) com-
partmental model (or HSEIR-V for short), to simulate the dynamics of an infectious disease in
both age-structured and district-based subpopulations. Different vaccination and segregation
strategies are incorporated into the proposed HSEIR-V model to characterise the outbreak of
an epidemic. We also carry out some simulation-based experiments to investigate the effects of
vaccine coverage, the effects of different releasing times and the effects of different vaccine dis-
tribution methods on disease control. We identify an optimal combination of vaccine deploy-
ment and segregation strategies. The simulation-based experimental results demonstrate that
our proposed HSEIR-V model and the corresponding vaccination and segregation strategies
are useful in effectively preventing the spread of disease.

Our paper makes two main contributions. First, we design an extended SEIR epidemic model
(named the HSEIR-V model), which takes into account both the age and the geographic district
factors and includes both vaccination and the segregation strategies to better simulate the
dynamics of epidemics and their treatment. Second, we consider different hybrid vaccination dis-
tribution and segregation strategies based on the relevant population size, the contact pattern
matrix, the infection rate and the infectious risk. All of these factors are taken into account in our
study as we seek to develop more effective strategies for controlling the spread of viral infections.

The remainder of the paper is organised as follows. Section II performs simulation-based
experiments to evaluate the performance of our proposed model, and shows the results and dis-
cussions. Section III describes the proposed HSEIR-V compartmental model and the correspond-
ing model parameters, and presents different vaccination strategies. Section IV introduces the
previous work as related to vaccine distribution strategies. Section V presents our conclusions.

Results/Discussion

We carry out simulation-based experiments to evaluate the effects of different vaccine distribu-
tion strategies in combination with segregation strategies as they relate to the dynamics of
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disease transmission during the 2009 Hong Kong HIN1 swine-flu epidemic. The parameters
adopted in our HSEIR-V model include the population sizes and infection rates 6;; that corre-
spond to different regions (R) and different age groups (A), as listed in Tables 1 and 2. The data
in Table 1 are extracted from a Hong Kong government report entitled “The Profile of Hong
Kong Population Analysed by District Council District” [44]. The data in Table 2 are calibrated
based on the infection rates given in [38]. As the infection rate is a biological indicator that dif-
fers from the physiological characteristics of individuals (such as their ages, genders and racial
identities), this indicator is not sensitive to geographical districts, but is affected by the popula-
tion structure with respect to people’s ages. As a result, the infection rates shown in Table 2
have the same values with respect to different geographical districts, but they have different val-
ues in terms of different age groups. The incubation rates ¢;; and the recovery rates y;; for all of
the subpopulations are set to 0.25 and 0.334, respectively. The segregation rate in the exposed
compartment, a;;, the segregation rate in the infectious compartment, fj;, and the treatment
rate, y;;, for the segregation of individuals for all of the subpopulations are set to 0.06, 0.03 and
0.7, respectively. The basic reproduction rate, Ry, is set to 1.2 according to the research work by
Cowling [45].

Table 3 shows the parameter settings for vaccine distribution (where |P| denotes the size of
the population), which includes the default values and ranges. We vary the values of the param-
eters one at a time in the experiments that follow, while setting the values of the other parame-
ters to their default values. During the 2009 Hong Kong HIN1 swine-flu epidemic, the Centre
for Health Protection (CHP) of Hong Kong prepared 0.5 x 10 vaccine doses for the citizens,
which was nearly 10% of the total population |P| in our study. The default value of vaccine cov-
erage was set to O, = 0.04|P|. As the beginning of the spread of the infectious virus was from 50
days during the HIN1 influenza epidemic in Hong Kong in 2009, the default setting for the
vaccine releasing time is set to T, = 50 days. The default settings of vaccine distribution

Table 1. The subpopulation sizes (10°) with respect to different districts (R) and different age groups (A).

A, (5-14) A, (15-24) A3 (25-44) A, (45-64) As (65+)
R1(Hong Kong Island) 0.1468 0.1468 0.4187 0.3932 0.1711
R>(Kowloon Peninsula) 0.2404 0.2465 0.6323 0.5939 0.3071
Rs(New Territories) 0.4758 0.5154 1.1714 1.0885 0.3532
doi:10.1371/journal.pone.0155416.1001
Table 2. The infection rates ; with respect to different districts (R) and different age groups (A).

A, (5-14) A, (15-24) A3 (25-44) A, (45-64) As (65+)
R1(Hong Kong Island) 0.434 0.158 0.118 0.046 0.046
R>(Kowloon Peninsula) 0.434 0.158 0.118 0.046 0.046
Rs(New Territories) 0.434 0.158 0.118 0.046 0.046
doi:10.1371/journal.pone.0155416.t002
Table 3. The parameter settings for vaccine distribution (where |P| denotes the size of the population).
Parameters Default value Range
Vaccine coverage O, = 0.04|P| 04 =0.02|P|, O, = 0.04|P|, O3 = 0.06|P|, O4 = 0.08|P|, Os = 0.1|P|
Vaccine releasing time T, = Day 50 T, =Day 1, T, = Day 50, T3 = Day 100, T4 = Day 150, Ts = Day 200
Vaccine distribution strategies S1 S1, 82, S8, S4
doi:10.1371/journal.pone.0155416.t003
PLOS ONE | DOI:10.1371/journal.pone.0155416 May 27,2016 4/23
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strategies are set to S1. One possible reason for this strategy is that S1 is the most popular strat-
egy, as this approach reduces any grounds for controversy among local authorities.

We adopt two model outcome measures to evaluate the effects of vaccine distribution strate-
gies. These measures include (1) the final infection attack rates, according to the number of
accumulated individuals and (2) the size of the infectious population during the spread of the
virus. Our simulation is based on several assumptions concerning the effectiveness of vaccina-
tion. First, all of the vaccinated individuals gain complete immunisation. Second, the suscepti-
ble individuals are protected once they are vaccinated. Third, all of the individuals are willing
to be vaccinated.

In the following experiments, we first simulate the dynamics of the infectious virus and the
spread of infectious virus without vaccination. Then, we consider the effects of vaccine cover-
age and vaccine releasing time. Following this, we explore different vaccine distribution strate-
gies for controlling the dynamics of the epidemic. Last, we study the effects of the vaccination
strategy in combination with the segregation strategy.

Simulation of dynamics of infectious virus

We first evaluate the effectiveness of the HSEIR-V model to simulate the spread of infectious
virus during the 2009 Hong Kong HIN1 swine-flu epidemic. When the first infectious case
was confirmed by the Centre for Health Protection (CHP) of Hong Kong on May 2, 2009, the
public health department proposed several intervention strategies, such as the vaccination
strategy, the segregation of infection cases and school closures to control the dynamics of the
epidemic. The circular line in Fig 1 shows the number of infectious cases confirmed in the labo-
ratory by CHP in practice during the first two months of the epidemic following May 2, 2009.

The HSEIR-V model adopts the above-mentioned model parameters to simulate the
dynamics of the HIN1 epidemic in Hong Kong with respect to the size of the infectious popu-
lation. The solid line in Fig 1 illustrates the simulation results obtained by the HSEIR-V model
during the period from May 2, 2009 to March 30, 2010 for the Hong Kong HIN1 swine-flu epi-
demic. It is observed that the two curves in Fig 1 are close to each other, which means that the
simulation results obtained by the HSEIR-V model are consistent with the observed dynamics
of the infectious virus in practice. One possible reason for this convergence is that the HSEIR-V
model takes into account both the geographic district factor and the age factor, which makes
this model more truly reflect the spread of the infectious virus. The differences between the
simulation results and the laboratory-confirmed cases are caused by the estimated frequency of
contacts between different age groups and different districts and the intervention strategies
adopted by the CHP of Hong Kong. In general, the HSEIR-model is qualified for simulation of
the epidemic’s dynamics, and it is found suitable to explore the effects of different vaccine dis-
tribution strategies.

The spreading of infectious virus without vaccination

To investigate the spread of the infectious virus without vaccination, we assume that the epi-
demic begins with a single infectious individual with respect to A; age group in New Territories
region R; in Hong Kong. Figs 2 and 3 show the simulated curve for the dynamic of the HIN1
epidemic in Hong Kong with respect to the accumulated infected population in different
regions and different age groups, respectively, during the spread of the infectious virus in the
scenario with an initial case in the New Territories region. It can be seen that (1) the accumu-
lated infected population of the age group A, is higher than that of other age groups at the ear-
lier stages of the epidemic, as shown in Fig 3. The possible reasons for this development are as
follows: (i), the first infectious individual at the initial point belongs to the age group A;. The

PLOS ONE | DOI:10.1371/journal.pone.0155416 May 27,2016 5/23



el e
@ : PLOS ‘ ONE Efficient Vaccine Distribution Based on a Hybrid Compartmental Model
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Fig 1. The simulation of the virus’s spread during the first two months of the epidemic.
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Fig 2. The dynamics of infectious virus with respect to the accumulated infected population for different
districts.
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Fig 3. The dynamics of infectious virus with respect to the accumulated infected population for
different age groups.

doi:10.1371/journal.pone.0155416.9003

contact frequency of the individuals between the age groups A; and Aj; is high, and the contact
frequency of the individuals in the same age group A is also high. The high contact frequency
among the individuals in age group A; makes it easier for them to be infected when the epi-
demic breaks out. (i) The infection rate for the age group A, is much larger than that for the
other age groups. This pattern means that the children in A; have low immunity, which leads
to a high infectious rate. Once the adults in age group A; are infected, the children also have a
high probability of being infected, which leads to the larger accumulated infected population of
the age group A, in the early stage of the epidemic.

(2) The accumulated infected population of the age group Aj; rises quickly during the period
of the epidemic, as illustrated in Fig 3. A possible reason for this development is that the indi-
viduals in age group A; come into contact more easily than the individuals in other age groups.
The accumulated contact frequency between age group A; and the other age groups (including
Aj; itself) for the same region is 17.908, which is higher than that of the other age groups. The
higher accumulated contact frequency of age group A; leads to the increase of the infected pop-
ulation during the process of the epidemic.

(3) The accumulated infected population of age group As remains at a low level during the
period of the epidemic, as shown in Fig 3. A possible reason for this low level is that most of the
older peoples prefer to stay home, and hence reduce their frequency of contact with other indi-
viduals, which leads to the low infection risk during the outbreak of the infectious disease.

The effect of vaccine coverage and vaccine releasing time

To study the effect of vaccine coverage O, which is the number of vaccine doses, we vary O
from 0.02 of the total population |P| to 0.1 of total population |P|, with an increment 0.02|P|, as
shown in Table 3. Fig 4 shows the simulation results based on the HSEIR-V model with respect
to different levels of vaccine coverage. It can be observed that when the number of vaccine
doses increases gradually from 0.02|P| to 0.1|P|, the size of the accumulated infected population
decreases gradually, as is illustrated in Fig 4, because more vaccine doses provide antiviral
immunisation for more of the vaccinated population.
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doi:10.1371/journal.pone.0155416.g004

To investigate the effects of the vaccine releasing times, we set the vaccine releasing time T'
to Day 1, Day 50, Day 100, Day 150 and Day 200, respectively, as shown in Table 3. Fig 5 illus-
trates the simulated results based on the HSEIR-V model for the dynamics of the epidemic
with respect to the accumulated infected population using different vaccine releasing times.
There are several interesting observations to be made concerning these figures. (1) If vaccine
doses are released at earlier times in the epidemic, such as Day 1 or Day 50, the size of the accu-
mulated infected population reduces quickly. (2) However, the accumulated infected popula-
tions corresponding to the releasing times of Day 150 and Day 200 are similar. This result
indicates that if the vaccine doses are released at a later time in the epidemic, the effects of

The effect of vaccine releasing time
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Fig 5. The effect of vaccine releasing time.

doi:10.1371/journal.pone.0155416.9005
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The effect of vaccine coverage and vaccine
releasing time w.r.t vaccination strategy S1
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vaccination are limited. In general, the earlier the vaccine releasing time, the smaller the size of
the accumulated infected population.

Figs 6, 7, 8 and 9 demonstrate the effects of vaccine coverage and vaccine releasing time
with respect to the vaccination strategies S1, S2, S3 and S4, respectively. The values of the vac-
cine coverage vary from 0.01|P| to 0.6|P| with an increment 0.05|P|, but the values of the vac-
cine releasing times vary from Day 1 to Day 150 with increments of 25 days. There are several
interesting observations to be made concerning these results. (1) More vaccine coverage and
earlier vaccine releasing time tends to prevent the outbreak of the epidemic. When the number
of vaccine doses is larger than 0.1|P| and the vaccine releasing time is prior to Day 75, the size
of the accumulated infected population drops rapidly, as illustrated in Figs 6-9. (2) The more
suitable vaccination strategies, such as $4, require a smaller number of vaccine doses to reach
herd immunity. If vaccination strategy S4 is adopted and the vaccine doses are distributed at an
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releasing time w.r.t vaccination strategy S2

1.4 T T T T T T T T T T T
1.27<7_><><xx:<><xxxxxxxxx><xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxa
’y
10 e, ——Day1 |
\ T+t A Day 25
03»\ a Day 50 f
Day 75
0.6 + Day 100 [{
Day 125
0.4 < Day 1501]

©
N
T

(9.010.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5 0.55 0.6
Vaccine Coverage

Accumulated Infected Population(million)

Fig 7. The effect of vaccine coverage and vaccine releasing time with respect to the vaccination
strategy S2.

doi:10.1371/journal.pone.0155416.g007
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The effect of vaccine coverage and vaccine
releasing time w.r.t vaccination strategy S4
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Fig 9. The effects of vaccine coverage and vaccine releasing time with respect to the vaccination
strategy S4.

doi:10.1371/journal.pone.0155416.9009

PLOS ONE | DOI:10.1371/journal.pone.0155416 May 27,2016 10/283



@’PLOS ‘ ONE

Efficient Vaccine Distribution Based on a Hybrid Compartmental Model

earlier stage in the spread of the infectious virus (such as Day 1, Day 25 or Day 50) only 0.05|P|
vaccine doses are required to prevent the outbreak of the epidemic.

The effect of vaccine distribution strategies

We also study the effect of various vaccine distribution strategies, such as strategy S1 (based on
population size), strategy S2 (based on the contact pattern matrix), strategy S3 (based on the
infection rate) and strategy S4 (based on the infection risk), on the spread of infectious virus
with respect to the accumulated infected population.

Fig 10 illustrates simulated results for the dynamics of the infectious virus with respect to
the accumulated infected population for different vaccination strategies in Hong Kong. Fig 11
shows the effect of different vaccination strategies with respect to different districts, such as
Hong Kong Island, Kowloon Peninsula and New Territories. As is shown in Figs 10 and 11 (1)
the size of the accumulated infected population obtained by vaccination strategy $4 is much
smaller than that obtained by the other strategies. A possible reason for this result is as follows:
vaccination strategy $4 focuses on the infection risk ¢;;, which takes into account both the
infection rate and the contact frequencies between individuals. (2) The performance of vacci-
nation strategy S1 is the worst among all of the vaccination strategies, as illustrated in Figs 10
and 11. Although S1 is able to minimise contradictions among local authorities, it fails to satisfy
the real requirement for vaccine doses, which leads to the poor performance of this strategy.
(3) The performances of vaccination strategies S2 and S3 are better than that of S3 and worse
than that of $4. Strategies S2 and S3 both maintain a balance between the real requirements for
vaccine doses and the fair properties with respect to the sizes of population in different regions.
As a result, vaccination strategy S4 is the best choice when considering the real requirements
for vaccine doses.

The effect of the combination of intervention strategies

To explore the effects of the combined intervention strategies, four kinds of intervention strate-
gies are integrated into the HSEIR-V model in our simulations. These four strategies involve
doing without an intervention strategy (no strategy), the segregation strategy Seg, the

= The effect of vaccine distribution strategies
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Fig 10. The effects of different vaccination strategies.

doi:10.1371/journal.pone.0155416.9g010

PLOS ONE | DOI:10.1371/journal.pone.0155416 May 27,2016 11/23



D)
@ : PLOS | ONE Efficient Vaccine Distribution Based on a Hybrid Compartmental Model

The effect of vaccine distribution strategies
w.r.t different districts

B S1 -
C1s2 .
B S3
[ ]s4

o
o

o
N

0.3r — .
0.2r ] .
01r i}
0 | I:l | ’_‘ |
HK lIsland Kowloon New Territories
Districts

Accumulated Infected Population(million)

Fig 11. The effects of different vaccination strategies.

doi:10.1371/journal.pone.0155416.g011

vaccination strategy Vac and a combination of the vaccination and the segregation strategies,
Seg + Vac. Fig 12 illustrates the simulated results obtained by the HSEIR-V model without any
intervention strategy and the HSEIR-V models with strategies Seg, Vac and Seg + Vac, respec-
tively. It can be observed that (1) the accumulated infected population obtained by the

The effect of the combination of intervention strategies
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Fig 12. The effect of the combination of intervention strategies.

doi:10.1371/journal.pone.0155416.9012
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HSEIR-V model with both strategy Seg and strategy Vac is better than that obtained by the
HSEIR-V model without any intervention strategy. This result indicates that both the vaccina-
tion strategy and the segregation strategy are useful for preventing the spread of infectious
virus. (2) The segregation strategy is more effective than the vaccination strategy, as the accu-
mulated infected population obtained by the HSEIR-V model with strategy Seg is smaller than
that obtained by the HSEIR-V model with strategy Vac. (3) When compared with the single
intervention strategies such as the vaccination strategy or the segregation strategy, the combi-
nation strategy Seg + Vac is more effective, as this approach is able to make a large reduction in
number of infected people, as shown in Fig 12. In summary, to reduce the outbreak of an epi-
demic, the public health department of the government should perform several intervention
strategies simultaneously.

Methods

To capture the dynamics by which viruses spread in different populations, Kermack and
McKendrick first proposed the Susceptible $C Infectious—Recovered (SIR) model in 1927,
which simulated the dynamics of epidemics [46]. After the first SIR model was developed, vari-
ous kinds of epidemic models [47]-[49], such as the SEIR model, the MSIR model and the SIS
model were designed to help public health agencies in their decision-making tasks. Compared
with the SIR model, the SEIR model incorporates exposed compartment E to simulate those
individuals who have been infected but are not yet infectious themselves. The MSIR model
considers compartment M for maternally derived immunity, and the SIS model takes into
account only a distinction between susceptible individuals and infectious individuals. As age is
one of the most important factors that affect epidemic models, age-structured epidemic models
have gained increasing attention in recent years. However, the dynamic spread of an infectious
disease is affected not only by the age factor, but also by the geographic factor.

In this paper, we develop a vaccination-based hybrid SEIR epidemic compartmental model
(HSEIR-V) which takes into account both the age and the geographic district factors. We apply
this model to simulate the 2009 Hong Kong HIN1 epidemic. Compared with traditional SEIR
models, the HSEIR-V model takes into account multiple districts with different host popula-
tion groups. For example, Hong Kong City is divided into three main districts, namely Hong
Kong Island, Kowloon Peninsula and the New Territories. The population in each district is
further divided into five age groups, which are A1 (ages 5-14), A2 (15-24), A3 (25-44), A4
(45-64) and A5(65+). The dynamic spread of a disease in each district i for each age group j is
modelled by a modified SEIR model, which consists of several compartments as illustrated in
Fig 13: Susceptible S;, Exposed Ej;, Infected I;;, Recovered R, Vaccinated Vj;, Segregrated G;;
and Treated Tj;. The dynamics of virus compartmental infection are defined as follows:

ds,;
dr —; - [I(S;) — Avy] + (—Av,) g
dE;
a9 L(E)) + ¢y - [['(Sy) — Avy] .
di;
o y1 g, (19 T(E) ®)
dR,;
Ti_y-p)-1, W
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Fig 13. The overview of the proposed epidemic compartmental model.

doi:10.1371/journal.pone.0155416.9013

dVij
=V (5)
dG,j
?:q’ij'aij'F(Eij)+lp'ﬁij'lij_yij‘cij (6)
dTij
dt =% Gij (7)

where the summary of the definition of parameters is shown in Table 4. Av;; denotes the vacci-
nation rate.

The I is used to simulate the interaction between different districts, which is based on the
commute pattern between districts. Assume that R denotes the set of districts, and that M
denotes a symmetric matrix [39] whose entries, my, (i, h € |R|, where |R| denotes the number
of districts), are defined by daily commuting patterns between regions, which are measured as

PLOS ONE | DOI:10.1371/journal.pone.0155416 May 27,2016 14/23



2@§P1‘>S‘°“

Efficient Vaccine Distribution Based on a Hybrid Compartmental Model

Table 4. The summary of the definition of parameters.

Parameters Definition

®ii Infection risk

o Incubation rate

Wi Recovery rate

aji Segregation rate in the exposed compartment
Bii Segregation rate in the infectious compartment
Vi Treatment rate for the segregation individuals
Avy Vaccination rate

doi:10.1371/journal.pone.0155416.t004

the total number of individuals commuting from the ith district to the /th district. I is a com-
muting operator defined on the Susceptible and Exposed compartments as shown in Fig 13
(where the dotted line arrow denotes the interaction between different districts). Specifically,
the populations in the Susceptible and Exposed compartments include the individuals who
come from other districts, and the individuals who go to other districts are removed.

I(S,) =S, + S [ m TR (8)
i) = Oij helR| hi N, ic|R| N
J ij

C(E,) = E; + S | M- | = Ziew | my - 2 (9)
ij ij he|R| hi Nh‘ i€|R| ih N.

Y g

It is reasonable to assume that the size of the input Susceptible and Exposed populations
and the size of the output Susceptible and Exposed populations maintain a balance within each
geographical district of the city in our simulation.

The HSEIR-V epidemic compartmental model takes into account both the risk of infectious
contacts with respect to heterogeneous population groups of different ages and different dis-
tricts and the infection rate 6;; (generic infection vulnerability), which is defined as follows:

AL i\ S
_ J
? = [R[|A] Z Z Cl(i-1)+lAl4(h-1)#lA|+R) P.) P, 0; (10)

h=1 k=1 ij

where ¢;; is adopted to represent the dynamics of an infectious disease among heterogeneous
populations with respect to different districts (R) and different age groups (A). This variable
denotes the probability that susceptible individuals in the population P;; in the i-th district and
the j-th age group will be infected at the current time during the process of the epidemic. |R| is
the number of districts, |A| is the number of age groups, and Ij,; and Py, denote the infectious
individuals in the population in the h-th district and in the k-th age group,respectively. Cis a
contact frequency matrix based on different districts (R) and different age groups (A), with the
entries being ¢, (where s, t € {1, .. ., |R||A|}). We adopt the contact matrix in [50]. The contact
patterns of C are divided into two parts: the frequency of social contacts between different age
groups in the same district and the frequency of social contacts across districts. These levels of
frequency are derived based on a study of human daily contact activities [51].

The entries c,; of the contact frequency matrix C are calculated as follows:

Cot = C(i—1)%|A| 1, (h—1)%|A|+k) (11)
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where ¢((i_1y*|a|+j.(h-1)*|a]+k) denotes the contact frequency between the individuals in the j-th
age group of the i-th district and the individuals in the k-th age group of the h-th district.

The reproduction number Ry is one of the most important parameters in the HSEIR-V epi-
demic compartmental. This parameter denotes the number of newly infected individuals
caused by an infectious individual in a susceptible population [52] [53]. Ry can be estimated
from the existence of an epidemic-free equilibrium, which represents the host population as it
appears (or does not appear) during the process of infection. Unfortunately, the traditional def-
inition of Ry does not satisfy the requirement of the HSEIR-V model, as the population in the
HSEIR-V model is divided into several subpopulations based on districts and age groups. To
solve this problem, we adopt the next-generation matrix technique and the centre manifold
theory proposed by Diekman and Driessche [52] [53]. In general, the reproduction number R,
is redefined as the number of newly infected individuals caused by an infectious individual in a
susceptible population at the epidemic-free equilibrium.

To calculate Ry, we need to consider the infected compartment D, in which the newly
infected individuals will emerge. In the HSEIR-V model the exposed compartment, E, and the
infectious compartment, I, are both viewed as parts of the infected compartment, D, which is
calculated as follows:

D=[E1] W)
Hence,
1 IR| 1|
DAl AT

5 | TR 2t Qi B o .

(Pij ' (]‘ - azj) . El]

¢, - E;

v s (14)

V(L= B,) -1,

where
A Shk 0
ik = C((i—1)| AL+, (h—1)|A]+K) U (15)
hk

where & and 8 denote the rate of population transitions for newly infected cases and the rate
of population transitions by all other means.

The reproduction number R, can be estimated at the beginning of the epidemic. dy = (0, 0)
take the form of an equilibrium solution with E = I = 0, which is calculated as follows:

0% B 0 Ay
be“ﬂ<%,u—w 0) (16)

OB 0 9,
%:bﬁ%ﬂ:<%wbwa(J 17)

R, can be calculated as follows:

R, = p(F- V) (18)
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where
0 — A
F.v! o (19)
q)ij : (1 - ‘xzj) 0

As p denotes the spectral radius of the matrix, which is the largest of the eigenvalues of the
matrix, R, is computed as follows:

R = Loy ) 20
0o =P m hk (20)

From the above formula, it is observed that Ry, is related to the infection rate Ay and the
recovery rate y;; which describe the pathological characteristics of an epidemic, and ¢((j-1)+aj+;,
(h-1)*|a|+k) depicts the pattern by which the infection spreads among the individuals in different
regions and different age groups. The basic reproduction number R, was around 1.2-1.4 at the
beginning of the epidemic in the 2009 Hong Kong HIN1 epidemic [45].

Vaccination is one of the most effective strategies, as this method protects vaccinated
human beings and reduces infection transmissibility. Adopting the suitable vaccine distribu-
tion strategy at the suitable point in the epidemic can provide antiviral immunisation to the
vaccinated population and reduce the dynamic of an epidemic. How to select a prioritisation
strategy for distributing the vaccine is one of the most important topics for decision making in
epidemic control.

The selection of a prioritisation strategy is affected by three important factors, namely vac-
cine coverage, vaccine releasing time and vaccine distribution method during the vaccination
process [38]. Vaccine coverage represents the number of individuals who are vaccinated in the
vaccination process, which changes the structure of the host population. The vaccinated popu-
lation that has antiviral immunisation is determined by the vaccine coverage. The effects of dif-
ferent levels of vaccine coverage are explored by using the HSEIR-V model. We use this model
for learning how to determine the most suitable vaccine coverage under conditions of limited
vaccine resources.

Vaccine releasing time means the time when the vaccine doses are distributed. Releasing
time affects the composite structure of the host population at different stages of the epidemic
process. We investigate the effects of vaccination at different times by using the HSEIR-V
model. This model allows us to study the efficiency of adjustment in the composite structure of
the host population at different stages in the spread of a virus.

The vaccine distribution method involves the system for distributing vaccine doses to dif-
ferent host populations with different infection vulnerabilities and different contact patterns
in various regions and age groups. Different vaccine distribution strategies affect the compos-
ite structure of the host population, which further influences the dynamics by which epidem-
ics spread.

In summary, the effectiveness of vaccination for controlling the spread of an infectious dis-
ease is related to the adjustment of the composite structure of the host population, which
includes adjustments for the size of the population, for the population in different stages dur-
ing the spread of an epidemic, and the adjustment of the population in different districts and
different age groups. The vaccine coverage, vaccine releasing time and vaccine distribution
method each have an effect on the adjustment of the composite structure of the host
population.
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We evaluate several vaccine distribution prioritisation strategies, named S1, S2, S3 and S4,
with respect to the HSEIR-V model as it corresponds to the populations of different regions
and age groups.

(S1) The vaccine distribution strategy based on the population size [39]. The S1 strategy
indicates that the number of vaccine doses is distributed to each population group in propor-
tion to its population size. S1 is the most popular prioritisation strategy for deploying vaccine
doses to multiple geographic regions, as this approach minimises the contradictions among
local governments. Unfortunately, S1 fails to satisfy the requirement for focusing on the
regions where vaccination is needed most urgently, and this approach tends to involve distribu-
tion of vaccine doses to regions where they are not necessary.

(S2) The vaccine distribution strategy based on the contact pattern matrix C. According to
this strategy, those individuals in the subpopulation with a higher contact pattern frequency
(ZlhR:‘ ) LA:‘ L C((i-1)|Al4(h-1)+lal+1))» 8 calculated by the contact pattern matrix C, should have
more vaccine doses. S2 is the most intuitive strategy, as it takes the contact frequencies of indi-
viduals in different geographic districts and different age groups into account.

(S3) The vaccine distribution strategy based on the infection rate 6. In this strategy, more
vaccine doses are distributed to the population groups with high infection rates.

(S4) The hybrid vaccine distribution strategy based on the infectious risk. As the evaluation
of infectious risk takes into account the effect of the population size, the contact pattern matrix
and the infection rate, this strategy is a hybrid vaccine distribution strategy that combines the
first three strategies. A number of vaccine doses is assigned to each population group according
to its infectious risk ¢;;. If the infectious risk ¢;; is large, the individuals in the corresponding
subpopulation have a high probability of being infected. It is therefore reasonable to distribute
more vaccine doses to that corresponding subpopulation. S4 considers the infection risk and it
has a high probability of being an effective strategy, as the spread of infectious virus depends
on the infection risk.

In summary, we explore the effects of vaccine coverage and vaccine releasing time in our
simulation. We investigate how to select a prioritisation strategy from the above several vaccine
distribution strategies under conditions where both the number of vaccine doses and the vac-
cine releasing time are fixed.

Related work

Recently, researchers have paid increasing attention to the factor of vaccination. Compared with
other kinds of intervention strategies, vaccine deployment is one of the most effective strategies,
as this method protects vaccinated human beings and reduces infection transmissibility. One of
the important issues for decision-making in epidemic control is how to select a prioritisation
strategy for distributing the vaccine under conditions of limited vaccine resources.

Many studies have investigated how to effectively apply limited vaccine supplies for homo-
geneous or heterogeneous populations. These studies can be categorised into two subtypes.
Studies of the first subtype have attempted to investigate the effects of different vaccine distri-
bution strategies on disease control [54]-[58]. For example, Hsieh [54] explored vaccination
strategies by taking age groups and intervention measures into account. Ghosh et al. [55] inves-
tigated the effects of intervention strategies that combined antivirus measures and vaccination
campaigns to control the disease. Matrajt et al. [56] investigated which vaccination strategies
were optimal when started at various points in time during the process of an epidemic. Milne
etal. [57] explored the effects of several vaccine deployment strategies, such as the split vacci-
nation strategy, the reactive strategy and the pre-emptive strategy. They tested these strategies
by applying them to an actual community consisting of approximately 30,000 people in a
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developed country. Cruz-Aponte et al. [58] investigated the effects of different vaccination
strategies to prevent influenza outbreaks under conditions of limited vaccine supplies.

Studies of the second subtype have aimed to identify the optimal vaccine deployment strate-
gies for distributing vaccines [59]-[62]. For example, Medlock et al. [59] optimised influenza
vaccine distribution by using survey-based contact data and mortality data as reported during
influenza pandemics. These authors [60] also explored the optimal vaccine distribution strat-
egy to reduce influenza-related deaths and minimise hospitalisations. Araz et al. [39] consid-
ered both age groups and locations in designing a geographic prioritisation strategy to
distribute pandemic influenza vaccines. Tuite et al. [61] studied how to select an optimal vac-
cine allocation strategy for distributing vaccine among different age and risk groups within the
Canadian population. Liu et al. [38] designed a modified compartmental infection model to
select optimal vaccine deployment schedules. Lee et al. [37] identified the optimal age-specific
vaccination strategies corresponding to the amounts of vaccines available and the timing of
vaccinations to mitigate the Spring 2009 A (HIN1) pandemic in Mexico. Shim et al. [62] iden-
tified the optimal vaccination strategies for different age groups in terms of individual self-
interest versus the interest of the whole population in reducing the effects of HIN1 infection-
mediated morbidity and mortality. In addition, network analysis, especially gene-disease rela-
tionship prediction [63]-[66], is important on public health.

In summary, most of the previous work on vaccination has focused on age-specific vaccina-
tion strategies. The research works that have taken the combined effects of vaccination strate-
gies and segregation strategies into account are less common. Our previous work in [37]
developed a modified compartmental infection model by considering vaccination efforts for
several age-specific host populations, and investigated ways of deploying vaccine more effec-
tively. We also explored how to identify the relative priorities of subpopulations in terms of
vaccination and contact reduction [67].

Compared with our previous work in [37] and [67], our work presented in this paper incor-
porates a combination of age-specific and geographic district-specific vaccination strategies
along with segregation strategies in a proposed HSEIR-V compartmental model for preventing
the spread of infectious diseases.

Conclusion

In this paper, we perform a brief survey of ways to incorporate different intervention strategies
such as vaccination, antiviral prophylaxis and treatment, or area and household quarantines
into models for controlling the dynamics of an epidemic. Our major contribution is the desig-
nation of a hybrid SEIR model, which is named the HSEIR-V model. This new model takes
into account the factors of both age and geographic district while designating several hybrid
vaccine distribution strategies. We perform a thorough investigation of the HSEIR-V model
while incorporating hybrid vaccine distribution strategies by simulation. As a result, we obtain
several conclusions. (1) The HSEIR-V model is suitable for simulating the spread of infectious
virus, in particular the 2009 Hong Kong HIN1 swine-flu epidemic. (2) A hybrid vaccine distri-
bution strategy based on assessment of infectious risk is useful for holding a balance between
avoidance of controversy among local authorities and meeting the actual requirements for con-
trolling the dynamics of the epidemic. (3) Suitable parameters are important for improving the
effectiveness and efficiency of vaccination efforts. (4) The combination of the vaccination and
segregation strategies is more effective than a single-focus intervention strategy for controlling
the spread of an infectious disease.

In the future, we will incorporate human behaviour into the HSEIR-V model, and compare
with more age-based and geography-based approaches. The human beings involved will make
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their own decisions to accept or reject the vaccine injections. We shall use the HSEIR-V model
to further explore adaptive vaccine distribution strategies and investigate how to find the opti-
mal vaccine distribution strategy by assessing vaccine efficacy under conditions of limited vac-
cine resources. We will adopt some parallel operations when the scale of the network data is
large.
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