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Abstract: Fungal infections and, in particular, those caused by species of the Candida genus, are growing
at an alarming rate and have high associated rates of mortality and morbidity. These infections,
generally referred as candidiasis, range from common superficial rushes caused by an overgrowth of
the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success of currently used
antifungal drugs to treat candidiasis is being endangered by the continuous emergence of resistant
strains, specially among non-albicans Candida species. In this review article, the mechanisms of action
of currently used antifungals, with emphasis on the mechanisms of resistance reported in clinical
isolates, are reviewed. Novel approaches being taken to successfully inhibit growth of pathogenic
Candida species, in particular those based on the exploration of natural or synthetic chemicals or on
the activity of live probiotics, are also reviewed. It is expected that these novel approaches, either
used alone or in combination with traditional antifungals, may contribute to foster the identification
of novel anti-Candida therapies.

Keywords: candidiasis; antifungal drugs; resistance to antifungals; non-conventional therapeutics;
phytotherapeutics and probiotics; antimicrobials; Candida

1. Relevance of Candidiasis within the Spectrum of Fungal Infections

In recent years, the number of fungal infections has risen significantly, being today estimated to
affect, yearly, around 150 million people and cause 1.5 million deaths [1,2]. These infections range
from superficial rushes in the mucosas, in the skin or in the nails, to systemic infections, in which the
fungal cells disseminate in the bloodstream and may end up colonizing any major internal organ [1].
Candida species are among the more relevant etiological agents causative of superficial and invasive
fungal infections. Vulvovaginal candidiasis (the common name attributed to infections caused by
Candida spp. in the vaginal tract) is estimated to affect 70% to 75% of women worldwide, 5% to
8% of these in a recurrent manner [3]. The incidence of invasive candidiasis annually is estimated
to be 700,000 infections, with associated mortality rates close to 50%, especially in countries where
no adequate antifungal therapy is available [1,2]. Different from other relevant fungal pathogens,
such as those belonging to the Aspergillus or Cryptococcus genera, Candida spp. are part of the human
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commensal microbiota colonizing the skin, the genitourinary or the gastrointestinal tracts [4]. Under
certain conditions, such as reduced activity of the host immune system, prolonged use of antibiotics or
chemotherapy, these commensal populations can overgrow, triggering more serious (in some cases
life-threatening) infections [2]. C. albicans is the more relevant species in causing superficial and
invasive candidiasis, but a growing incidence of non-albicans Candida species (usually known as NACS)
is reported [5]. C. glabrata, C. tropicalis, C. parapsilosis and C. krusei are among the more relevant NACS,
accounting, together with C. albicans, for more than 80% of all described cases of candidiasis [6,7].
The crude mortality rate associated to infections caused by NACS has been reported to exceed those
attributed to C. albicans (ca. 37%) reaching in the highest cases ~50% for C. glabrata and ~59% for
C. krusei [8]. This epidemiological shift from C. albicans to NACS is believed to result from a selective
pressure caused by the massive utilization of azoles in prophylactic and active treatments that resulted
in the selection of species innately more tolerant to these drugs. The use of better diagnosis methods to
identify isolates in the clinical setting is another relevant factor as in the past the identification of the
Candida isolates may have not been as accurate as it is today [9].

2. Available Antifungals against Candida spp. and Their Modes of Action

The development of antifungal drugs is limited by the similarity between fungal and human cells,
making it therefore difficult to identify molecules that specifically target the microbial cell while not
damaging the host. The classes of antifungals available include azoles, polyenes and echinocandins.
These target the biosynthesis of ergosterol or the cell wall, two cellular traits absent in mammalian
cells (Figure 1). 5-fluorocytosine, a fluoropyrimidine, is also used to treat candidiasis but in this case
the mechanism is more general as it targets DNA synthesis (Figure 1). A small description of the
mechanisms of action of these molecules and the underlying resistance mechanisms is provided in the
following subsections.

Figure 1. Representative examples of the antifungals currently available to treat candidiasis.
Chemical structure of representative examples of antifungals (azoles, echinocandins, polyenes and
fluoropyrimidines) available, with the class of the drug being highlighted in black bold while the name
of the drugs is shown in green. The nitrogen-based ring that distinguishes imidazoles (clotrimazole)
from triazoles (fluconazole) is highlighted in blue.
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2.1. Polyenes

The better studied and more largely used polyene is amphotericin B which was the first antifungal
developed for the treatment of disseminated candidiasis [10]. Nystatin is also used against Candida
although only to treat oral infections [11]. The high lipophilicity of polyenes renders them able to
penetrate the phospholipid bilayer of the plasma membrane where they bind ergosterol and promote
the formation of pores (Figure 2) [12]. Necessarily, this perturbs the action of the plasma membrane as
a selective barrier and a matrix for proteins. Despite its potent effect against Candida, the usefulness of
amphotericin B is limited by its nephrotoxicity [13]. Although safer formulations to vehicle this drug
have been developed (mostly based on the use of liposomes), its high cost remains an impediment and
it is mostly used as a second-line therapy [13]. All Candida species show susceptibility to polyenes but
in the case of C. glabrata and C. krusei the use of maximal doses is recommended (Table 1) [13].

Figure 2. Schematic representation of the known mechanisms of action of the different classes of antifungals
available for treatment of candidiasis. 5-FU—5-fluorouracil; 5-FUMP—5-fluorouridine monophosphate;
FdUMP—5-fluorodeoxyuridine monophosphate; FUTP—5-fluorouridine triphosphate.

2.2. Azoles

Azoles comprise the largest family of antifungals used against Candida. The first azoles used in
clinical practice were clotrimazole and miconazole that were approved for use in 1969, followed by
ketaconazole in 1981 [14]. These three drugs are all imidazoles since they harbour an imidazole ring in
their structure (as shown in Figure 1). The usefulness of clotrimazole and miconazole as antifungals was
limited by their inhibitory effect on the human hepatic CYP enzymes [15]. As a response to that, in the
early 90s the triazoles fluconazole and itraconazole were introduced in the market, showing improved
pharmacokinetic profile, a broader spectrum of antifungal activity and a lower inhibitory effect against
the human CYP450 system [14]. In the early 2000s voriconazole emerged, being advantageous by
showing higher activity against the more azole-resilient NCAS species, compared to fluconazole or
itraconazole [14]. Today imidazoles are mostly used for the treatment of superficial candidiasis, while
triazoles are preferred for the treatment of invasive candidiasis [14,16]. Regardless of the family they
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belong to, azoles act by inhibiting the activity of the lanosterol-14α-demethylase enzyme (encoded by
the ERG11 gene) that is involved in ergosterol biosynthesis. As a result of this inhibition, azole-exposed
fungal cells accumulate toxic sterols in the plasma membrane dramatically affecting its permeability
(Figure 2) [12]. C. glabrata and C. krusei show less susceptibility to azoles than the remaining Candida spp.
and higher doses are recommended to treat infections caused by these species (Table 1).

2.3. Fluoropyrimidines

The fluoropyrimidine more commonly used in the treatment of candidiasis is 5-flucytosine
(5-FC), which enters fungal cells through cytosine transporter(s) being afterwards metabolized via the
pyrimidine salvage pathway to 5-fluorouracil (5-FU), considered the active form of 5-FC (Figure 2). 5-FU
incorporates in RNA, causing premature chain termination, and inhibits the activity of thymidylate
synthase, an enzyme essential for DNA synthesis (Figure 2) [12,17]. With the exception of C. krusei, the
remaining Candida spp. are susceptible to 5-FC (Table 1). Although the enzymes that drive conversion
of 5-FC into 5-FU are not present in mammalian cells [12], bacteria living in the human gut were shown
to efficiently convert 5-FC into 5-FU [17] thereby explaining the toxic effects reported in patients under
5-FC therapy. Due to its toxic effects, 5-FC is given to patients in low concentration and in combination
with other antifungals [13].

2.4. Echinocandins

Echinocandins are the only new class of antifungals discovered in recent years [1]. These are
commercially available in three forms: caspofungin, anidulafungin and micafungin. Two more recent
molecules, rezafungin and biafungin, have been recently described but its use in the clinical setting is
not yet established as their efficacy is still under assessment in clinical trials. Compared to the already
available echinocandins, rezafungin and biafungin show higher activity, lower toxicity and fewer
drug interactions [18–20]. Echinocandins act by inhibiting the catalytic subunits of β-(1,3)-d-glucan
synthase, essential for cell wall synthesis. Consequently, no elongation of (1,3)-β-d-glucans is observed
in fungal cells exposed to echinocandins, rendering them highly susceptible to lysis (Figure 2) [12].
Echinocandins show efficacy against all Candida species, although C. parapsilosis has been found to be
intrinsically less susceptible [13]. Due to their safety profile and fungicidal activity, echinocandins are
frequently used as the primary treatment of invasive candidiasis [13].

Table 1. General susceptibility patterns of Candida species to antifungal drugs used in the treatment of
candidiasis (adapted from [21,22]). S—susceptible; S-DD—susceptible dose-dependent; I—intermediate;
R—resistant.

Species Imidazoles Triazoles Flucytosine Ampho. B Echinocandins

C. albicans S to R S S S S
C. tropicalis S S S S S

C. parapsilosis S S S S S to I
C. glabrata S-DD to R S-DD to R S S to I S
C. krusei S to R S-DD to R I to R S to I S

3. Incidence of Antifungal Resistance and Underlying Mechanisms

In recent years, the number of resistant strains among Candida increased prominently, especially
among NACS [23–25] (Table 2). Among the different antifungal classes, the highest percentage of
resistance is observed for azoles, as detailed in Table 2. It is believed that this growing emergence of
resistance to azoles is linked to the massive use of fluconazole in prophylaxis of patients considered at
risk of suffering an infection caused by Candida [26–29]. The use of agricultural fungicides structurally
similar to clinical azoles exerted another layer of pressure for the selection of more azole-tolerant
Candida strains [30,31]. Although resistance to echinocandins and amphotericin B is very low, a slight,
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but detectable, increase in the emergence of resistant strains has been observed for C. glabrata and
C. krusei [32] (Table 2).

Table 2. Percentage of isolates among the five more prevalent Candida spp. exhibiting resistance to azoles,
echinocandins, flucytosine or amphotericin B (amphoB), as reported by surveillance epidemiological
studies [22,32–39]. ** The high range of percentages found for C. krusei results from this species
showing highly divergent susceptibilities to different imidazoles or triazoles (e.g., most strains are
largely resistant to fluconazole but susceptible to voriconazole).

Species Imidazoles Triazoles Echinocandins Flucytosine Ampho. B

C. albicans 0–54 0–16.6 0 0.3–4.3 0
C. glabrata 0–50.5 6.9–15.7 1.1–1.5 0–0.6 0–1.6
C. tropicalis 4–14 4.1–6.1 0 1–12.5 0–1

C. parapsilosis 0–2 1.8–14 0 0–1.4 0
C. krusei 0–73.1 ** 2.8–100 ** 0–2.8 1–16 0–12

3.1. Molecular Mechanisms Underlying Resistance to Antifungals in Clinical Strains

In this section the main mechanisms behind resistance of clinical Candida strains to the different
classes of antifungals will be described. In general, these mechanisms of resistance can be summarized
as involving the evolution of adaptive responses aiming to counteract the deleterious effects of the
antifungal (e.g., reducing drug efficacy by changing the target) or to reduce the internal concentration of
the drug (e.g., through the overexpressing drug-efflux pumps). The mechanisms already characterized
as underlying resistance to to azoles in clinical isolates were gathered in Table 3, while those conferring
tolerance to echinocandins, polyenes or 5-FU in clinical strains are detailed in Table 4.

3.1.1. Azoles

Resistance to azoles in Candida has been largely associated to modifications or overexpression of
the drug target Erg11, modifications in the ergosterol pathway or overexpression of genes encoding
drug-efflux pumps (Table 3). Numerous single nucleotide polymorphisms (SNPs) were reported to
occur in the azole-target enzyme Erg11 encoded by C. albicans, C. krusei or C. tropicalis, it being thought
that these mutations reduce the inhibitory effect of the azole over the enzyme [40–44]. Overexpression
of ERG11 has also been described as a mechanism driving resistance in C. albicans, C. parapsilosis and
C. tropicalis isolates [41,42,45,46]. The higher transcription of ERG11 in these azole-resistant isolates
has been shown to result from these strains upregulating or encoding hyperactive forms of the Upc2
transcription factor, a strong positive regulator of ERG11 gene [47–49] (Figure 3). Differently, the
CgERG11 allele encoded by C. glabrata azole-resistant isolates is, in the vast majority of the cases,
identical to the one encoded by susceptible strains [50–53]. No link between the overexpression of
CgERG11 and increased resistance to azoles could also be established in C. glabrata [51,53,54] suggesting
that this species has evolved responses to handle azole stress distinct from those verified in C. albicans
or C. parapsilosis.

The induction of the activity of drug-efflux pumps has been observed in several azole-resistant
isolates belonging to the different Candida species [42,46,49,55–70]. The more studied drug efflux
pumps linked to azole resistance are those belonging to the ATP-binding cassette (ABC) superfamily
which include in C. albicans CaMdr1, CaCdr1 and CaCdr2 [55,56,71]; in C. glabrata, CgCdr1, CgCdr2
and CgPdh1 [59–61]; in C. krusei, CkAbc1 and CkAbc2 [69]; in C. parapsilosis CpCdr1 and in C. tropicalis
CtCdr1 [42,46]. More recently, multi drug resistance (MDR) transporters belonging to the Major
Facilitator Superfamily (MFS) have also been implicated in tolerance of different Candida species
to azoles including CaMdr1 in C. albicans, C. parapsilosis and C. tropicalis [42,46,49] and CgTpo1_1,
CgTpo3 and CgQdr2 in C. glabrata [72]. Although the influence of these transporters in mediating
resistance in clinical isolates has not been studied at the same extent as those of the ABC superfamily,
promising results had been obtained in a recent study showing a positive correlation between the
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expression of the C. glabrata CgAqr1, CgTpo1_1, CgTpo3 and CgQdr2 MFS-MDR transporters and
resistance to clotrimazole [70]. In this study it was also shown that the deletion of CgTPO3 abolishes
resistance to clotrimazole in one of the identified resistant clinical isolates [70]. The model that is
generally accepted to explain the positive effect of the ABC and MFS transporters in drug resistance
is their role in directly mediating the extrusion of the drugs, however, from the biochemical point of
view this model is difficult to accept considering the wide structural divergence of the hypothesized
substrates, [73]. Indeed, more recent studies performed in the eukaryotic model yeast S. cerevisiae show
that ABC and MFS-MDR transporters have physiological substrates whose transport may affect the
partition of the drugs between the intra- and the extracellular environment, [73]. Specifically, some
MDR transporters have been shown to influence the lipid composition of the plasma membrane, by
promoting the transport of phospholipids and/or ergosterol, which thereby may affect the diffusion rate
of the drugs across the membrane, [74]. It was recently shown that deletion of the poorly characterized
C. albicans ABC transporter CaRoa1 results in increased membrane rigidity and, consequently, in a
reduced intracellular concentration of azoles [75]. Further studies in Candida spp. are required to
clarify whether the observed positive effect of ABC and MFS- MDR transporters in reducing internal
concentration of azoles is exerted directly or indirectly, via the transport of another physiological
substrate and the relevance of these mechanisms in driving resistance in clinical isolates.

In all cases described so far, the higher activity of MDR pumps is linked to their higher expression
in the azole-resistant isolates [72]. In C. albicans and in C. glabrata the transcriptional regulation of these
drug-efflux pumps is under a tight control of the pleiotropic drug resistance network (or PDR) that in
C. glabrata is dependent of the CgPdr1 regulator [76] while in C. albicans is controlled by CaTac1 [77]
(Table 3). Further studies, exploring gene-by-gene or genome-wide approaches, have implicated other
regulators in the transcriptional regulation of drug-efflux pumps or ergosterol metabolism under azole
stress including CaMrr1 and CaCap1 in C. albicans [78,79]; CgStb5 in C. glabrata [80], Upc2 in C. albicans,
C. tropicalis, C. parapsilosis and C. glabrata [48,49,57,81] and CpTac1 and CpMmr1 in C. parapsilosis [41,82].
The knowledge gathered on the regulatory associations between known transcription factors involved
in azole resistance and MDR pumps is briefly summarized in Figure 3. In the case of the less-studied
species C. tropicalis and C. krusei, the regulators of the identified drug-efflux pump-encoding genes
are not yet identified. Nonetheless, similarity searches revealed that these species encode proteins
showing similarity to CaTac1 (CTRG_05307 in C. tropicalis) and to CaMrr1 (CTRG_02269 in C. tropicalis
and JL09_3889 in C. krusei) [83].

Figure 3. Schematic representation of regulatory associations between regulators involved in azole
resistance and genes encoding multidrug resistance efflux pumps demonstrated to be involved in azole
resistance in Candida spp. The information concerning the regulatory associations between transcription
factor and target genes was retrieved from the PathoYeastract database [84]. Although ABC-MDR and
MFS-MDR transporters involved in azole resistance in C. krusei and C. tropicalis had been identified,
until so far the regulators of these genes remain to be characterized.
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The overexpression of drug-efflux pump-encoding genes results, in many cases, from the occurrence of
activating mutations in the coding sequence of the corresponding regulators [41,45,78,82,85–89]. This type
of mechanism has been documented for CgPdr1 in C. glabrata; for CaTac1, CaMrr1 and CaUpc2 in C.
albicans and for CpMrr1 and CpTac1 in C. parapsilosis [41,45,78,82,85,88]. An important feature of these
“hyper-active” alleles is that they become active even when azoles are absent [78,85,88]. Interestingly,
it was recently shown that C. albicans strains harboring CaTac1 gain-of-function alleles exhibit a
decreased fitness in vivo, specially when challenged with stresses other than azoles [90]. It thus
seems that specialization of the cells to improve azole stress at the expense of CaTac1 hyper-activation
results in reduced capacity to handle unrelated stresses. In the same line, the expression of CgPdr1
gain-of-function alleles were also hypothesized to be linked with a reduced tolerance of C. glabrata to
organic acids [51,68,89,91].

3.1.2. Flucytosine, Echinocandines and Polyenes

Acquired resistance to polyenes in clinical isolates is rare and the few studies correlate
that phenotype with a reduction of ergosterol content in the plasma membrane of the resistant
isolates [50,92–96]. These events are generally associated with the occurrence of SNPs that inactivate
genes of the ergosterol biosynthetic pathway and thereby alter the sterol content of the membrane, this
being described in C. albicans, C. glabrata and C. tropicalis (detailed in Table 4) [50,92–96]. No significant
link between the activity of drug-efflux pumps and resistance to polyenes has been identified in
resistant isolates belonging to the different Candida species. Although amphotericin B-resistant isolates
had been identified in C. krusei and C. parapsilosis [97,98], the underlying mechanisms remain to be
disclosed (Table 2). The echinocandin-resistance phenotype exhibited by the small number of identified
resistant Candida isolates was attributed to mutations in the β-1,3-glucanase-encoding genes FKS1
and FKS2 genes [99–103]. These mutations are thought to reduce the sensitivity of the proteins to the
drug [100] (Table 4) [99–103]. The naturally high tolerance to echinocandins of C. parapsilosis as well
as of the closely related species C. orthopsilosis and C. metapsilosis, was also suggested to result from
these species encoding a CpFKS1 allele less sensitive to echinocandins [104]. Up to now, increased
activity of drug-efflux pumps has not been identified as a relevant mechanism by which clinical
isolates acquire resistance to echinocandins. Concerning flucytosine, resistance in clinical isolates has
been linked to modifications on the coding sequence of the Fcy cytosine permease or in the uracil
phosphotransferase Fur1 (Table 4 and Figure 1) [105–110]. Resistance of some C. tropicalis isolates
was linked to the emergence of mutations in CtURA3 gene, encoding the enzyme involved in the
metabolization of UMP, the natural substrate of thymidylate synthase (Figure 1) [108,109]. It is thought
that this mutation increases the synthesis of UMP compensating for the loss of this metabolite that will
occur with formation of 5-FdUMP (Figure 1) [105].
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Table 3. Summary of the mechanisms of resistance registered in azole-resistant Candida isolates, as described in [40–43,45–70,72,76–79,82,85–89,92,93,96,111–128].

C. albicans C. glabrata C. krusei C. parapsilosis C. tropicalis

Modification of
drug target (protein

or pathway)

SNPs reducing the
inactivation of CaERG11 by

azoles
Overexpression of CaERG11

Not found

SNPs identified in CkERG11
in resistant isolates

Mild overexpression of
CkERG11

Overexpression of
CpERG11

SNPs reducing the
inactivation of CtERG11 by

azoles
Overexpression of CtERG11

SNPs inactivating CaERG3 or
CaERG5/CaERG11 to bypass
the inactivation of ergosterol

biosynthesis by azoles

SNPs inactivating CaERG3 or
CaERG5/CaERG11 to bypass the

inactivation of ergosterol
biosynthesis by azoles

Decreased expression of an
acylCoA:sterol acyltransferase

resulting in low sterol esterification

-

SNPs that inactivate
CpERG11 or CpERG2 to

bypass the inactivation of
ergosterol biosynthesis

by azoles

-

Increased activity
of drug-efflux

pumps

Overexpression of CaCDR1,
CaCDR2, CaMDR1, CaPDR16
Increased activity of CaTac1,
CaMrr1, CaCap1, CaUpc2

Overexpression of CgAQR1,
CgCDR1, CgFLR2, CgPDH1,

CgQDR2, CgSNQ2, CgTPO1_1,
CgTPO1_2, CgTPO3

Increased activity of CaTac1,
CaMrr1, CaCap1, CaUpc2

Overexpression of CkABC1
and CkABC2

Overexpression of
CpMDR1 and CpCDR1

Increased activity
of CpUpc2

Overexpression of CtCDR1
and CtMDR1

Table 4. Summary of the mechanisms of resistance to echinocandins, polyenes and 5-flucytosine (5-FC) reported in resistant Candida clinical isolates based on results
from [50,92–96,99–103,105–110].

C. albicans C. glabrata C. krusei C. parapsilosis C. tropicalis

Modification of
drug

target/pathway

Echinocandins SNPs reducing the inactivation
of CaGSC1 by echinocandins

SNPs reducing the inactivation
of CgFKS1 and/or CgFKS2

by echinocandins

SNPs reducing the
inactivation of

CgFKS1
by echinocandins

SNPs reducing the
inactivation of

CgFKS1
by echinocandins

SNPs reducing the
inactivation of CgFKS1

by echinocandins

Polyenes
SNPs inactivating ERG3

resulting in reduced ergosterol
in the membrane

SNPs inactivating ERG2, ERG6
or ERG11 hypothesized to

result in reduced ergosterol in
the membrane

- -

SNPs inactivating CtERG11
hypothesized to result in

reduced ergosterol in
the membrane

5-Flucytosine

SNPs reducing the inactivation
of CaFUR1 or CaFCA1 by 5-FC

Potential inactivation of
CaFCY21 or CaFCY22

SNPs reducing the inactivation
of CgFUR1 by 5-FC -

SNPs reducing the
inactivation of

CpFUR1 by 5-FC

Possible hyper activation of
CtUra3 to increase
formation of UMP
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3.2. Antifungal Resistance Driven by Large-Scale Genomic Alterations

A recent genomic analysis has unveiled an important role for the inactivation of the CgMSH2 gene
as a driver of resistance to azoles, echinocandins and amphotericin B in C. glabrata while colonizing
the host [129]. The CgMSH2 gene encodes a protein involved in DNA repair and its inactivation
(promoted by frameshift mutations in the coding sequence) leads to increased genetic diversity in
the C. glabrata population. As such, isolates harbouring inactive CgMSH2 alleles rapidly acquired
resistance to azoles, echinocandins or amphotericin B resulting from the rapid acquisition of beneficial
mutations in CgPdr1, in CgFks1 or CgFks2 or in CgErg6 [129]. After this pioneering work, several
epidemiological studies have focused their attention on the prevalence of resistant strains harbouring
inactivated CgMSH2 alleles, the percentages observed ranging between 5% and 17% [129–132]. Around
50% of the susceptible isolates examined in these studies were also found to harbour inactivated
CgMSH2 alleles [129–132], suggesting that this mechanism does not per se assure antifungal resistance.
Deletion of the C. albicans CaMSH2 gene was also found to result in drug resistance [133], however, up
to now this mechanism has not been described to underlie the resistance phenotype in clinical isolates.
The genomic plasticity exhibited by C. albicans and C. glabrata has also been found to contribute to
increased drug resistance in these species. In specific, in azole-resistant clinical C. glabrata isolates it has
been described the duplication of chromosomes that include the CgCDR1, CgPDH1 or CgERG11 genes,
as well as the formation of mini-chromosomes harbouring several copies of genes encoding CgCDR1
or CgPDH1 [124,134]. The diploid nature of C. albicans has also been found to underlie the appearance
of hyperactive alleles of genes involved in azole-resistance (e.g., CaERG11 and CaTAC1) [120,135–137].
More recently, mis-translation of serine tRNAs in leucine at CUG codons, a well known specific trait of
C. albicans, has also been linked with an accelerated resistance rate to fluconazole [137,138] while loss
of heterozygosity was reported to underlie resistance to flucytosine in C. tropicalis [139].

4. Novel Approaches for the Development of Anti-Candida Agents

The persistent increase in the emergence of strains resistant to currently used antifungals has
been paving the way for the development of new approaches that can be used to prevent growth
of Candida spp. and that can be further considered as interesting alternatives as new anti-Candida
therapies. The main results obtained in these different approaches are described in the following
sections, together with a discussion on what are the current challenges or limitations in knowledge
that still persist.

4.1. Phytotherapeutics

Systematic testing of compounds from natural sources including substances/extracts produced by
animals, plants or microorganisms, have resulted in the identification of many molecules that inhibit
growth of Candida cells. When produced by plants these substances are named phytotherapeutics, these
being attractive since they are naturally perceived by consumers as less toxic and safer than common
pharmaceuticals [140]. Currently, there is an increasing number of phytotherapeutics being identified
as efficient against Candida species including extracts isolated from garlic (Allium sativum L., Tulbaghia
alliace or Tulbaghia violacea), coconut (Cocos nucifera) or virgin coconut oil, mint (Mentha piperita L.) or
sage (Salvia officinalis L.) [140,141]. A frequent limitation of this type of approaches is the difficulty in
isolating the molecules responsible for the observed inhibitory effect over Candida since frequently
these natural extracts are complex and used without further processing.

4.2. Redesign of “Old Antifungals”

The “redesign” of common antifungals is also an approach that has been explored to obtain
molecules with inhibitory potential against Candida. The most paradigmatic examples are the new
formulations of amphotericin B, which include lipid-associated and liposomal formulations showing
higher fungal targeting and reduced toxicity against the host [142]. Within the same line azole-like
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molecules have also been obtained showing increased antifungal potency against all Candida species,
compared to the efficacy exhibited by fluconazole [143]. These modified azoles, named ATTAF-1 and
ATTAF-2, share general structural features with triazole alcohols, however, their mode of action appears
to differ from the one of fluconazole which is an important trait to sensitize resistant strains [143].
Further on, Shrestha et al. (2017) developed a series of 27 alkylated variants of fluconazole, some of
which presented a low hemolytic activity, low cytotoxicity and strong inhibitory potential against
several Candida species [144]. Although the range of minimal inhibitory concentrations obtained was
fairly wide, these compounds proved efficient against both C. albicans and non-C. albicans species and
were observed to target the ergosterol biosynthetic pathway by inhibiting the sterol 14a-demethylase
enzyme instead of targeting the ERG11 gene [144].

4.3. New Compounds Obtained by Chemical Synthesis

The synthesis of entirely new compounds obtained by chemical synthesis, either or not involving
metallic elements, has also been largely explored to obtain compounds with anti-Candida potential.
Table 5 provides a systematic overview on a large cohort these “new chemicals”. Many of those
new chemicals have silver in their structure, which is interesting since silver has been used since the
times of ancient Greece as an antimicrobial. Examples of the Ag-containing compounds synthesized
include those containing camphorimines, tetraazoles, albendazoles or phenantrolines as ligands
(Table 5) [145–148]. Complexes with other metal centers like copper, cobalt, nickel or iron; or even
with metals not usually used as bioagents, such as tin, chromium, cadmium or lead [149–157], have
also been synthesized and shown to display moderate anti C. albicans activity (Table 5). Polinuclear
complexes (based on Cu, Cd or Ni), particularly those harbouring ferrocenyl derived ligands, were
also reported to have high activity against C. albicans (Table 5) [158]. More recently the use of a Ru(III)
perylene complex has also been reported to be interesting as anti-Candida agent through photodynamic
inactivation [159]. Although some of these complexes revealed a marked potential to constitute novel
anti-Candida agents, their mechanism of action remains elusive in most cases, being also necessary
to investigate their ability to inhibit growth of strains that are resistant to currently used antifungals.
Another aspect of relevance is the fact that in the majority of the studies performed the compounds
were not tested against NACS or against clinical strains that are, in general, more difficult to inhibit
than laboratory strains.

4.4. Nanoparticles

Considering the recent interest in the use of nanoscale materials as antimicrobial agents, due to
their high surface area to volume ratio that gives them unique chemical and physical properties [160],
a number of studies have focused on the development and exploration of silver nanoparticles (AgNPs)
as anti-Candida agents [161–163]. In these studies, silver nanoparticles are synthesized using organic
or inorganic reductive agents (e.g., silver nitrate or citrate) [161,162] which promote the formation
of metallic silver (Ag0), followed by agglomeration into oligomeric clusters that eventually result in
the formation of metallic colloidal silver particles [164]. The exact mechanism by which AgNPs exert
toxicity against Candida spp. remains a bit elusive, although evidence has been obtained suggesting
that they may perturb the cellular envelope causing a disruption of the plasma membrane potential
and consequent damage and leakage of cell constituents [163]. Concerning this matter, an interesting
result was obtained with camphorimine-based complexes, being demonstrated that C. albicans, but not
C. parapsilosis, C. tropicalis or C. glabrata, were able to mediate the conversion of Ag(I) into AgNPs [145].

4.5. Use of Probiotics and Antimicrobial Peptides

For a long time, it has been known that the use of probiotics can be beneficial for the treatment
of mucosal candidiasis, specially, for vaginal candidiasis. In this sense, a few products are currently
available in the market mostly based on the use of lactobacilli, considering the well-known track
record of these species as probiotics [165]. A few examples of these products are described in Table 6.
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Probiotics are defined as “live microorganisms that, when administered in adequate amounts, provide
a health benefit on the host” [166]. In the vaginal tract, the microbiota is largely dominated by
lactobacilli, with L. gasseri, L. jensenii and L. crispatus being among those most abundant [167,168].
A decreased abundance in these microbial species appears to correlate with increased activity of
pathogens, including of C. albicans and C. glabrata [169,170]. These results support the long-standing
use of probiotics in the treatment of vaginal candidiasis. The mechanisms by which these lactobacilli
species inhibit growth of pathogens, and of Candida in particular, remains to be elucidated, as well
as the genes that mediate this interaction. Nonetheless, the evidence gathered so far (obtained using
lactobacilli species differing from those that are indigenous of the vaginal tract) suggest that production
of lactic-acid-concomitant acidification of the vaginal pH is on the basis of the protective effect of
lactobacilii against vaginal pathogens [171]. Although this can be hypothesized for bacteria that are
generally sensitive to low pH, this is not the case of yeasts that grow very well under acidic pHs.
Indeed, a recent study performed with the supernatant of vaginal lactobacilli species (L. crispatus,
L. gasseri and L. vaginalis) showed no significant correlation between the amount of lactic acid present
and the inhibition of Candida [172] and concentrations of lactic acid similar to those found to be present
in the vaginal tract (even under conditions of eubiosis) were also found not to significantly affect
growth of C. albicans or C. glabrata [173,174]. It thus remains to be established what is the contribution
that lactic acid production may have in the inhibition of Candida and of other vaginal pathogens.
Other mechanisms by which vaginal lactobacilli are hypothesized to control the activity of Candida
species in the vaginal tract is by competing for adhesion sites in the epithelial cells, by secreting
biosurfactants that may decrease fungal binding to host surfaces and by secreting to the environment
hydrogen peroxide and bacteriocins [171]. Interestingly, it was recently shown that invasive candidiasis
from the gut can be restrained by commensal bacteria [175] which opens the door to the development
of probiotics not only for the treatment of vaginal candidiasis but also for patients that may be at a
high risk of developing systemic candidiasis caused by commensal Candida populations found in the
gut such as those subjected to massive invasive surgeries.
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Table 5. Examples of reported complexes involving different metallic centers that were shown to exhibit interesting activity against C. albicans.

Metallic Center Ligand MIC/Diameter of Inhibition of the Complex (or Ligand) against C. albicans* Ref

Ag

Dicarboxylic acid
Phenanthroline

1–490 mM (ligand has antifungal activity at >1000 mM)
0.9–1.7 mM (ligand has antifungal activity at 149.4 mM) [176]

Phenanthroline 7.8 µg/mL (ligand has antifungal activity at 31.25 µg/mL) [177]
Tetrazole nitrogen 0.62–1.25 µg/mL (information regarding the activity of the ligand was not provided) [148]

Phenanthroline 12–113 mM (ligand has antifungal activity at 5000 mM) [178]
Benzimidazolydine 18 mm (ligand has no antifungal activity) [146]

Cu

Schiff base 4 µg/mL (information regarding the activity of the ligand alone is not provided) [179]
Benzimidazolydine 12 mm (ligand has no antifungal activity) [146]

Azo dye 11 mm diameter (10 mm attributable to the ligand) [152]
Schiff base type 115 mM (ligand has antifungal activity at 245 mM) [153]

Schiff base + 2,2′-bipyridine ancillary 57 mM (ligand has antifungal activity at 188 mM) [154]
Chromone hydrazines 24.8 and 30.7 mm diameter (20.8 and 21.2 mm attributable to ligands) [155]

Dendrimer 1 mg/mL (ligand has antifungal activity at 12.9 mg/mL) [156]
Ferrocenyl chalcone derivatives 17 and 21 mm diameter (12 and 19 mm attributable to ligand) [158]

Tetradentate macrocyclic 22 mm diameter (16 mm attributable to ligand) [157]

Co

Schiff base type ligand 32 µg/mL (information regarding the activity of the ligand alone is not provided) [179]
azo dye ligand 11 mm diameter (10 mm attributable to ligand) [152]

Schiff base type ligand 57–75% inhibition (40–60% attributable to ligand) [147]
Schiff base type ligand 125 mM (ligand has antifungal activity with 245 mM) [153]
Schiff base type ligand 82 mM (ligand has antifungal activity at 188 mM) [154]

Dendrimer ligand 0.6 mg/mL (ligand has antifungal activity at 12.9 mg/mL) [156]
Tetradentate macrocyclic ligand 22 mm diameter (15 mm attributable to ligand) [157]

Ethylenediamine derivatives 62.5 µg/mL (information regarding the activity of the ligand alone is not provided) [180]

Ni

Bidentate azodye ligand 15.7 mm diameter (ligand has no antifungal activity) [150]
Schiff base type ligand 129 mM (ligand has antifungal activity with 245 mM) [153]

Schiff base type ligand + 2,2′-bipyridine ancillary ligand 87 mM (ligand has antifungal activity at 188 mM) [154]
Chromone hydrazone 22.5 and 25.6mm diameter (20.8 and 21.2 mm attributable to ligand) [155]

Dendrimer ligand 0.6 mg/mL (ligand has antifungal activity at 12.9 mg/mL) [156]
Tetradentate macrocyclic ligand 19 mm diameter (15 mm attributable to ligand) [157]

Cd
Bidentate azodye ligand 17.1 mm diameter (ligand has no antifungal activity) [150]

Ferrocenyl chalcone derivatives 20 mm diameter (12 mm attributable to ligand) [158]
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Table 5. Cont.

Metallic Center Ligand MIC/Diameter of Inhibition of the Complex (or Ligand) against C. albicans* Ref

Sn

Dithiocarbamate derivatives 2.5–250 µg/mL (information regarding the activity of the ligand alone is not provided) [149]
Schiff base type ligand 135 mM (ligand has antifungal activity with 245 mM) [153]

Schiff base type ligand + 2,2′-bipyridine ancillary ligand 102 mM (ligand has antifungal activity at 188 mM) [154]
Chromone hydrazine ligand 24.8 and 26.3 mm diameter (20.8 and 21.2 mm attributable to ligand) [155]

Fe

Thiazole derivatives ligand 18.9 mm diameter (11.9 mm attributable to ligand) [181]
Ferrocenyl chalcone derivatives 17 mm diameter of inhibition zone (12 mm attributable to ligand) [158]

Bidentate azodye ligand 19.6 mm diameter (ligand has no antifungal activity) [150]
Ferrocenyl chalcone derivatives 15 mm diameter (12 mm attributable to ligand) [158]

Ru Perylene ligand 125 mM (information regarding the activity of the ligand alone is not provided) [159]

Pb Ferrocenyl chalcone derivatives 17 and 21 mm diameter (12 and 19 mm attributable to ligand) [158]

Ba Ferrocenyl chalcone derivatives 13 mm diameter (12 mm attributable to ligand) [158]

Pd Phenylphosphine ligand 0.5 µg/mL (information regarding the activity of the ligand alone is not provided) [182]
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Table 6. List of probiotics and Candida spp. by which these probiotics show antagonistic activity.

Probiotic Candida spp.

Lactobacillus rhamnosus GG (ATCC 53103),
L. rhamnosus LC705, Propionibacterium freudenreichii

subsp. shermanii JS
C. albicans, C. glabrata, C. krusei and C. tropicalis

Lactobacillus casei and Bifidobacterium breve
C. albicans, C. tropicalis, C. guillermondii, C. glabrata,

C. krusei, C. kefyr and
C. parapsilosis

L. rhamnosus HS111, L. acidophillus HS101, and
Bifidobacterium bifidum

C. albicans, C. guillermondii,
C. tropicalis, C. glabrata,

C. dubliniensis, C. famata and C. parapsilosis

L. acidophilus, L. rhamnosus,
L. delbrueckii subsp. bulgaricus and S. thermophiles Candida spp.

L. rhamnosus GR-1 and L. reuteri RC-14 C. albicans and non-C. albicans

Lactobacillus fermentum LF10 and L. acidophilus LA02 C. albicans, C. glabrata,
C. parapsilosis and C. krusei

Bifidobacterium and Lactobacillus (DanActive or
yoPlus yogurt) C. albicans and non-C. albicans

L. casei subsp. rhamnosus C. albicans and non-C. albicans

L. reuterii ATCC 55730 and L. rhamnosus (ATCC 53103) Candida spp.

L. acidophillus, L. rhamnosus, B. longum, B. bifidum,
S. boulardii, and Saccharomyces thermophiles Candida spp.

L. acidophilus, Bifidobacterium lactis, B. longum,
and B. bifidum C. albicans and C. glabrata

5. Conclusions

Although extensive knowledge about the molecular mechanisms by which Candida spp. surpass
the deleterious effects of antifungals has been collected, the translation of that knowledge to the
understanding of which of these mechanisms play a role in the stressful environment of the host is
still limited. In this review, we aimed at providing that picture, focusing what is actually described to
mediate resistance in clinical isolates. The modification of the drug target and the overexpression of
genes playing a detrimental role in antifungal tolerance determined by the adjustment of regulatory
circuits (through modification of pivotal regulators in drug resistance such as CaTac1 or CgPdr1)
and/or the occurrence of chromosomal rearrangements, comprise the vast majority of what is known
to mediate antifungal tolerance in resistant isolates. However, there is still a road to pursue in this
since the resistance of several resistant isolates cannot be explained by these mechanisms strongly
suggesting that other antifungal-resistance genes remain to be identified. It is possible that the difficulty
in mimicking in the laboratory the stressful environment of the host complicates the identification of
these genes and, in this field, it is expected that extensive genomic analyses of resistant isolates may
help to shed light on this. The full clarification of this panoply of resistance genes and mechanisms is
essential not only to improve the success of treatments and improve the outcomes of candidiasis, but
also to develop more efficient diagnosis tools that could rapidly provide clinicians a fast response on
how to fine-tune treatments. It also seems clear that the development of non-conventional therapies,
focused on biological targets other than those that are targeted by already used antifungals, is essential
considering the persistent increase in the emergence of strains resistant to azoles and, less significantly,
to echinocandins. Although much has been done in this field and promising results had been obtained,
especially in the identification of new chemicals showing a robust anti-Candida effect, it remains to
be established in many cases if indeed these compounds are able to sensitize antifungal-resistant
isolates, and what their spectrum of activity against NACS is. In almost all cases it is also lacking the
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characterization of the toxicological effects of these drugs/compounds/probiotics in mammalian cells as
well as their pharmacokinetic profile. Further investigation in this field is therefore essential to assure
that alternative antifungals will be provide to the community in the mid-term.
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