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Abstract

Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These
proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated
threonines and serines (PTS). We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a
simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST
content, more than 30 mucin-like proteins were identified, ranging from 300–23000 amino acids in length. We find that
Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to
sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related
diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus
revealing new potential functions for mucins as apical matrix components during organ morphogenesis.
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Introduction

Epithelia that are in contact with the external environment

often produce special molecular structures for apical surface

protection. These matrices contain macromolecular assemblies

rich in carbohydrate moieties and protect the epithelium from

mechanical damage, are barriers against microorganisms and

toxic molecules, and help to keep the epithelial surface hydrated

and lubricated. Our knowledge about the composition and

functions of such apical linings, however, is limited.

A group of large glycosylated macromolecules, important to the

mucosal lining of mammalian organs, is the mucin family. Mucins

are abundant in vertebrate lungs and digestive tract, and provide

lubrication of the luminal surface and protection of the underlying

epithelium against physical damage and pathogens [1]. Mucins are

either secreted and gel-forming, or attached to the membrane by

special cleavable transmembrane domains. The main character-

istic of mucin proteins is their extended regions of tandemly

repeated sequences that contain prolines together with serines

and/or threonines, to which large sugar side chains attach [2].

These PTS (proline, threonine and serine)-repeats generally

occupy between 30 and 90% of protein length and are envisioned

as an outstretched polypeptide backbone densely covered with

carbohydrate moieties much like a bottlebrush. The remaining

parts of the protein often contain conserved protein domains that

mediate protein-protein interactions. Thus, mucins are capable of

forming enormous networks, to which the glycosylated PTS

repeats confer high water-binding capacity, a selective barrier

function and the ability to trap microorganisms.

Mucin-like proteins have so far been poorly characterized in

non-mammalian organisms. The PTS repeats cannot be detected

in homology searches due to their poor sequence conservation,

and biochemical mucin isolation is hampered by the heavy

glycosylations, which makes the proteins large and difficult to

extract. Moreover, the repetitive PTS repeats are sparsely

represented in cDNA libraries. Recently, a bioinformatics search

for proteins that contain mucin-associated domains combined with

a subsequent survey for PTS repeats (based on their high ST-

content) identified putative gel-forming mucins in several diver-

gent species, including frog, zebra-fish and the starlet sea anemone

[3]. It is therefore plausible that mucins have a broader function

across species and organs than previously anticipated.

Here, we identify and characterize PTS repeat containing proteins

in Drosophila melanogaster. In an initial BLAST search for Drosophila

proteins that contain mucin-associated domains, we found that very

few of those also contain PTS repeats. To identify Drosophila mucins,

we thus devised a strategy to directly recognize the PTS repeats

based on a combination of content and pattern homology. Using this

approach we find that the predicted Drosophila proteome contains

more than 30 proteins with extended PTS repeats. The temporal

and spatial expression patterns of transcripts corresponding to 23 of

these mucin-type proteins suggest that they not only have analogous

functions to vertebrate mucins, but also are novel components of yet

uncharacterized molecular assemblies that may be important for

organ development.

Results

Identification of Drosophila mucins
Forty-two Drosophila proteins have a serine and threonine

content of more than 25% and at least four repeats of ten amino

acids (Table S1). When subjected to manual sequence analysis, a
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large number (thirty-three) of these proteins turned out to contain

mucin-like PTS repeats (Table S2). The remaining nine proteins

contain stretches of only serine or threonine, or repeats with other

amino acids than serine and threonine. The 33 proteins were

further classified depending on the content and relative size of the

repeat domains. Sixteen proteins contained PTS repeats that

constitute more than one-third of protein length, and were named

mucins (Muc). The remaining 17 proteins contained repeats

shorter than one-third of protein length, or without prolines, and

were termed mucin-related-proteins (Mur). In addition, three

proteins with low serine and threonine content, but with mucin-

like PTS repeats, were identified during initial homology searches

for mucin-associated domains (CG33196 and CG13648) and

chitin-binding domains (CG32656) and classified as above (Table

S2B). Thus, in total seventeen Drosophila mucins and nineteen

mucin-related proteins were identified.

Drosophila mucins and mucin-related proteins
Fifteen mucins and eight mucin-related proteins were further

characterized in this study (Table S3). Domain analyses of the

proteins show that nine of these contain peritrophin A (PerA)

chitin-binding domains (Figure 1). Among the remaining mucins

and mucin-related proteins, only five proteins contain conserved

domains in addition to their repeats. Muc14A, Muc25B (salivary

gland protein 1; Sgs1) and Mur24F (Dumpy, Dp [4]) harbour

stretches of C-rich EGF-like regions that may mediate protein-

protein interactions. Mur96B (Tenectin, Tnc [5]) contains four

predicted protein-protein interaction domains of the von Will-

ebrand factor C type and Muc55B contains a drosophila-specific

domain of unidentified function (DUF725). The length of the

largest Drosophila mucin identified, Muc14A, approaches that of

human MUC16. In three of the proteins the PTS repeats

themselves contain cysteines, as previously shown for Xenopus

[6]. Interestingly, a significant number of the mucins and mucin-

related proteins (6 and 3, respectively) lack conserved domains and

thus appear to function solely through their extensive PTS repeat.

Drosophila mucins are expressed at different stages of
the fly life cycle

To gain insight into possible functions of the identified mucins and

mucin-related proteins, we addressed their expression-levels during

different stages of the fly life cycle. Reverse transcription (RT) PCR

was performed on RNA extracts from embryos, first instar larvae,

third instar larvae, early pupae, late pupae and adults. If a mucin

participates primarily in functional, non-developing organs, its

expression would be expected to rise in larvae and adults, as

compared to the preceding stages of embryogenesis and metamor-

phosis. Instead, we found that mucins and mucin-related proteins are

dynamically expressed both during developmental phases and in the

physiologically active organism (Figure 2A). Exceptions to this are

the mucin Muc30E, which was detected clearly only during

embryogenesis, Muc68D that was present only in the larvae, and

Mur11Da, which was only expressed in adults.

Drosophila mucins are expressed in cuticle-free organs
If the physiological functions of Drosophila mucins correlate with

those of vertebrate mucins, they should localize to the lumen

surface of organs that are in contact with the external

environment. As many Drosophila organs are protected by cuticle,

the primary sites of mucin expression are expected to reside in the

cuticle-free salivary glands, midgut and renal tubes (malpighian

tubules). RT-PCR on selected organs from third instar larvae

indeed recognized a significant portion of mucin transcripts in

these tissues (Figure 2B). Nine of the analyzed genes were detected

in third instar larval salivary glands and eight of those were also

expressed in the third instar larval gut and/or proventriculus.

Three mucins were expressed exclusively in the digestive tract and

seven were expressed in malpighian tubules, most of which also

were expressed in both salivary glands and proventriculus. Only

four genes were expressed in the larval fat body and just one,

Mur24F/Dp, showed very faint expression in hemocytes.

Mucins are widely expressed during Drosophila
embryonic development

Since 15 of the mucins were expressed during embryogenesis, we

performed whole-mount RNA in situ hybridizations to address their

tissue localization at this developmental stage (Figure 3). We found

that five mucins were expressed in the developing salivary gland

(Figure 3A) at a time point corresponding to the presence of a

luminal matrix that is detected by antiserum against O-linked

GalNAc [7]. Similarly, three mucins (Mur96B/tnc, Mur24F/dp and

Mur18B) showed predominant expression in the developing fore-

and hindgut and the trachea, when these organs are temporarily

filled with O-glycan-rich material (Figure 3C). Muc55B and Muc18B

(probe B) were detected early in the developing embryonic midgut

(Figure 3B), while transcripts for Muc26B and Mur29B were found in

the proventriculus at later stages (from stage 16).

Mucin expression was also evident in cuticle-producing epithelia.

The cuticle is a multilayered matrix that is in close contact with the

apical epithelial surface. Mur96B/tnc, Mur24F/dp and Mur18B were

detected in the epidermis before, during and after cuticle production

(figure 3C). In contrast, Muc91C and Muc18B both were expressed

only at the time of cuticle secretion (from late stage 15, Figure 3C).

The large transmembrane Mur24F/dp was expressed in all cuticle-

producing tissues, while the mucins were expressed only in a subset

of cuticle producing cells.

Some mucin expression patterns fell outside that of tubular

organ and cuticle producing epithelia. Muc30E was expressed

selectively in the extra-embryonal amnioserosa (figure 3D) that

covers the dorsal side of the embryo before the epidermis closes at

the dorsal midline, and a Mur96B/tnc isoform (Figure 3E) was

detected in the central nervous system (CNS).

Discussion

In the current study, we have identified a large mucin-like

family of Drosophila proteins based on the characteristics of their

extensive PTS repeats. Lang et al [8] previously targeted PTS

repeats to identify mucins. They used ‘‘Mpred’’, a Hidden Markov

model that decides if an amino acid sequence conforms to a mucin

domain, and ‘‘PTSpred’’, an algorithm based on amino acid

compositional bias. In our study we search the predicted protein

database for proteins with a total ST-content above threshold

level, combined with a requirement for at least 4 repeats within the

protein. Thus, using the thresholds recently used by Lang et al [3]

(an ST-content of at least 20% and a P content of 5%) our

program recognized 67 Drosophila repeat-containing proteins, only

12 of which were identified by their approach. Five proteins from

that study were not identified in our search due to lack of repetitive

sequences (CG8181, CG3280, CG15765, CG17211), or an ST-

content lower than 20% (CG14120). The combination of two

parameters in one program provides extra stringency to the

predictions and reduces false positives (see Table S1 for results

without the repeat requirement). Yet, the high number of proteins

identified shows that sensitivity is retained. Additionally, the use of

a first step that restricts the size of the database, allows faster

performance of the following step that requires more computer

Drosophila Mucins
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capacity. Once the search criteria were established, the program

delivered the output for the Drosophila proteome overnight, and we

are currently extending our searches to include other Drosophila

species (results of which will be available at http://www.

biomedicine.gu.se/drosophila when completed).

Biochemical approaches for identification of glycosylated proteins

in Drosophila have also been described. Many proteins with mucin-

type O-glycosylation were identified by a serial lectin affinity-

purification of S2 cell proteins [9], but none of these complied to the

criteria used in our search. In our analysis Drosophila appears to lack

transmembrane mucins and S2 cells are therefore not expected to

produce mucin-like proteins. A different proteomic analysis of the

hemolymph clot resulted in the description of 4 mucin-type proteins,

2 of which are recognized by our PTSP-Miner (CG7604/Eig71E/

Muc71E [10,11] and CG15825 [12]). Finally, a third approach

aimed to identify peritrophins and used the expected chitin-binding

properties of such proteins for affinity-purification. All of the

peritrophins recognized contain a PerA domain, but only one

Figure 1. Drosophila mucins and mucin-domain containing proteins. The proteins that were analyzed in this study are illustrated (left)
together with an overview of their stage and dominant tissue-specific expressions (right). Conserved protein domains were predicted using the
EMBL-database and are shown together with the identified PTS repeats according to color code (bottom). In proteins classified as mucins, the PTS
repeats (yellow = without cysteines, orange = with cysteines) make up at least one-third of total protein length. Proteins in which the PTS repeats
constitute less than one-third of protein length, lack proline (brown) or have low ST content (Mur11-A2) were termed mucin-related proteins. Each
protein was named according to protein class (Muc: Mucins and Mur: Mucin-related proteins) followed by the cytological position. Proteins marked
with ‘‘*’’ were previously identified as Sgs1 (Muc25B), Sgs3 (Muc68Cb), Dp (Mur24F) and Tnc (Mur96B). The spatial and temporal expression of each
Muc and Mur were compiled from embryonic in situ hybridizations (E), RT-PCR on larvae (L; first instar larvae to the left and dissected third instar larval
organs to the right), RT-PCR on pupae (P) and RT-PCR on adults (A). Where applicable, the dominant organ-specific expression is illustrated by color
code. (An extensive overview of expression data is given in Table S4).
doi:10.1371/journal.pone.0003041.g001
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harbors PTS repeats [13] and was identified also by our method

(CG13990/Muc26B).

Protein-protein-interaction domains are a prerequisite for

vertebrate mucin gel formation. The PerA domains found in

many Drosophila mucins and mucin-related proteins may represent

an adaptation to the insect-specific chitin-containing molecular

structures and confer analogous complex or gel-forming properties

by binding to chitin chains [14]. Moreover, three of the identified

mucins contain cysteines within their PTS repeats, which

previously were suggested to organize mucin chain interactions

in Xenopus similar to the cysteine-rich CysD domains of human

gel forming mucins [3]. Thus, although Drosophila mucins lack the

characteristic mucin-associated domains of known vertebrate

mucins, they do have potential to form analogous gel forming

matrices via other protein properties, and it will now be possible to

address that question for each of the identified proteins.

Consistent with a protective function for Drosophila mucins on

organ epithelial surfaces, we found that the majority of the

identified mucins are expressed by cuticle-free epithelia in larvae.

In insects, a Peritrophic Matrix (PM) that contains chitin fibers

and glycosylated proteins protects the digestive tract [14,15]. The

current study identifies twelve digestive tract mucins (Table S4).

Their embryonic expression patterns suggest that some of these are

integral components of the PM and thus may represent novel insect

peritrophins. Indeed, a previously reported PM protein, the

Invertebrate Intestinal Mucin (IIM) from T. ni larvae [16], is

homologous to Muc26B identified in this study. Furthermore, four of

the digestive tract mucins were expressed in the late embryo at either

the anterior midgut or at a specific region within the proventriculus,

which are sites that correlate with type I and type II PM production,

respectively (Figure 3B). By targeting the expression of these mucins

it should now be possible to address their contribution to insect

immunity in natural Drosophila infection models and their function in

maintenance of the selective PM barriers.

In addition to the digestive tract, a second Drosophila tissue with

prominent mucin expression is the salivary gland. Further studies will

have to show if these mucins are glue components, like the previously

identified Muc25B/sgs1 and Muc68Cb/sgs3, or if they serve to

lubricate and protect the apical salivary gland epithelium, like the

human salivary gland secreted mucins (MUC5B, MUC7). Some of

the salivary gland mucins harbor perA domains, despite the absence

of chitin production by salivary glands. The presence of the chitin-

binding domains might simply be explained by the fact that all of

those salivary gland mucins also are expressed in the chitin-containing

digestive tract. Alternatively, the perA domains may interact with

GlcNAc residues on glycoproteins and glycolipids, or with PM-chitin

upon ingestion together with food-intake. The finding that Drosophila

mucins are expressed in organs similar to those of their vertebrate

counterparts, namely the digestive tract and salivary glands, could

open up for addressing basic questions about human mucin-related

diseases in this genetically advanced model system.

An interesting finding was the abundant expression of mucins in

the developing embryo. As their expression patterns correlate with

that of apical and luminal matrices detected by antisera and lectins

that detect the typical mucin-type O-glycosylations [7], these

proteins may represent new components of such matrices. The only

characterized apical matrices in Drosophila embryos are chitin-

containing and include a temporary luminal matrix that is required

to shape tracheal tubes [17]. It is an exciting possibility that large

glycosylated proteins, like mucins, similarly contribute to the shaping

of non-chitin-producing organs by providing a luminal scaffold

during their development. Indeed, anti-Tnc/Mur96 labeling has

previously revealed that the Tnc/Mur96 protein is present within

the tracheal lumen from stage 15 and along the apical surface of the

fore- and hindgut [5]. Of interest for further studies in this context

may also be the mucins expressed in the developing salivary gland,

since a defective secretory content of the lumen has been associated

with regions of abnormal tube dilations and constrictions [18].

Expression data for the UDP-GalNAc:polypeptide N-acetylga-

lactosaminyltransferases (pgants) that initiate mucin-type O-

glycosylation [19] parallel the observed mucin expression patterns

in Drosophila embryos. This further supports that the PTS repeats

of the identified proteins could act as substrates for O-

glycosylation. Organ-restricted mucin expressions correlate with

expression of specific pgants, for example Muc30E and CG30463

in the amnioserosa, Muc91C and pgant3 in pharynx and

Muc26B/Mur29B and pgant4 in the proventriculus. Additionally,

expression of core-1 ß1-3 galactosyltransferases is present in the

amnioserosa (CG9520) and late salivary glands (CG9520,

CG8708, CG13904-1; [20]). A future challenge is to confirm

and determine the actual glycosylation for the identified mucins

during different developmental stages.

The current characterization of Drosophila mucins should make

it possible to address different functional aspects for each of the

Figure 2. Drosophila mucins and mucin-domain containing
proteins are expressed throughout development. Transcripts
correlating to mucins and mucin-related proteins were detected by
two-step RT-PCR (Reverse Transcription–PCR). A) Template RNA was
isolated from embryos (E), first instar larvae (L1), third instar larvae (L3),
early pupae (P1), late pupae (P2), adult females (Af) and adult males
(Am), and the products separated on agarose gels. Primers for the 18S-
rRNA gene were used as control. Samples imported from another gel
are indicated with ‘‘*’’. Multiple bands (as observed for Mur29B, Mur2B
and Mur18B products) most likely arise from multiple priming sites, due
to the repetitive nature of the gene sequences. B) Detection of
transcripts in dissected larval organ was assessed by two-step RT-PCR.
As positive control, primers for the 18S-rRNA gene were used.
doi:10.1371/journal.pone.0003041.g002
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identified proteins. The results also provide a means to investigate

the importance of apical matrices, mucins and mucin-type

glycosylation for various physiological and developmental pro-

cesses, using the genetic tools and advantages available for

Drosophila.

Materials and Methods

Identification of Drosophila mucins
BLAST (EMBL, Flybase) and domain searches (SMART) were

performed to identify Drosophila proteins that contain the mucin-

associated SEA, vWD4, EGF and cystein-knot domains, and

identified proteins were manually scanned for the presence of PTS

repeats. Next, we developed a bioinformatic program using Java

programming language and BioJava subroutines [21] to directly

mine the whole predicted protein database for the presence of

PTS repeats. The first step in the program is implemented to

calculate the total frequency of the amino acids, serine (S),

threonine (T) and proline (P) in a given protein sequence, and the

second step identifies the number of amino acid repeats in this

sequence. We thus call the program the PTSP-Miner (PTS

Pattern-Miner; available at http://www.biomedicine.gu.se/

drosophila). A more detailed description is given in supplementary

material (Text S1).

Figure 3. Embryonic expression of Drosophila mucins and mucin-related proteins. The embryonic expression pattern of each mucin and
mucin-domain containing protein was detected by RNA in situ hybridizations on whole-mount embryos. A) Genes expressed in the salivary glands
include Muc12Ea at stages 14 and 15, as well as Muc96D Mur89F, Mur2B and Mur11A from stage 13. All embryos are lateral views, anterior to the left.
B) The expression of four genes was detected in the digestive tract. Muc26B and Mur29B are expressed in the late proventriculus (pv; stage 16/17;
ventral view), whereas Muc55B (lateral view) and Muc18B (probe B; ventral view) are detected in the anterior midgut (am). Muc18B (probe B) is also
expressed in the developing gut from stage 13, where it is seen in the anterior and posterior midgut primordia (amp and pmp; lateral view). C)
Ectoderm-derived cells that will produce cuticle express mucins and mucin-domain containing proteins either before or after cuticle formation.
Muc91C is detected only in late pharynx (ph; stage 17) and tracheal spiracular openings (tsb; dorsal views), but Mur24F, Mur96B and Mur18B (probe A)
are expressed in ectodermal cells already prior to cuticle production, such as in the tracheal pits (trp), tracheal prosterior dorsal trunk (pdt), foregut
(fg), hindgut (hg) and around the posterior spiracles (ps) (Mur24F stage 16 is dorsal view, the others lateral views). D) Muc30E is expressed exclusively
in the amnioserosa throughout development (lateral views). E) One of the genes, Mur96B/tnc, is also detected in the central nervous system (CNS)
when using probe B (lateral view). F) Probes directed against distinct parts of the Mur96B and Muc18B coding regions (A and B, as illustrated) gave
different expression patterns.
doi:10.1371/journal.pone.0003041.g003
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Nomenclature of identified proteins
The PTSP-Miner output proteins were classified according to

the nature of their tandem repeats. Thus, sixteen proteins, in

which the PTS repeats occupy at least one third of total protein

length, were defined Mucins. Of the remaining 25 proteins, 17

proteins either have a shorter PTS domain or only have ST-rich

repeats (i.e, lack prolines) and those were defined as mucin-related,

whereas 9 proteins did not contain a repeat region (‘‘false

positives’’ in Table S2). Four of the identified proteins have

previously been named Tenectin, Dumpy, Sgs1 and Sgs3. In this

study, we adopted a simple nomenclature for all proteins, where

mucins were named Muc and the mucin-related proteins were

named Mur, followed by the cytological position at which they are

encoded. If multiple genes are present in the same position, the

name is followed by a, b, etc.

In Situ Hybridization
To establish the expression pattern of the identified mucins and

mucin-domain containing proteins RNA in situ hybridization on

whole-mount embryos was performed as described in Tonning et

al 2006 [17]. In short, embryos were collected for 18 hours

(age = 0 to 18 hours after egg laying), dechorionated and fixed in

4% formaldehyde. After devitellinization, the embryos were re-

fixed, washed and rinsed in PBT:Hybridization buffer (Foramide,

206 SSC, Tween-20, ssDNA (2 mg/ml) Heparin (10 mg/ml)).

Prehybridization was performed in hybridization buffer at 70uC
for 2 hours. RNA probes were synthesized using the DIG RNA

labeling kit (Roche Applied Science), according to the instructions

of the manufacturer. Primers used for probe synthesis are listed in

Table S5. Hybridization was performed with DIG-labeled sense

and anti-sense RNA probes at 56uC overnight in water bath. After

post-hybridization washes the embryos were incubated with Anti-

Digoxigenin-AP Fab fragments (Roche) 1:2000 in PBSBT (PBS

plus 0.1% Triton X-100 and 0.2% BSA) overnight at 4uC and

transcripts were visualized through a color reaction using NBT

and BCIP (Roche). Embryos were suspended in 70% glycerol and

mounted.

Reverse transcription and PCR
The RT-PCR was performed according to a two-step protocol.

In short, embryos, larvae, pupae, adult flies and third instar larval

organs were homogenized with an Eppendorf homogenizer

(Kontes glass company, New Jersey) and RNA was prepared

and DNAse-treated on a mini-column using Qiagen’s Rneasy kit.

Reverse transcription to generate cDNA was performed using

Invitrogen’s RT-kit. The PCR was run with Platinum Taq

Polymerase (Invitrogen) in a 15 ml reaction with the following

program: 95uC 1 min, then 35 cycles 94uC 30 sec, 58uC 30 sec,

72uC 30 sec, followed by a 5 min extension at 72uC. When

possible, the PCR primers were designed so that the PCR-product

spans an intron, to detect any product arising from contaminating

DNA. The sequences of all primer pairs are listed in supplemen-

tary data (Table S5). Negative controls, in which the reverse

transcriptase was excluded, were included for each PCR, and

those samples that still contained DNA (probably due to the

existence of polytene genes in Drosophila) were treated a second

time with DNase.

Supporting Information

Text S1 A detailed description of the PTSP-Miner.

Found at: doi:10.1371/journal.pone.0003041.s001 (0.04 MB

DOC)

Table S1 PTSP-Miner output using different cutoff values. The

number of Drosophila proteins identified differs when using two

different threshold levels for total serine and threonine content (20%

and 25%), and when adding a repeat criterium, but not with three

cutoff values for proline content (5%, 1% and 0.1%). The cutoff

values used in the analysis are outlined, whereas all other raw output

data can be found at (http://www.biomedicine.gu.se/drosophila).

Found at: doi:10.1371/journal.pone.0003041.s002 (0.04 MB

DOC)

Table S2 Identified Drosophila mucins and mucin-domain

containing proteins. The results of the PTSP-Miner applied to the

Drosophila annotated protein database (version 42.43). A) The

predicted proteins selected by the PTSP-Miner when the ST-content

cutoff = 25%, total peptide length .300 amino acids, P-content

.0.1% and number of ten amino acids-repeats .3. The reason for

defining proteins as mucin-domain containing proteins and not as

mucins is given in the rightmost column. Proteins listed under the

heading ‘‘false positives’’ do not contain PTS repeat domains, but

instead, they contain either stretches of serine or threonine only, or

repeats without those residues. B) Drosophila proteins identified by

scanning proteins that contain other mucin-associated domains for

PTS domains. The domain by which the protein was identified is

listed in the rightmost column. C) The PTSP-Miner raw output data

for Drosophila using other cutoff values are available at (http://

www.biomedicine.gu.se/drosophila).

Found at: doi:10.1371/journal.pone.0003041.s003 (0.13 MB

DOC)

Table S3 Analysis of Drosophila mucins and mucin-related

proteins. The amino acid residues predicted to function as signal

sequences (SS) and the start of transmembrane domains (TM) are

indicated for each protein. The serine/threonine content (ST%),

proline content (P%), and the size of the repeat domain (RD) of

each protein are presented as percentage of entire protein length

and as absolute length in amino acids. Sgs = salivary glue protein,

Dp = dumpy, Tnc = tenectin,

Found at: doi:10.1371/journal.pone.0003041.s004 (0.07 MB

DOC)

Table S4 Overview of Drosophila mucins and mucin domain-

containing proteins expression profiles. Expression at a certain

stage is indicated by ‘‘+’’, where the color specifies the organ of

expression according to the color code at the bottom of the table.

Weak expression is indicated by ‘‘(+)’’. The data were collected

from embryonic in situ hybridizations at stages 12–17 (ISH) and

RT-PCR (from all stages as well as from L3 organs). Template

RNA for the RT-PCR was isolated from embryos (E), first instar

larvae (L1), third instar larvae (L3), early pupae (P1), late pupae

(P2), adult females (Af) and adult males (Am).

Found at: doi:10.1371/journal.pone.0003041.s005 (0.04 MB

XLS)

Table S5 List of oligos used for RT-PCR and for synthesis of the

RNA in situ probes. For each gene, we used the same set of oligos

for Reverse Transcription PCR and for amplification of the

template DNA used to generate the in situ probes. When two

different oligo pairs (A and B) are presented for a single gene, it

means that the products yielded differential expression patterns in

RNA in situ hybridization.

Found at: doi:10.1371/journal.pone.0003041.s006 (0.08 MB

DOC)
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reading of the manuscript.

Drosophila Mucins

PLoS ONE | www.plosone.org 6 August 2008 | Volume 3 | Issue 8 | e3041



Author Contributions

Conceived and designed the experiments: IvDH. Performed the experi-

ments: ZAS IvDH. Analyzed the data: ZAS TH AU IvDH. Contributed

reagents/materials/analysis tools: ZAS TH AU IvDH. Wrote the paper:

TH AU IvDH.

References

1. Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control

of the cell surface. Nat Rev Cancer 4: 45–60.

2. Perez-Vilar J, Hill RL (1999) The structure and assembly of secreted mucins.
J Biol Chem 274: 31751–31754.

3. Lang T, Hansson GC, Samuelsson T (2007) Gel-forming mucins appeared early
in metazoan evolution. Proc Natl Acad Sci U S A 104: 16209–16214.

4. Wilkin MB, Becker MN, Mulvey D, Phan I, Chao A, et al. (2000) Drosophila
dumpy is a gigantic extracellular protein required to maintain tension at

epidermal-cuticle attachment sites. Curr Biol 10: 559–567.

5. Fraichard S, Bouge AL, Chauvel I, Bouhin H (2006) Tenectin, a novel
extracellular matrix protein expressed during Drosophila melanogaster embry-

onic development. Gene Expr Patterns 6: 772–776.
6. Li Y, Ren J, Yu W, Li Q, Kuwahara H, et al. (2001) The epidermal growth

factor receptor regulates interaction of the human DF3/MUC1 carcinoma

antigen with c-Src and beta-catenin. J Biol Chem 276: 35239–35242.
7. Tian E, Hagen KG (2007) O-linked glycan expression during Drosophila

development. Glycobiology 17: 820–827.
8. Lang T, Alexandersson M, Hansson GC, Samuelsson T (2004) Bioinformatic

identification of polymerizing and transmembrane mucins in the puffer fish Fugu
rubripes. Glycobiology 14: 521–527.

9. Schwientek T, Mandel U, Roth U, Muller S, Hanisch FG (2007) A serial lectin

approach to the mucin-type O-glycoproteome of Drosophila melanogaster S2
cells. Proteomics 7: 3264–3277.

10. Korayem AM, Fabbri M, Takahashi K, Scherfer C, Lindgren M, et al. (2004) A
Drosophila salivary gland mucin is also expressed in immune tissues: evidence

for a function in coagulation and the entrapment of bacteria. Insect Biochem

Mol Biol 34: 1297–1304.
11. Theopold U, Dorian C, Schmidt O (2001) Changes in glycosylation during

Drosophila development. The influence of ecdysone on hemomucin isoforms.
Insect Biochem Mol Biol 31: 189–197.

12. Karlsson C, Korayem AM, Scherfer C, Loseva O, Dushay MS, et al. (2004)

Proteomic analysis of the Drosophila larval hemolymph clot. J Biol Chem 279:

52033–52041.
13. Wang P, Li G, Granados RR (2004) Identification of two new peritrophic

membrane proteins from larval Trichoplusia ni: structural characteristics and
their functions in the protease rich insect gut. Insect Biochem Mol Biol 34:

215–227.
14. Shi X, Chamankhah M, Visal-Shah S, Hemmingsen SM, Erlandson M, et al.

(2004) Modeling the structure of the type I peritrophic matrix: characterization

of a Mamestra configurata intestinal mucin and a novel peritrophin containing
19 chitin binding domains. Insect Biochem Mol Biol 34: 1101–1115.

15. Lehane MJ (1997) Peritrophic matrix structure and function. Annu Rev
Entomol 42: 525–550.

16. Wang P, Granados RR (1997) Molecular cloning and sequencing of a novel

invertebrate intestinal mucin cDNA. J Biol Chem 272: 16663–16669.
17. Tonning A, Hemphala J, Tang E, Nannmark U, Samakovlis C, et al. (2005) A

transient luminal chitinous matrix is required to model epithelial tube diameter
in the Drosophila trachea. Dev Cell 9: 423–430.

18. Abrams EW, Mihoulides WK, Andrew DJ (2006) Fork head and Sage maintain
a uniform and patent salivary gland lumen through regulation of two

downstream target genes, PH4alphaSG1 and PH4alphaSG2. Development

133: 3517–3527.
19. Tian E, Ten Hagen KG (2006) Expression of the UDP-GalNAc: polypeptide N-

acetylgalactosaminyltransferase family is spatially and temporally regulated
during Drosophila development. Glycobiology 16: 83–95.

20. Muller R, Hulsmeier AJ, Altmann F, Ten Hagen K, Tiemeyer M, et al. (2005)

Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous
enzymes in Drosophila melanogaster. Febs J 272: 4295–4305.

21. Pocock M, Down T, Hubbard T (2000) BioJava: open source components for
bioinformatics. SIGBIO Newsletters 20: 10–12.

Drosophila Mucins

PLoS ONE | www.plosone.org 7 August 2008 | Volume 3 | Issue 8 | e3041


