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Abstract

Bromodomain-containing protein 7 (BRD7) is a tumour suppressor that is known to regulate many pathological processes including cell
growth, apoptosis and cell cycle. Endoplasmic reticulum (ER) stress-induced apoptosis plays a key role in diabetic cardiomyopathy (DCM).
However, the molecular mechanism of hyperglycaemia-induced myocardial apoptosis is still unclear. We intended to determine the role of
BRD7 in high glucose (HG)-induced apoptosis of cardiomyocytes. /n vivo, we established a type 1 diabetic rat model by injecting a high-dose
streptozotocin (STZ), and lentivirus-mediated short hairpin RNA (shRNA) was used to inhibit BRD7 expression. Rats with DCM exhibited severe
myocardial remodelling, fibrosis, left ventricular dysfunction and myocardial apoptosis. The expression of BRD7 was up-regulated in the heart
of diabetic rats, and inhibition of BRD7 had beneficial effects against diabetes-induced heart damage. /n vitro, H9¢2 cardiomyoblasts was used
to investigate the mechanism of BRD7 in HG-induced apoptosis. Treating H9¢2 cardiomyoblasts with HG elevated the level of BRD7 via activa-
tion of extracellular signal-regulated kinase 1/2 (ERK1/2) and increased ER stress-induced apoptosis by detecting spliced/active X-box binding
protein 1 (XBP-1s) and C/EBP homologous protein (CHOP). Furthermore, down-regulation of BRD7 attenuated HG-induced expression of CHOP
via inhibiting nuclear translocation of XBP-1s without affecting the total expression of XBP-1s. In conclusion, inhibition of BRD7 appeared to
protect against hyperglycaemia-induced cardiomyocyte apoptosis by inhibiting ER stress signalling pathway.
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Introduction

Diabetes is a primary cause of mortality and morbidity all over
the world [1]. More than half of diabetic patients are died of car-
diovascular complications, including DCM, which results in
changes of the structure and function in the heart independently
of hypertension and underlying coronary artery disease [2]. DCM
is characterized by left ventricular hypertrophy and diastolic dys-
function [3]. Diverse pathogenic mechanisms have been identified
in DCM, including myocardial cell death, contractile protein glyco-
sylation and interstitial fibrosis [4]. In particular, myocardial cell
apoptosis is a major component of DCM [5]. Diabetic patients
with dilated cardiomyopathy showed more apoptotic cardiomy-
ocytes than patients without diabetes [6].

A previous study indicated that ER stress might contribute to
the development of DCM, as the ERs became swollen under
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ultrastructural examination in the diabetic hearts [7]. Whereafter,
we have demonstrated that ER stress was involved in the cardiac
apoptosis in STZ-induced type 1 diabetic rat model [8]. Chronic
hyperglycaemia increases the level of ER stress, including glu-
cose-regulated protein 78 kD (GRP78), spliced/active XBP-1s and
CHOP [9]. CHOP is identified to play a prominent role in ER
stress-induced apoptosis [10]. CHOP can be induced at the tran-
script level by multiple pathways, such as XBP-1s, activating tran-
scription factor 4 and activating transcription factor 6 [11].
Although ER stress participates in the pathogenesis of DCM, the
molecular mechanisms underlying cardiac apoptosis still have not
been well illustrated.

BRD7 is a pleiotropic and highly conserved protein that is ubiqui-
tously expressed in human tissues, including brain, heart, lung, colon
and breast [12, 13]. It is a member of the bromodomain-containing
protein family that is known as a tumour suppressor [14]. BRD7
serves as a transcriptional regulation factor which regulates many
pathological processes such as cell growth, apoptosis and cell cycle
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[15]. Increasing evidence have demonstrated that BRD7 had distinct
effects on inducing cell apoptosis. For example, BRD7 induced a sig-
nificant increase in apoptosis of ovarian cancer cells in a p53-inde-
pendent manner [16]. Liu etal [17] has identified that BRD7
contributed to initiate apoptosis via repressing PTEN/AKT signalling in
nasopharyngeal carcinoma. In addition, a recent study showed that
BRD7 modulated ER stress through its ability to regulate XBP1s
nuclear translocation in the liver of obese mice [18]. Although many
studies have examined the effects of BRD7, little is known about the
function of BRD7 in DCM.

We have suggested that increased BRD7 expression may aggran-
dize diabetes or HG-induced cardiomyocyte apoptosis, and BRD7
inhibition may have a protective effect on the myocardium in diabetes.
Here, we investigated the potential role and underlying mechanism of
BRD7 involved in HG-induced cardiomyocyte apoptosis in vivo and
in vitro.

Materials and methods

Animal models

Sixty male Wistar rats (mean body weight 200 + 20 g) were obtained
from Beijing Weitong Lihua Experimental Animal Technology (Beijing,
China). The rats were housed at 22°C with an alternating 12 hrs light/
dark cycle. After 1 week of acclimatization, the animals were then ran-
domly divided into four groups (n = 15 each): normal control, dia-
betes mellitus (DM), DM+shRNA-negative control (N.C) and
DM-+shRNA-BRD7. Diabetic rats received a single intraperitoneally
injection of STZ (60 mg/kg, Sigma-Aldrich, St. Louis, MO, USA) dis-
solved in 0.1 ml of citrate buffer (pH 4.5) to induce diabetes. Normal
rats were injected with citrate buffer only. One week after STZ injec-
tion, tail vein random glucose levels were measured using a glucome-
ter (ACCU-CHEK Advantage; Roche, Indianapolis, IN, USA). Rats with
blood glucose levels >16.7 mmol/l were considered the type 1 diabetic
rats. After induction of diabetes for 12 weeks, an amount of 1 x 108
UT/50 pl of lentivector with BRD7 shRNA (GenePharma, Shanghai,
China) or the same volume of lentivehicle (GenePharma) was injected
into the jugular vein. At 16 weeks after STZ injection, all rats were
anaesthetized with sodium amobarbital (35 mg/kg of body weight
intraperitoneally) and then killed. All experiments conformed to the
Guide for the Care and Use of Laboratory Animal published by the US
National Institutes of Health and Shandong University. The study pro-
tocol was approved by the Institutional Ethics Committee of Shandong
University. The target sequence for BRD7 shRNA was 5'-GGACTCTGG
AGATGCTGAA-3* and  negative  control  sequence  5'-TTC
TCCGAACGTGTCACGT-3'.

Cardiac function measurement

Echocardiography was performed by use of the VEVO770 imaging sys-
tem (VisualSonics, Toronto, ON, Canada) before lentivirus infection
and at the end of the experiment. All rats were anaesthetized with
sodium amobarbital (35 mg/kg of body weight intraperitoneally) to
perform echocardiographic analysis. The left ventricular ejection

© 2016 The Authors.

J. Cell. Mol. Med. Vol 21, No 6, 2017

fraction (LVEF), left ventricular fractional shortening (LVFS), left ven-
tricular end-diastolic diameter (LVEDd), left ventricular posterior wall
thickness (LVPWd) and left ventricular mass (LV mass) were mea-
sured by M type ultrasound. A pulsed-wave Doppler echocardiography
was applied to determine the peak velocity of early (E) and late (A)
ventricular filling velocity, and the ratio of early-to-late mitral inflow
velocity (E/A) was calculated.

Histology and immunohistochemistry

Rat hearts were dissected at the mid-ventricular level and immedi-
ately fixed in 4% paraformaldehyde. Tissue samples were paraffin
embedded and cut into 5-um sections for subsequent analyses. Car-
diomyocyte width was manually determined as the shortest dimen-
sion per cardiomyocyte (um), measured in images from haematoxylin
and eosin (H&E)-stained sections (x400 magnification within the left
ventricle transverse sections) [19]. Immunohistochemistry was per-
formed for detecting the expressions of BRD7, and slides were incu-
bated overnight at 4°C with the primary antibody rabbit anti-BRD7
(Santa Cruz Biotechnology, Santa Cruz, CA, USA). Goat anti-rabbit
antibody was the secondary antibody. To detect interstitial collagen
deposition, heart sections were stained with Masson’s trichrome
and Sirius red. All the results were analysed by use of IMAGE-PRO
PLUS 6.0.(Media Cybernatics, Houston, TX, USA)

TUNEL staining

Apoptotic cells in myocardium were detected by use of a commercial
DNA fragmentation detection kit (ApopTagPlus Peroxidase In Situ Apop-
tosis Detection Kit; Millipore, Billerica, MA, USA) according to the man-
ufacturer’s instructions. Briefly, H9¢c2 cardiomyoblasts were fixed with
4% paraformaldehyde for 15 min. at room temperature. Rat heart tissue
sections were deparaffinized and hydrated. The samples underwent
20 pg/ml proteinase K for 5 min. and were washed with PBS. Then,
samples were incubated with 3% H,0, for 15 min. After adding the
equilibration buffer, samples were incubated with TdT enzyme at 37°C
for 1 hr. The samples were then incubated with antidigoxigenin conju-
gate at room temperature for 30 min. Peroxidase substrate was applied
to detect apoptotic cells, stained brown and normal cells appeared
green (0.5% methyl green-pyronin).

Cell culture

H9¢2 cardiomyoblasts were incubated in six-well plates in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% foetal bovine serum
(FBS) and 2 mM glutamine in 5% CO2 and 95% humidified air at 37°C.
When cell populations reached 60% confluence, cells were exposed to
normal glucose (NG; 5.5 mM glucose), high glucose (HG; 33.3 mM
glucose) or high mannose [osmotic control (OC); 5.5 mmol/l glu-
cose + 27.5 mmol/l mannose]. Cells were harvested at different times.
Moreover, a specific ERK1/2 inhibitor (U0126; Selleck Chemicals, Hous-
ton, TX, USA) was used to identify the role of ERK1/2 in HG-induced
expression of BRD7. According to previous study [20], we chose
30 mM U0126 as the concentration in subsequent experiments. U0126
was added 30 min. before HG treatment, and dimethyl sulfoxide
(DMSO; Sigma-Aldrich) treatment was acted as negative control.
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BRD7 knockdown in H9c¢2 cardiomyoblasts

H9c¢2 cardiomyoblasts were cultured in six-well culture plates and
infected with a lentivirus vector containing BRD7-shRNA at a multiplicity
of infection 50 for 48 hrs, and then, cells were cultured with HG for
48 hrs. The target sequence for BRD7 shRNA was 5-GGACTCTGGAG
ATGCTGAA-3" and negative control sequence 5-TTCTCCGAACGTGTC
ACGT-3'.

Immunofluorescence microscopy

H9c2 cardiomyoblasts were cultured on glass coverslips in 2-cm? wells.
For BRD7 and XBP-1s analysis, cells were treated with HG for 48 hrs
after using U0126 or transfection of shRNA BRD7. Immunofluorescence
analysis was performed as described [21]. Cells were incubated over-
night at 4°C with primary antibodies for BRD7 (Santa Cruz Biotechnol-
ogy) and XBP-1s (Abcam, Cambridge, MA, USA) in PBS with 0.1%
Triton X-100 in a humidified chamber. Cells were washed with PBS and
incubated with secondary antibody (1:200 dilution; Cell Signaling Tech-
nology, Beverly, MA, USA) for 30 min. at 37°C. Images were acquired
by laser scanning confocal microscopy (LSM710; Zeiss, Jena, Germany).

Western blot analysis

Total protein was collected from freshly dissected rat hearts and cell
lysates. The nuclear and cytoplasmic proteins of H9c2 cardiomyoblasts
were collected using a nuclear and cytoplasmic protein extraction kit
(Beyotime Institute of Biotechnology, Jiangsu, China). Equal amounts of
protein were separated on 10% or 12% sodium dodecyl sulphate—
polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to
PVDF membranes (Millipore, Eschborn, Germany). The membranes
were blocked for 2 hrs with 5% non-fat milk at room temperature, then
incubated overnight at 4°C with primary antibodies specifically against
BRD7 (Sigma-Aldrich), CHOP (Novus, Littleton, CO, USA), XBP-1s
(Abcam), cleaved caspase-3, full length caspase-3, B-cell lymphoma/
leukaemia-2 (Bcl-2), Bcl2-associated X protein (Bax), p-actin, GAPDH,
histone3, phospho-ERK1/2, total ERK1/2, phospho-Akt and total-AKT
(all Cell Signaling Technology). After being washed three times, the
membranes were incubated with respective secondary antibody for
90 min. at room temperature. Protein contents were visualized using an
enhanced chemiluminescent reagent (Bio-Rad, Hercules, CA, USA).

Statistical analysis

All experiments were repeated at least three times. Data were presented
as mean & S.D. Differences between two groups were performed by

J. Cell. Mol. Med. Vol 21, No 6, 2017

unpaired *test, and multiple groups involved one-way anova. Differences
were considered statistically significant at P < 0.05. SPSS 17.0 (SPSS,
Chicago, IL, USA) was used for statistical analysis.

Results

Diabetes increased myocardial BRD7 expression
and BRD7 inhibition prevented diabetes-induced
myocardial remodelling and fibrosis in vivo

Diabetic rats showed significantly increased BRD7 protein level in the
heart as compared with normal controls, and the BRD7 expression
was down-regulated in shRNA BRD7 than in vehicle-treated diabetic
rats as indicated by Western blot (P < 0.05; Fig. 1A) and immunohis-
tochemistry (P < 0.05; Fig. 1B). The increased cardiomyocyte width
in diabetic rats was attenuated by BRD7 gene silencing (P < 0.05;
Fig. 1C and D). The ratio of heart weight to body weight was signifi-
cantly higher in diabetic than normal rats, and shRNA BRD7 treatment
decreased the ratio of heart weight to body weight (P < 0.05; Fig. 1E)
in diabetic rats.

Masson’s trichrome and picrosirius red staining of heart sections
showed severe myocardial fibrosis in diabetic rats. Quantitative analy-
sis of Masson’s trichrome staining revealed a significant increase of
collagen deposition in diabetic as compared with controls, and
shRNA-BRD7 treatment reduced collagen deposition as compared
with vehicle treatment (P < 0.05; Fig. 1F and G). In addition, the
levels of blood glucose in the diabetic group were significantly higher
at all time-points than at baseline (P < 0.05; Table S1), with BRD7
gene silencing, the blood glucose levels did not altered compared
with vehicle group (Table S1).

BRD7 inhibition attenuated diabetes-induced
cardiac dysfunction

At 12 weeks after the induction of diabetes, the diabetic rats showed
a moderate decrease in LVEF, LVFS and E/A compared with controls;
LVEDd, LVPWd and LV mass were higher than controls (all P < 0.05;
Table S2), and these data had no difference between three groups of
diabetic rats (Table S2). At the end of experiment, compared with the
normal control group, LVEF, LVFS and E/A were significantly lower,
while LVEDd, LVPWd and LV mass were significantly higher in the
diabetic rats (all P < 0.05; Table 1). Inhibition of BRD7 was associ-
ated with an improvement in LVEF, LVFS, E/A, LVEDd, LVPWd and LV

Fig. 1BRD7 expression and effects on myocardial pathology and fibrosis. (A) Western blot analysis of BRD7 protein levels. (B) Immunohistochemi-
cal staining and quantification of BRD7 expression (scale bar: 20 um). (C1) Heart size (scale bar: 3 mm). (C2) Representative histologic cross-
sectional image illustrating the anatomy at the papillary muscle level (scale bar: 3 mm). (C3) Representative haematoxylin and eosin staining (HE)
of longitudinal left ventricular (LV) sections (scale bar: 20 um). (C4) Representative HE staining of LV transverse sections (scale bar: 20 um). (D)
Quantitative analysis of cardiomyocyte cell diameter. (E) Quantitative analysis of heart weight-to-body weight ratio (HW/BW). (F) Masson’s trichrome
staining (first row; scale bar: 20 um) and picrosirius Red staining (second and third rows; scale bar: 20 um) of myocardium. (G) Quantitative
analysis of myocardial fibrosis. Data are mean + S.D. *P < 0.05 versus normal; #P < 0.05 versus diabetes or diabetes + shRNA-N.C.
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mass compared with vehicle treatment (all P < 0.05; Table 1).
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Fig. 2BRD7 inhibition protected against
ER stress-induced myocardial apoptosis in
diabetic rats. (A and B) Western blot anal-
ysis of CHOP in diabetic rats. Bax and 3
Bcl-2 (C), the levels of cleaved caspase-3
(D) after BRD7 inhibition were determined
by Western blot. (E and F) TUNEL assay
of cell apoptosis rate (scale bar: 20 um).
I: Normal; Il: Diabetes; Ill: Diabetes+
shRNA-N.C; IV: Diabetes+shRNA-BRD7. 0
Data are mean + S.D. *P < 0.05 com-
pared with normal; #P < 0.05 compared
with diabetes or diabetes + shRNA-N.C.

Bax/Bcl-2
(fold of control)

Inhibition of ERK pathway reduced HG-induced
expression of BRD7 and apoptosis

Stimulation of H9c2 cardiomyoblasts with HG increased the phosphory-
lation of ERK1/2 level as compared with NG treatment (P < 0.05;
Fig. 5A). To examine the role of ERK1/2 in HG-induced expression of
BRD7, we inhibited the activity of ERK1/2 using a specific ERK inhibitor
(U0126). Pre-treating H9c2 cardiomyoblasts with U0126 decreased
phospho-ERK1/2 level (P < 0.05; Fig. 5A) and the expression of BRD7
(P < 0.05; Fig. 5B) as compared with DMSO treatment. In addition,
immunofluorescence analysis revealed that HG significantly increased
the accumulation of BRD7 in the nucleus, which was attenuated by

© 2016 The Authors.
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U0126 (Fig. 5C). We further explored the effects of ERK1/2 on HG-
induced apoptosis, HG stimulation markedly decreased AKT phosphory-
lation and p-AKT level was enhanced by U0126 treatment (P < 0.05;
Fig. 5D). Moreover, HG-induced apoptosis was decreased in U0126
treatment group as indicated by Bax/Bcl-2 ratio (P < 0.05; Fig. 5E) and
the level of cleaved caspase-3 (P < 0.05; Fig. 5F).

BRD7 mediated HG-induced apoptosis via ER
stress pathway in H9c¢2 cardiomyoblasts

To assess whether CHOP was associated with HG-induced H9c2 car-
diomyoblasts apoptosis, we explored CHOP expression for various
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times with HG treatment. After HG treatment for 24 hrs, the expres-
sion of CHOP was significantly increased and lasted to 48 hrs
(P < 0.05; Fig. 6A). At the same time, the protein level of CHOP did
not altered with OC treatment (Fig. 6B). In addition, Western blot
showed that inhibition of BRD7 effectively decreased HG-induced
expression of CHOP (P < 0.05; Fig. 6C).

Then, we further investigated whether BRD7 promoted CHOP
expression through XBP-1s, Western blotting confirmed that HG
increased the nuclear translocation of XBP-1s, while its translocation
was attenuated by inhibition of BRD7 (P < 0.05; Fig. 6E and F). Total

1100

expression of XBP-1s was increased following exposure to HG as
compared with NG (P < 0.05; Fig. 6D), and BRD7 inhibition had no
effect on the total expression of XBP-1s (Fig. 6D). Immunofluores-
cence analysis was also performed to monitor the localization of
BRD7 and XBP-1s. BRD7 was mainly located in the nucleus, and
XBP-1s was predominately in the cytosol of NG-treated H9c2 car-
diomyoblasts (Fig. 6G). After stimulation with HG, XBP-1s was mainly
located in the nucleus with coexpression of BRD7, while the nuclear
XBP-1s immunofluorescence signals were reduced upon BRD7-
shRNA treatment compared to vehicle treatment (Fig. 6G). Thus,
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BRD7 was involved in ER stress-induced apoptosis of H9c2 car-
diomyoblasts under HG treatment.

Discussion

An increased myocardial cell apoptosis is a major event in the devel-
opment of DCM [25]. BRD7 has distinct effects on promoting cell
apoptosis [26]. However, its function in DCM is still unknown. Here,
we focused on the potential role and mechanism of BRD7 in HG-
induced cardiomyocyte apoptosis. The major findings of our study

© 2016 The Authors.

were that in vivo, BRD7 protein levels were increased in the cardiomy-
ocytes of type 1 diabetic rats, and inhibition of BRD7 prevented dia-
betes-induced myocardial remodelling and fibrosis, improved cardiac
dysfunction and limited myocardial apoptosis; in vitro, HG increased
the expression of BRD7 by HG-induced phosphorylation of ERK1/2;
moreover, BRD7 mediated HG-induced apoptosis through ER stress
pathway. However, further detailed investigations are needed to clar-
ify the exact molecular mechanism by which BRD7 modulates dia-
betic myocardial cell apoptosis in vivo.

Given that cardiomyocytes rarely proliferate, the apoptosis of car-
diomyocytes would eventually result in compromised cardiac function
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and cardiac fibrosis [27-29]. A previous study showed that in STZ-
induced diabetic rats, an increased cardiomyocyte apoptosis was
observed [30]. Meanwhile, HG significantly induced the apoptosis of
H9c2 cardiomyoblasts [31]. Consistent with previous studies, we
found that the ratio of Bax/Bcl-2 and the activity of caspase-3 were
enhanced in both diabetic hearts and HG-stimulated H9c2 cardiomy-
oblasts. Additionally, the continuous loss of cardiomyocytes triggers
myocyte hypertrophy, myocardial fibrosis and impaired systolic and
diastolic function. Therefore, inhibition of cardiac apoptosis is an
important strategy for the prevention of DCM.

BRD7 is a tumour suppressor and induces apoptosis in multiple
cancers [32]. However, the role of BRD7 in HG-induced apoptosis of
cardiomyocytes has not been characterized. In the present study, we
found that BRD7 expression was increased in the type 1 diabetic rat
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heart and in HG-treated H9c2 cardiomyoblasts. Moreover, BRD7 inhi-
bition by shRNA reduced HG-induced Bax/Bcl-2 ratio and caspase-3
activity both in vivo and in vitro. TUNEL assay also showed that the
apoptosis of cardiomyocytes could be attenuated by inhibition of
BRD7. In addition, we found that BRD7 inhibition ameliorated myo-
cyte hypertrophy, myocardial fibrosis and cardiac dysfunction in DM
rats. These results suggest that inhibition of BRD7 may protect car-
diomyocytes against apoptosis under hyperglycaemic conditions.
Notably, it has been demonstrated that reinstating BRD7 levels in
the liver improves insulin sensitivity to reduce the blood glucose
levels in the obese and type 2 diabetic mouse [18]. In our study, the
blood glucose levels did not display a significant difference with
BRD7 knockdown. Presumably, a high-dose STZ caused rapid B cell
destruction to inhibit insulin secretion [33]. Although insulin
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resistance is present in type 1 diabetes, the severe insulin deficiency
is the main contributor to hyperglycaemia in STZ diabetes [34].

We further investigated the potential mechanism of HG-induced
BRD7 expression in vitro. ERK1/2 is strongly activated by HG stimula-
tion [35]. A recent study showed that activation of Ras/Raf/MEK/ERK
pathway increased BRD7 expression in hepatoma cell during HCV
infection [36]. Then, we investigated whether HG-induced activation
of ERK1/2 facilitated the expression of BRD7 in H9c2 cardiomy-
oblasts. In line with previous observation, we found that the phos-
pho-ERK1/2 level was significantly increased in HG-stimulated H9c2
cardiomyoblasts, and pre-treating cells with U0126 prevented HG-
induced phospho-ERK1/2 level and expression of BRD7. These obser-
vations supported that HG mediated BRD7 expression via ERK1/2
pathway in H9c2 cardiomyoblasts. Interestingly, some studies have
demonstrated that BRD7 down-regulated the Ras/Raf/MEK/ERK path-
way in several cancers [37, 38]. Maybe there is a negative feedback
mechanism between the activation of ERK1/2 and the expression of

© 2016 The Authors.

BRD7, and the balance between them is important to determine the
outcome of many diseases. Further investigation is needed to explore
the relationship in DCM. In addition, depending on the cell type and
stimulus, ERK activation mediates various cell responses, such as
proliferation, migration and death [39]. Previous studies showed that
activated ERK negatively controls the anti-apoptotic AKT pathway
[40]. HMGB1 mediated hyperglycaemia-induced cardiomyocyte apop-
tosis via ERK-dependent activation of Ets-1 [23]. Consistent with pre-
vious studies, we found inhibiting phosphorylation of ERK1/2
facilitated the activation of AKT, thus resulting in attenuated apoptosis
in HG-treated H9c2 cardiomyoblasts. These data confirmed that ERK
pathway was involved in HG-induced expression of BRD7 and
apoptosis.

Increasing evidence suggest that ER stress participates in the
apoptosis of DCM [41, 42]. Our previous study has demonstrated
CHOP promoted ER stress-induced cardiomyocyte apoptosis by serv-
ing as a promotor of Puma in type 1 diabetic rats [43]. In the present
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study, we found that cardiac CHOP level was significantly increased
in diabetic rats, BRD7 inhibition reduced diabetes-induced CHOP
expression. In vitro, HG stimulation time-dependently up-regulated
the expression of CHOP, and inhibiting BRD7 reduced the HG-induced
expression of CHOP. This suggests that increased BRD7 level pro-
moted cardiac cell death via the transcription factor CHOP. In addi-
tion, a recent study showed that BRD7 forced XBP-1s to the nucleus
and increased the activity of XBP-1s as a transcription factor in the
liver of obese mouse [18]. XBP-1s is a highly active transcription fac-
tor and regulates ER folding capacity [44]. It has shown that diabetes
induced the expression of XBP-1s in the mouse hearts [45]. However,
whether BRD7 mediated the activity of XBP-1s in H9c2 cardiomy-
oblasts exposed to HG was not known. In our study, we found a
marked up-regulation of XBP-1s in HG-treated H9c2 cardiomyoblasts.
Western blot and immunofluorescence analysis revealed that HG
induced XBP-1s to diffuse from the cytoplasm to the nucleus. More-
over, down-regulation of BRD7 inhibited nuclear translocation of
XBP-1s, while the total expression was not altered. These observa-
tions indicated that BRD7 promoted nuclear translocation of XBP-1s
without affecting the total XBP-1s protein levels. It is also believed
that the CHOP promoter contains an ER stress response element
motif which is known as an authentic XBP1-bound sequence, and its
transcription is modulated by XBP-1s [46, 47]. Thus, we speculated
that BRD7 regulated the expression of CHOP via affecting the nuclear
translocation and activity of XBP-1s in HG-treated H9c2 cardiomy-
oblasts. Interestingly, another study has demonstrated that XBP-1s
down-regulated CHOP in chondrocytes and chondrosarcoma cells
[48]. Although the precise mechanisms for this difference are still
unclear, it is possible that XBP-1s regulates CHOP expression
depending on the underlying pathological condition and cell context.
In conclusion, we illustrate that cardiac BRD7 gene silencing may
protect against cardiac apoptosis and fibrosis, and improve myocardial
function in diabetic rats. Additionally, BRD7-ER stress signalling path-
ways play an essential role in hyperglycaemia-induced cardiomyocyte
apoptosis. However, the H9¢2 cardiomyoblasts was derived from embry-
onic rat ventricular tissue, it has the feature of both skeletal and cardiac
muscle cells [31]. Although some studies have proved it has some simi-
larities to primary cardiomyocytes and used as a substitution for car-
diomyocytes, the extent to which H9¢2 cardiomyoblasts can accurately

References
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