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The recent outbreak of the coronavirus disease-2019 (COVID-19) caused serious
challenges to the human society in China and across the world. COVID-19 induced
pneumonia in human hosts and carried a highly inter-person contagiousness. The
COVID-19 patients may carry severe symptoms, and some of them may even die of
major organ failures. This study utilized the machine learning algorithms to build the
COVID-19 severeness detection model. Support vector machine (SVM) demonstrated
a promising detection accuracy after 32 features were detected to be significantly
associated with the COVID-19 severeness. These 32 features were further screened
for inter-feature redundancies. The final SVM model was trained using 28 features and
achieved the overall accuracy 0.8148. This work may facilitate the risk estimation of
whether the COVID-19 patients would develop the severe symptoms. The 28 COVID-19
severeness associated biomarkers may also be investigated for their underlining
mechanisms how they were involved in the COVID-19 infections.

Keywords: severity detection, COVID-19, model, blood and urine tests, biomarkers

INTRODUCTION

Multiple cases of pneumonia patients were linked to the coronavirus disease-2019 (COVID-19)
occurred in December 2019 (Zhu et al., 2020). The virus 2019-nCoV demonstrated a substantial
capability of inter-human transmissions (Chan et al., 2020) and has rapidly spread around the
world, in particular South Korea and Japan (Li Q. et al., 2020). Patients infected with COVID-19 had
significantly varied symptoms and their outcomes ranged from mild to death, and the mortality rate
was approximately 4.3% (Wang et al., 2020). It is necessary to mention that 61.5% of the COVID-19
pneumonia patients with critical symptoms died within 28 days after admission (Yang X. et al.,
2020). The discrimination of severely ill patients with COVID-19 from those with mild symptoms
may help understand the individualized variations of the COVID-19 prognosis. The knowledge
may also facilitate the establishing of early diagnosis of the COVID-19 severeness.
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The diagnosis of COVID-19 heavily relies on the
epidemiological features, clinical characteristics, imaging
findings, and nucleic acid screening (Shi et al., 2020), etc. The
delivery of the diagnosis result by these technologies was time
consuming and error prone (Xie et al., 2020). Multiple types
of clinical data were collected for a patient with COVID-19
infection and they were manually integrated by the clinicians to
make the diagnosis decisions. The stochastic transmission model
was also used to investigate how the COVID-19 transmitted
locally and globally (Kucharski et al., 2020). Machine learning
algorithms were widely used to integrate the heterogeneous
biomedical data sources for the diagnosis decision (Thompson
et al., 2018; Hu et al., 2019). So they may also be utilized to
produce more delicate prediction models for the severeness
diagnosis of the COVID-19 patients. The biomarkers used for an
accurate diagnosis model of patients with COVID-19 may serve
as the drug targets for this global infectious disease.

This study investigated the detection of severely ill patients
with COVID-19 from those with mild symptoms using the
clinical information and the blood/urine test data. The clinical
information consisted of age, sex, body temperature, heart rate,
respiratory rate, and blood pressure. The blood/urine tests may
be carried out using the technically easy and cost-efficient
procedures. An accurate severeness detection model of the
patients with COVID-19 based on those features above may
improve the prognosis of this disease in large scale clinical
practices. The following sections will firstly describe the data
collection and modeling methods, and then utilized the popular
machine learning algorithms to build the best severeness
detection model.

MATERIALS AND METHODS

Data Collection
This study recruited 137 clinically confirmed cases of COVID-19,
which were collected from the Tongji Hospital Affiliated to
Huazhong University of Science and Technology. Patients were
hospitalized from January 18, 2020, to February 13, 2020. The
cohort consisted of 17 mild cases, 45 moderate ones and 75
severely ill patients. 21 of the severe cases eventually died. This
study investigated the binary classification problem between
75 severe/deceased cases and 62 mild/moderate ones. Each
participant was regarded as a sample in this study. This study
was approved by the Ethics Commission of the First Hospital of
Jilin University (2020-236). With informed consent was waived
for this emerging infectious disease.

Patient information including age, sex, body temperature,
heart rate, respiratory rate, blood pressure and the blood/urine
tests data. Each clinically obtained value was regarded as
a feature in this study. In summary, each sample has 100
features, consisting of 8 clinical, 76 blood test, and 16 urine
test values.

Data Pre-processing
The missing entries were filled in the following procedure.
We assumed a missing entry to be within the normal range

and filled this entry with the median of that normal range.
If there is no normal range for a missing entry, we filled it
with zero (0). The samples were randomly split into 80% as
training and 20% as test datasets in a stratified fashion. Features
in continuous values were normalized by the values in the
training dataset. The categorial features were encoded by the
one-hot strategy.

Feature Selection
The principle of Occam’s razor suggested that a model using
fewer features was preferred over a complicated model with
a similar prediction performance (Koller and Sahami, 1996).
Feature selection algorithms may be utilized to remove those
unrelated features (Ebrahimpour et al., 2017) and may usually
increase the model prediction performances (Zhang et al., 2019;
Yang S. et al., 2020).

The student t-test (abbreviated as T-test) is a filter algorithm
and it evaluates the statistical association of each feature with
the disease severeness of a sample. The features with the T-test
calculated P-values below 0.05 were usually considered to be
statistically significantly associated with the disease severeness
(Govindan et al., 2019; Peng et al., 2019).

Prediction Algorithms
This study evaluated several classification algorithms to
build the prediction models of the severely ill patients with
COVID-19. The predictive logistic regression (LR) model
is a regression analysis for the dataset with the binary
dependent variable, i.e., the class label (Kleinbaum et al.,
2002). LR has been widely used to build clinical decision
models (Luo et al., 2019; Heijnen et al., 2020). A probability
is calculated by LR to describe whether the sample belongs to
a class and a threshold for the probability is usually utilized
to make the predictive decision. LR firstly calculates the
log− odds l = logb

[
p/

(
1− p

)]
= β0 + β1x+ . . .+ βnx, and

the probability p = 1/[1+ β−(β0+β1x+...+βnx)
], where βi is the

model parameter.
Support vector machine (SVM) is a supervised machine

learning algorithm that may accomplish both classification
and regression tasks (Suykens and Vandewalle, 1999).
SVM tries to find a hyperplane to separate data by the
highest margin. The learning strategy of SVM is spacing
maximization, which can be formalized as a problem of
solving convex quadratic programming (Shilton et al.,
2005). This algorithm has been widely used to build
the prediction models using the data of blood test (Li
et al., 2014, 2018) and urine test (Osredkar et al., 2019;
Zhou et al., 2019).

Random forest (RF) is an ensemble algorithm that summarizes
the prediction results of multiple tree-based classifiers (Pal,
2005). RF may improve the model performances and avoid
over-fitting by averaging the results of models trained over
various sub-samples of the dataset. Its model complexity renders
itself computation-intensive and RF runs slower than many
prediction algorithms. RF is another popular algorithm for
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building the prediction models using the clinical data (Zhang
et al., 2018; Wu et al., 2019).

K nearest neighbor (KNN) is an instance-based learning
algorithm and summarizes the prediction based on the
class labels of the query sample’s k nearest neighbors
(Dudani, 1976). KNN simply assigns the query sample with
the class label of its majority nearest neighbors. And its
prediction performance heavily relies on the definition of
the inter-sample distances. Nicholas Schaub et al. (2009)
demonstrated that selecting the best biomarkers may be essential
to improve the KNN models.

The boosting-based algorithm AdaBoost iteratively trained
weak learners and summarized these weak learners’ results into a
weighted sum (Ratsch et al., 2001). Multiple variants of Adaboost
were proposed for recognizing human actions (Lv and Nevatia,
2006), diagnosing the dog hypoadrenocorticism (Reagan et al.,
2019), and predicting protein binding sites (Qiao and Xie,
2019), etc.

The above algorithms are implemented using Python
programming language (version 3.6) and Scikit-learn
package (version 0.22).

Prediction Performance Evaluation
Metrics
The binary classification model was evaluated using four
classification performance metrics, as defined in the followings.
The severely ill patients were regarded as positive samples and
the other patients constituted the negative dataset. The number
of correctly predicted positive samples was defined as true
positive (TP), and the number of the other positive samples was
false negative (FN). The true negative (TN) and the false positive
(FP) were defined as the numbers of correctly and incorrectly
predicted negative samples, respectively. So the overall accuracy
Acc was defined as Acc = (TP+ TN)/(TP+ FN+ TN+ FP).
The model’s sensitivity (Sn) and specificity (Sp) were defined
as Sn = TP/(TP+ FN) and Sp = TN/(TN+ FP). The three
metrics Acc, Sn and Sp measured the percentages of correctly
predicted all, positive and negative samples, respectively.
The Matthew’s Correlation Coefficient (MCC) described
the overall correlation of the predicted and the real class
labels, and MCC was defined as MCC = (TP× TN− TP×
FN)/sqrt [(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)] ,
where sqrt() was the square root function (Khurana et al., 2018;
Cogan et al., 2019).

Each model was randomly trained for twenty runs with
different random seeds and the metric averaged accuracy aAcc =
[Acc (1)+ Acc (2)+ . . .+ Acc (20)] /20, where Acc(i) was the
accuracy of the ith model. The metric aAcc was used to find
the best prediction model. The metrics aSn, aSp and aMCC
were the averaged Sn, averaged Sp, and averaged MCC over the
twenty random runs.

Ethics Statement
This study was approved by the Ethics Commission of the First
Hospital of Jilin University (2020-236). With informed consent
was waived for this emerging infectious disease.

RESULTS

Baseline Characteristics of the
2019-nCoV Pneumonia Participants
This study recruited 137 COVID-19 patients to build the
detection model of severely ill (positive) samples against the
patients with mild symptoms. All the 100 features were screened
for their association with the class label, i.e., Positive or Negative.
There were 8 clinical values, 76 blood test values and 16 urine
test values, respectively. Thirty-two features achieved the T-test
P-value < 0.05, and were kept for further analysis in the following
sections, as summarized in the Supplementary Table S1.

The feature of the patient’s age at diagnosis (Age)
demonstrated a significant difference (P-value = 1.75e-6)
between the two groups of samples, and the severely ill patients
were on average 13.5695 years older than the patients with mild
symptoms. This supported the observation that patients aged
around 65 years old tended to have more severe symptoms than
those aged around 51 years old (Chen et al., 2020). The sex also
demonstrated severe-specific P-value = 7.71e-5, suggesting that
male patients were at higher risks of developing severe symptoms
(Huang et al., 2020), as shown in Figure 1A.

We also summarized three blood test values and three urine
test values with the most significant differences between the two
groups of samples, as shown in Figure 1A. Overall, the blood
test values demonstrated much more significant inter-group
differences than the urine test values. The summary data
suggested that the percentage of neutrophil cells was significantly
enriched in the blood of the severely ill patients, with P-values
4.14e-11. In addition, the serum calcium level and the monocyte
percentage were also significantly lower in the severely ill patients
than those mild ones.

Three urine test values demonstrated weak inter-group
differential significances. The two values “Urine | Urine protein”
and “Urine | Red blood cell (occult)” demonstrated the elevated
levels in the severely ill patients with P-values 1.44e-2 and
2.83e-2, respectively. But their variations were very larger, which
rendered neither of them as good disease severeness biomarkers.
A minor decrease (0.1028) in the urine pH value [feature “Urine
| PH(Urine)”] in the severely ill patients achieved the inter-group
differential significance P-value 4.25e-2.

In the following sections. The detailed summary may be found
in the Supplementary Table S1.

Evaluation of Feature Correlations With
the Group Labels
We firstly evaluated the correlation between the 32 features and
the class label using Pearson Correlation Coefficient (PCC), as
shown in Figure 1B. The PCC value ranges between −1 and 1.
This study focused on the whether a feature was correlated with
the class label. So the absolute value of PCC was calculated in
Figure 1B.

Some features showed strong correlations with the
2019-nCoV pneumonia severeness, which was the class
label. The feature “Blood | Neutrophil percentage” demonstrated
the largest PCC = 0.53 with the disease severeness (class label).
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FIGURE 1 | Baseline summary of the recruited cohort. (A) There were 75 positive and 62 negative samples, respectively. The columns “Positive Std” and “Negative
Std” gave the standard deviations of the specific feature in each sample group. The last column “P-value” gave the T-test P-value of that specific feature between
the two sample groups. A feature name starting with “Blood | ” and “Urine | ” was collected from the blood test and urine test, respectively. (B) The heatmap matrix
of the inter-feature Pearson correlation coefficient (PCC) for all the features and the group value. The values ranged between 0.00 and 1.00, and the color was
linearly rendered according the inter-feature PCC. The feature names starting with “Blood | ” and “Urine | ” were from the blood test and urine test, respectively.

This provided another piece of evidence that the neutrophil
cell percentage was positively correlated with the 2019-nCoV
severeness. Another feature “Blood | Calcium” achieved the
second-best PCC = 0.49. The age at diagnosis (feature Age)
achieved the third-best PCC = 0.40 with the class label,
suggesting that the elder patients were under higher risks of
developing severe symptoms.

Figure 1B suggested that some of the 32 features were highly
correlated with the class label and they may facilitate the training
of a reasonably-accurate detection model for the 2019-nCoV
pneumonia severeness. The existence of high inter-feature
correlations suggested that some redundant features may need to
be removed to further improve the detection model.

Comparison of Different Prediction
Algorithms
Five prediction algorithms were evaluated for their detection
performances using their default parameters on all the 98
features of the 2019-nCoV pneumonia patients, as shown in

Figure 2. Firstly, all the five prediction algorithms achieved
at least 0.7130 in Acc on all the 32 features, suggesting
that the severely ill COVID-19 patients may have severeness-
specific patterns. The prediction algorithm SVM achieved
the best prediction accuracy Acc = 0.7926 and its standard
deviation in Acc was only 0.0715. SVM achieved the sensitivity
Sn = 0.7666 much better than the specificity Sp = 0.6993.
The prediction sensitivity was the detection accuracy of
the positive samples, i.e., the severely ill patients. So the
following sections used the prediction algorithm SVM as
the default predictor and the prediction model was further
refined by optimizing the SVM parameters and selecting
the best features.

Choosing the Best Threshold
A threshold may be tuned to find the balanced model
performances for both positive and negative samples, as shown in
Figure 3. The metric Youden’s index was introduced by Youden
(1950) to catch the best performance of a dichotomous diagnostic
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FIGURE 2 | Performance metrics of five prediction algorithms. The horizontal axis was the four performance metrics, aAcc, aSn, aSp, and aMCC, which were
averaged over the 20 random runs. The vertical axis gave the values of these four metrics. The bar heights and the error bars of these histograms were the averages
and standard deviations of these metrics over the twenty random runs of each algorithm.

model. Youden’s (1950) index assigns equal weights for sensitivity
and specificity and tries to maximize the index value J = (Sn+
Sp− 1). Figure 3 illustrated the changing curves of Sn and Sp

with different thresholds for the prediction scores of the samples.
The maximal value of J was achieved at the threshold 0.7318, and
averaged accuracy of SVM was improved to 0.8148.

FIGURE 3 | Youden index of different SVM thresholds. The three line plots were Sn, Sp, and J, respectively. The horizontal axis was the threshold values sorted in
the descending order. The vertical axis was the value of these three metrics Sn, Sp, and J.
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The Youden’s index was used to find the best threshold of
the SVM models with different parameters and features in the
following sections.

Tuning the Parameters of the SVM Model
The grid search strategy was carried out to evaluate how different
parameter values affected the disease severeness detection model,
as shown in Figure 4. Parameter tuning was a time-consuming
step. So this section randomly split the training dataset into
80% sub-training dataset and 20% validation dataset. Each model
was trained using the sub-training dataset and the performance
was calculated on the validation dataset. The model detection
performance didn’t change with the linear kernel and different
choices of the parameter Gamma, as shown in Figure 4B.

And the best accuracy = 0.8636 of the linear kernel SVM
was achieved when C = 0.1 or 1. The best model with the
RBF kernel achieved Acc = 0.9091 for the validation dataset,
where C = 100 and Gamma = 0.0010. The other three metrics
Sp = 1.0000, Sn = 0.8333, and MCC = 0.8333 were also the best
values in Figure 4. The SVM model with the above-mentioned
parameters achieved Acc = 0.8148 on the independent test
dataset. So the following sections used these two choices of the
parameters C and Gamma.

Remove Redundant Features to Improve
the Model
The existence of strong inter-feature correlations in Figure 1B
suggested that some features may be removed to further

FIGURE 4 | Heatmaps of the SVM parameter tuning. Two kernel functions were evaluated, i.e., (A) RBF and (B) Linear. The SVM parameter C had five value
choices: 0.01, 0.1, 1, 10, and 100. The other parameter Gamma had five value choices: 1, 0.1, 0.01, 0.001 and “scale,” where “scale” was the default value in the
Python library. The four detection performance metrics Acc/Sn/Sp/MCC were used to evaluate the models.
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improve the model. This section carried out a conservative
recursive feature elimination (cRFE) strategy to eliminate the
redundant features while ensuring the model performance was
not decreased. The model performance was evaluated for its
threshold-independent metric AUC value (Deepak and Ameer,
2019; Kourou et al., 2020). Firstly, all the 32 features were
ranked by the ascending order of their T-test P-values. Then,
the detection model was evaluated by eliminating each feature.
A feature was eliminated if the model’s AUC was improved with
its removal. Otherwise that feature was kept. The final feature set
was returned after all the features were evaluated.

The feature selection procedure should avoid using the test
samples, so this section calculated the performance metrics on the
validation dataset using the model trained over the sub-training
dataset, as shown in Figure 5. The heuristic cRFE strategy
ensured by its nature that the model performance would not be
decreased, and the rising line segment indicated the removal of
the feature on the horizontal axis. Four features were removed,
i.e., “Age,” “Blood | Interleukin-10,” “Blood | Prothrombin time,”
and “Blood | Oxygen partial pressure.” Figure 1B illustrated that
all these four features were strongly correlated with some other
features, with the PCC values at least 0.51.

The remaining 28 features achieved Acc = 0.9917 on the
validation dataset, and Acc = 0.8148 on the independent
test dataset. Although the COVID-19 severeness detection
performance was not improved, the model complexity
was reduced and the clinical screening cost was reduced
with fewer features.

A web site was established to help the clinicians to try this
COVID-19 infection severity estimation model, and the users
may access: http://dVirusSeverity.HealthInformaticsLab.org/.

DISCUSSION

The emergence of SARS-CoV-2 marked the third of highly
pathogenic coronavirus in humans in the twenty-first century,

after severe acute respiratory syndrome (SARS) in 2003, and
Middle East respiratory syndrome (MERS) in 2012 (Drosten
et al., 2003; Zaki et al., 2012). SARS-CoV-2 belongs to the
coronavirus family, β-coronavirus genera and belongs to the
cluster of betacoronaviruses (Chen Y. et al., 2020). Based on
Sequence analysis, the amino acid sequences of SARS-CoV-2
showed 94.4% identity with SARS-CoV (Zhou et al., 2020).
It is suggested that SARS-CoV-2 was more closely related to
SARS-like bat CoV. In comparison, SARS-CoV-2 was more
distant from the MERS-CoV (Lu et al., 2020; Wu et al., 2020). The
mortality of critically ill patients with COVID-19 is considerable.
The survival time of the dead patients may be within 1–2 weeks
after ICU admission (Yang X. et al., 2020).

The present diagnosis of COVID-19 didn’t achieve a satisfying
accuracy. Both false positives and false negatives need to be
decreased (Li D. et al., 2020; Li Z. et al., 2020; Yan et al.,
2020). The clinical decisions of COVID-19 infections are usually
confirmed by epidemiological features, clinical manifestations,
imaging factors, and nucleic acid screenings, etc. Some of the
COVID-19 patients may develop severe symptoms and these
patients are at a much higher mortality rate than the other
patients. This challenge raised the scientific question of finding
the COVID-19 severeness specific biomarkers, which may help
reduce the overall mortality.

This study investigated the binary classification problem
between 75 severely illed COVID-19 infected patients and
the other 62 patients with mild symptoms. A comprehensive
optimization procedure led to the best SVM-based COVID-19
severeness detection model using only 28 features. The
experimental data suggested that the severely illed patients had
a higher serum level of neutrophil percentage and lower serum
levels of monocyte percentage and calcium compared with those
mild ones. Urine test contributed three weak group-specific
biomarkers, i.e., urine pH value, urine protein and urine red
blood cell. Compared with the urine pH value, the variations of
urine protein and urine red blood cell were very large and these
two urine features may not serve well as COVID-19 infection

FIGURE 5 | Recursive eliminating the features. The horizontal axis listed the features ranked in the ascending order by their T-test P-values. The vertical axis was the
threshold-independent metric area under the curve (AUC) achieved by the model using the feature set specified by the horizontal axis.
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severeness biomarkers. The blood test features demonstrated
much more significant inter-group differences than the
urine test features. The summary data suggested these three
blood test features as candidate severeness biomarkers,
i.e., serum ferritin, hs-CRP, interleukin-2R, and tumor
necrosis factor-α .

COVID-19 severeness detection model achieved the overall
accuracy 0.8148 on the independent test dataset with only 28
clinical biomarkers. Twenty-one out of these 28 biomarkers
were investigated in the coronavirus. Two serum values
“Blood | Tumor necrosis factor-α” (56 papers) and “Blood
| Sodium” (57 papers) were known to be associated with
the coronavirus infections. The tumor necrosis factor-alpha
(TNF-alpha) was observed to have elevated expression levels
in the serum of the coronavirus-infected mice (Zalinger et al.,
2015). The serum sodium level was slightly increased by 2.01%
in the severely ill patients in the cohort used in this study.
Hoffman et al. (2018) proposed that the pulmonary complication
were more frequently observed in the hypernatremia patients.
So it would be interesting to investigate the underlining
mechanism of how the serum sodium may induce the COVID-19
severeness. The feature “Urine | PH(Urine)” is the pH level
in the urine, and quite a few investigations observed the
aberrant pH levels in the body fluid or fecal matter of the
coronavirus-infected animals (Raabis et al., 2018; Yuan et al.,
2018). Although the urine pH level was not investigated in
the coronavirus-infected animals, this may be worth of an
investigation. The sex bias was also observed that coronavirus
tended to infect males (Habib et al., 2019; Petrarca et al.,
2019). Our data suggested that males were at a higher
risk to be infected by COVID-19 and to develop more
severe symptoms.

An accurate severeness detection model of the patients with
COVID-19 based on those features may improve the prognosis
of this disease in large scale clinical practices, and reduce
the incidence of COVID-19 severeness and mortality. The
biomarkers used for an accurate diagnosis model of patients
with COVID-19 may serve as the drug targets for this global
infectious disease.

There are some limitations that should be noted. First,
the number of patients with COVID-19 is relatively small,
which may limit the accuracy of severeness detection model.
Second, since all subjects in our study were Chinese patients
with COVID-19, the results may not be applied to other
ethnicities. Third, the data of this study is only the preliminary
establishment of COVID-19 severeness detection model. Further
studies are still needed.

This study utilized the machine learning algorithms to
detect the COVID-19 severely ill patients from those with
only mild symptoms. Our experimental data demonstrated
strong correlations with the COVID-19 severeness. And
the final COVID-19 severeness detection model achieved
the accuracy 0.8148 on the independent test dataset using
only 28 clinical biomarkers. The detection model itself
is in urgent need for the current epidemic situation that
the severely ill patients are at a very high mortality rate.
The 28 biomarkers may also be investigated for their

underlining mechanisms of their roles in the COVID-19
severely ill patients.
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