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Abstract: Vitamin E (VE) and β-cyclodextrin (β-CD) can form an inclusion complex; however,
the inclusion rate is low because of the weak interaction between VE and β-CD. The results of
a molecular docking study showed that the oxygen atom in the five-membered ring of octenyl
succinic anhydride (OSA) formed a strong hydrogen bond interaction (1.89 Å) with the hydrogen
atom in the hydroxyl group of C-6. Therefore, β-CD was modified using OSA to produce octenyl
succinic-β-cyclodextrin (OCD). The inclusion complexes were then prepared using OCD with
VE. The properties of the inclusion complex were investigated by Fourier-transform infrared
spectroscopy (FT-IR), 13C CP/MAS NMR, scanning electron microscopy (SEM), and atomic force
microscopy (AFM). The results demonstrated that VE had been embedded into the cavity of OCD.
Furthermore, the emulsifying properties (particle size distribution, ζ-potential, and creaming index)
of the OCD/VE inclusion-complex-stabilized emulsion were compared with that stabilized by β-CD,
OCD, and an OCD/VE physical mixture. The results showed that the introduction of the OS group and
VE could improve the physical stability of the emulsion. In addition, the OCD/VE inclusion complex
showed the strongest ability to protect the oil in the emulsion from oxidation. OCD/VE inclusion
complex was able to improve the physical and oxidative stability of the emulsion, which is of great
significance to the food industry.

Keywords: octenyl succinic β-cyclodextrin; vitamin E; inclusion complex; emulsifying property;
oxidation stability

1. Introduction

Lipid oxidation is one of the major deteriorative chemical changes that can decrease the quality and
safety of products such as milk, cream, coffee whiteners, cream liqueurs, mayonnaise, salad dressings,
cheese, spreads, yoghurts, and infant formula, especially in their emulsified forms [1–3]. Because of
the larger contact surface area between oil droplets and oxidants (oxygen, free radicals, and chelating
metals), the lipid in the emulsion is much more susceptible to oxidative deterioration than bulk
oil [4]. In order to solve this problem, antioxidants (α-tocopherol, ascorbyl palmitate, carnosol, Trolox,
and rosmarinic acid) are directly added to the decentralized food system [3]. On the basis of the
polarity, the antioxidants are dispersed evenly in the oil droplets or the continuous phase; however,
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the very starting point of the oxidation process is the oil–water interface [5]. In other words, a sufficient
amount of the antioxidant is needed at the oil–water interface to prevent oxidative species (oxygen,
free radicals, transition metals, and lipolytic enzymes) contacting the oil.

An emulsion is a thermodynamically unstable system because of the positive free energy needed
to increase the surface area between the oil and water phases. To form a kinetically stable emulsion,
emulsifiers must be added before homogenization. Surface-active emulsifiers can adsorb to the
oil–water interface, forming a protective membrane which, although its thickness is only a few
nanometers, plays important roles in enhancing the physical stability of emulsion droplets and
delaying lipid oxidation processes by acting as a barrier to the penetration and diffusion of oxidizing
agents [6]. Therefore, lipid oxidation may be controlled by adjusting the properties of the membranes by
altering their surface activity, charge, and strength. In addition, increasing the antioxidant capacity of
the emulsifier by chemical modification or physical adsorption can also improve the oxidative stability
of emulsions. Many emulsifier molecules (e.g., Tweens, pectin, and metalloproteins) contain sugar or
amino acid moieties that may also act as free-radical scavengers. In our previous study, hydrophobic
ferulic acid was introduced to the pectin molecular via an enzymic catalytic reaction, and the surface
activity and the antioxidant ability of the reaction product were enhanced [3]. In addition, the surface
charge of emulsion droplets plays an important role in their oxidative stability. Transition metals,
especially iron, are basic components in food systems, and they can catalyze the oxidation of dispersed
lipids at the oil–water interface [7,8].

Octenyl succinic anhydride (OSA) is permitted for food applications as an additive to the maximum
addition level of 3%. Esterification of starch with OSA provides hydrophobic domains (-CH2-CH2-)
and charges (COO−), enhancing the emulsifying ability of starch [9]. OSA has also been introduced to
pectin [10], hyaluronic acid [11], gum arabic [12], and konjac glucomannan [13]; the surface activity of
the OSA-modified polysaccharides is improved. In addition, OSA-β-cyclodextrin was prepared in our
previous study and the emulsion stabilized by OSA-β-cyclodextrin was more stable than that stabilized
by native β-cyclodextrin [14]. Interestingly, the substitution of OSA influenced the loading capacity
and release rate of active small molecule substances such as β-carotene [15]. VE is usually used in oil
as a natural antioxidant and diet supplement for protecting against aging [16], coronary disease [17],
and cancer [18]. According to the molecular docking results, the interactions (e.g., hydrogen bonds and
hydrophobic interactions) between VE and β-cyclodextrin were very weak. VE has been successfully
loaded into nanoparticles of modified β-cyclodextrin [19].

Therefore, in the present study, an OSA-modified β-cyclodextrin/VE (OCD/VE) inclusion complex
was prepared and characterized by Fourier-transform infrared spectroscopy (FT-IR), 13C CP/MAS
NMR, scanning electron microscopy (SEM), X-ray diffraction (XRD) and atomic force microscopy
(AFM). In addition, the physical and oxidative stability of the emulsions were evaluated via zeta
potential, particle size distribution, and 2-thiobarbituric acid reactive substance (TBARS). This study
may provide a potential new dual-function stabilizer to be applied to emulsions.

2. Results and Discussion

2.1. Molecular Simulation and Single-Factor Analysis

The interaction poses and conformational characteristics between VE and β-CD were explored
via molecular docking. As shown in Figure 1A, the hydrophobic tail of VE embedded in the wide
hydrophobic cavity of β-CD, while, the benzene ring head of VE was exposed outside the cavity.
The 20 configurations with the lowest binding energies among all the docking results of β-CD and VE
were selected. The lowest binding energy of β-CD and vitamin E was −5.58 kcal/mol, which was the
most stable configuration in the docking results of β-CD and VE. The six-membered epoxy ring in the
VE molecule was located in the cavity of β-CD, the benzene ring was at the large end of β-CD, and the
hydrophobic carbon chain was at the small end of β-CD. The molecular docking results showed that
there was no hydrogen bond or hydrophobic interaction between β-CD and VE molecules, but there
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was a weak van der Waals force. In addition, the lowest binding energy of all docking results for OSA
and VE was −2.0 kcal/mol. The molecular docking between OSA and VE suggested that the oxygen
atom in the five-membered ring of OSA formed a strong hydrogen bond interaction (1.89 Å) with the
hydrogen atom in the hydroxyl group of C-6. a van der Waals force also existed between OSA and
VE (Figure 1B). This result was in line with the study of Xi et al. [19]. Therefore, OSA groups were
introduced to β-CD to achieve a relatively higher embedding rate of VE. In the single-factor study,
the reaction temperature (◦C), OCD/VE (w/w) ratio and reaction time (min) were investigated.
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complex could be broken up, and VE released free into the system once more, upon stirring for a long 
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Figure 1. Molecular docking of β-cyclodextrin (β-CD) vs. vitamin E (VE) (A) and octenyl succinic
anhydride (OSA) vs. VE (B).

The inclusion rate and content of VE increased with the increase of the reaction temperature
from 35 to 45 ◦C, and decreased after the temperature was raised above 45 ◦C (Figure 2A). As the
temperature increased, the solubility of OCD increased. Heating caused the molecules to move faster,
which contributed to the formation of the inclusion complex. However, the process of inclusion
complex formation was an exothermic process. When the temperature was too high, the VE molecules
were able to break loose from the cavity of OCD. The OCD/VE ratio could affect the inclusion
rate significantly as well. To study the effect of different OCD/VE ratios on the inclusion rate and
content of VE, six OCD/VE ratio points (30:1, 25:1, 20:1, 16:1, 12:1, 10:1) were employed (Figure 2B).
It was found that when the OCD/VE ratio decreased from 30: 1 to 12: 1, the content of VE and the
inclusion rate increased significantly, while it reduced sharply when the OCD/VE ratio was lower than
12:1. The chances that OCD would come into contact with VE increased with the increase in OCD
concentration. Thus, inclusion rate and content of VE increased correspondingly. After the whole
system reached a state of dynamic equilibrium, the continuous addition of OCD was not conductive to
the inclusion. Reaction time also affected the inclusion rate significantly. Increasing the reaction time
beyond 5 h resulted in a decrease in inclusion rate and content of VE. The inclusion complex could be
broken up, and VE released free into the system once more, upon stirring for a long time (Figure 2C).
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Figure 2. Effects of reaction temperature (A), octenyl succinic-β-cyclodextrin (OCD)/VE ratio (B), and 
reaction time (C) on the inclusion rate and content of VE. 

2.2. SEM Analysis 

The surface morphology of the powders derived from β-CD, OCD, OCD and VE physical 
mixture, and OCD/VE inclusion complex was assessed by SEM. As shown in Figure 3, β-CD existed 
in a needle-like crystal, which was rectangular-shaped with tiny fractures appearing at the surface. 
Meanwhile, OCD was observed as sheet-like aggregate and the surface was seamless. On the other 
hand, the physical mixture presented a similar morphology to OCD. The OCD/VE inclusion complex 
appeared in the form of an irregular dense block, with distinct edges and corners in which the original 
morphology of OCD disappeared and multilayered aggregates of pieces were present. Similar results 
have been previously reported, namely that the changes in the surface morphology of the crystal 
provide strong evidence of the formation of the inclusion complex [20,21]. 

Figure 2. Effects of reaction temperature (A), octenyl succinic-β-cyclodextrin (OCD)/VE ratio (B),
and reaction time (C) on the inclusion rate and content of VE.

2.2. SEM Analysis

The surface morphology of the powders derived from β-CD, OCD, OCD and VE physical
mixture, and OCD/VE inclusion complex was assessed by SEM. As shown in Figure 3, β-CD existed
in a needle-like crystal, which was rectangular-shaped with tiny fractures appearing at the surface.
Meanwhile, OCD was observed as sheet-like aggregate and the surface was seamless. On the other
hand, the physical mixture presented a similar morphology to OCD. The OCD/VE inclusion complex
appeared in the form of an irregular dense block, with distinct edges and corners in which the original
morphology of OCD disappeared and multilayered aggregates of pieces were present. Similar results
have been previously reported, namely that the changes in the surface morphology of the crystal
provide strong evidence of the formation of the inclusion complex [20,21].
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Figure 3. Scanning electron microscopy (SEM) images of β-CD (A,E), OCD (B,F), OCD and VE physical
mixture (C,G), and OCD/VE inclusion complex (D,H). The magnification in panels (A–D) is 5000× and
in panels (E–H) is 50,000×.
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2.3. AFM Analysis

AFM scans the surface of samples with a nanoscale probe to produce accurate topographic
images. Therefore, AFM is suitable for observing nanometer-scale surface roughness and observing
the surface texture of deposited films, especially when the surface feature size is much smaller than
3 µm [22,23]. Both 2D and 3D AFM images of β-CD, OCD, OCD and VE physical mixture, and OCD/VE
inclusion complex are shown in Figure 4. After modification with OSA, the particles of β-cyclodextrin
were slightly aggregated. Compared with OCD, the surface morphology of the OCD/VE inclusion
complex, in which particles were randomly distributed in the field of vision did not change significantly.
However, large aggregates appeared in the OCD and VE physical mixture, which showed a square
crystal shape. The changes in the surface topography and crystal structure provided strong evidence of
the formation of the OCD/VE inclusion complex [24,25]. The average roughness values for β-CD, OCD,
OCD and VE physical mixture, and OCD/VE inclusion complex were 25.38, 19.89, 74.03, and 19.48,
respectively. The inclusion compound had a lower surface roughness. It was further confirmed that
VE was encapsulated in OCD.
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Figure 4. 2D and 3D atomic force microscopy (AFM) images (5 µm × 5 µm) of β-CD (A,A’), OCD (B,B’),
OCD/VE inclusion complex (C,C’), and OCD and vitamin E physical mixture (D,D’).

2.4. FT-IR Analysis

The FT-IR spectra of β-CD, OCD, OCD and VE physical mixture, and OCD/VE inclusion complex
are shown in Figure 5. The wavelength from 950 to 1200 cm−1 is a fingerprint of carbohydrates,
because it recognizes the functional groups of carbohydrates [26]. As shown in the fingerprint region,
the discernible absorption peaks at 1155, 1082, and 1032 cm−1 were characteristic of the anhydroglucose
ring C-O stretching vibration, and the peak at 941 cm−1 was attributed to the skeletal mode vibration
of the α-(1→4) glycosidic linkage [27]. The extremely broad band at 3415 cm−1 was attributed to the
stretching vibration of hydroxyl (O-H) groups, and the band at 2924 cm−1 was characteristic of the
C-H stretching vibration [28]. The absorption peak at 1639 cm−1 was the bending vibration peak of
water molecules in the β-cyclodextrin cavity [29].
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Figure 5. Fourier-transform infrared spectroscopy (FT-IR) spectra of β-CD (a), OCD (b), OCD and VE 
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Figure 5. Fourier-transform infrared spectroscopy (FT-IR) spectra of β-CD (a), OCD (b), OCD and VE
physical mixture (c), and OCD/VE inclusion complex (d).

Compared with β-CD, two new absorption peaks at 1722 and 1569 cm−1 were observed in OCD,
which were attributed to the stretching vibration of the newly formed ester bond and the asymmetric
stretching vibration of the carboxyl group, respectively [14]. The FT-IR spectrum of the OCD and VE
physical mixture was extremely similar to that of OCD, indicating that the skeleton structure of OCD
had not changed in the physical mixture [30]. However, for the OCD/VE inclusion complex, it was
clear that the O-H stretching vibration peak of OCD had shifted from 3415 to 3380 cm−1, indicating that
the conformation of OCD had changed. All the characteristic absorption peaks of VE were obviously
weakened, suggesting that VE was already entrapped in the cavity of OCD.

2.5. XRD Analysis

XRD is a reliable technique for studying the crystal structure of cyclodextrin and the inclusion
complexes of cyclodextrins and guest molecules [31]. The XRD patterns of β-CD, OCD, the physical
mixture of OCD and VE, and OCD/VE inclusion complex are shown in Figure 6. Previous studies
have shown that cyclodextrin and its inclusion complexes have three crystal structures: cage-type,
channel-type, and layer-type [32]. It can be seen from the XRD patterns that β-CD exhibits characteristic
diffraction angles (2θ) at 11.2◦, 12.8◦, 13.4◦, and 18.1◦, indicating that β-CD exhibits a typical cage-type
structure. However, these characteristic diffraction angles (2θ) disappeared in the XRD pattern of OCD,
and the characteristic diffraction angles (2θ) of OCD appeared at 10.4◦, 12.2◦, and 19.3◦, indicating that
the introduction of the OSA groups changed the crystal structure of β-CD. The physical mixture
exhibited characteristic diffraction angles (2θ) similar to that of OCD. In contrast, compared with
OCD and the physical mixture, the OCD/VE inclusion complex exhibited a different XRD pattern
with characteristic diffraction angles (2θ) at 10.7◦, 11.7◦, 12.6◦, and 17.8◦, indicating that the inclusion
complex formed a special channel-type structure [33,34].
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2.6. 13C CP/MAS NMR Analysis

The molecular structures of β-CD, OCD, OCD and VE physical mixture, and OCD/VE inclusion
complex were further characterized by 13C CP/MAS NMR spectra (Figure 7). The peaks of the carbon
atoms in the glucopyranose molecule were assigned as follows: C-a (102.49 ppm), C-b, C-c, and C-e
(71.37 ppm), C-d (81.20 ppm), and C-f (60.07 ppm) [35]. It is well known that the formation of an
inclusion complex can alter the conformation and electromagnetic environment of host and guest
molecules, which can be recorded in their 13C CP/MAS NMR spectra [36]. As shown in Figure 7,
the carbon atoms in the C-d and C-f positions of the β-cyclodextrin molecules showed split signal peaks,
which was attributed to the fact that the carbon atoms for all the C-a ~ f positions of the β-cyclodextrin
molecules were in a state of mutual resonance, indicating that the β-cyclodextrin molecules were in
an asymmetric crystalline state [37]. These resonance signals changed upon the introduction of OSA
groups which altered the chemical environment of the carbon atoms of the β-cyclodextrin molecules.
In addition, these split signal peaks in the physical mixture disappeared and a new resonance peak
appeared at 25.16 ppm, due to the signal peaks at C-6′, C-10′, and C-12′a-CH3 positions of the VE
molecules [38]. The carbon atoms in the inclusion complex exhibited a chemical environment similar
to that of the OCD molecules. Moreover, the signal peaks of the carbon atoms in the physical mixture
showed sharp singlets. All of these results indicated that the cyclodextrin molecules exhibited a more
symmetrical conformation after the formation of the inclusion complex.
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2.7. Emulsions Physical Stabilities

The physical stability of the emulsions prepared with β-CD and its derivative were evaluated
by particle size distribution (Figure 8A), ζ-potential (Figure 8B), and creaming index (CI, Figure 8C).
As shown in Figure 8A, all the particle diameter distributions were measured within 10 µm, which
was in the range of distribution previously reported by other studies. However, the droplet size of the
β-CD-stabilized emulsion was significantly higher than that of those stabilized by OCD, which was
due to the introduction of OSA groups enhancing the surface activity of β-CD. In addition, the smaller
droplet size and lower peak width of the β-CD/VE and OCD/VE showed that the introduction of VE
was beneficial to the stability of the emulsion. The ζ-potential is an important index used to evaluate
the physical stability of a dispersion system. It is an important characteristic parameter that is able to
indicate the interaction between charged emulsion droplets. According to the electric double layer
theory in an oil-in-water emulsion, the electrophoretic velocity of the dispersed phase was obtained
to calculate the ζ-potential. As shown in Figure 8B, the ζ-potential decreased from −37.43 ± 1.86 to
−40.67 ± 1.12 mV when β-CD was modified with OSA. This result was due to the carboxyl group on
the OS group, which increased the electrostatic repulsive force between emulsion droplet particles.
The creaming index (CI) is another method used to evaluate the stability of emulsions. As shown in
Figure 8C, all the fresh emulsions were stable; however, they presented different CI values after storage
for 7 days. The introduction of the OS group and VE could increase the amount of adsorbed particles
on the emulsion droplets and the thicker interfacial film was a physical barrier, effectively preventing
the oil droplets from coalescing.
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Figure 8. Particle size distribution (A), ζ-potential (B), and creaming index (C) of the emulsions stabilized
by β-CD, OCD, β-CD/VE inclusion complex, and OCD/VE inclusion complex. Phase separation profiles
of emulsions (C) after 0 days (left) and 7 days (right) of storage at 25 ◦C.

2.8. Oxidative Stability in Oil-in-Water Emulsions

All the emulsions were incubated at 50 ◦C for 0 and 30 days, with the goal of determining
differences in lipid oxidation among the emulsions. As shown in Figure 9, all the emulsions had
similar TBARS values of about 0.12 mmol/kg oil at beginning (0 day). The TBARS values of all
samples increased obviously after storage for 30 days. For the emulsion stabilized by OCD without the
antioxidant (VE), the TBARS value was as high as 1.47 ± 0.03 mmol/kg oil. However, the emulsion
stabilized by β-CD showed a lower TBARS value (1.38 ± 0.02 mmol/kg oil) when compared with the
OCD-stabilized one. This result was due to the smaller oil droplets in the OCD-stabilized emulsion,
which were much more susceptible to oxidative deterioration than those in the emulsion with β-CD.
The physical addition of VE could restrain the increase of TBARS value, as shown in the physical
mixture of OCD and VE-stabilized emulsion (1.09 ± 0.05 mmol/kg oil). Among the four samples,
the OCD/VE inclusion complex showed the strongest ability to protect the oil in the emulsion from
oxidation. It was indicated that the inclusion complex particles had the ability to protect the oil droplets
and reduced the content of lipid oxidation in the emulsion. In general, small oil droplets in emulsions
are much more susceptible to oxidative deterioration than bulk oil because of the large contact surface
area between oxidizable fatty acids and oxidants [3]. The oil–water interface was the region where the
co-oxidant was the most concentrated in the emulsion system. Therefore, lipid oxidation occurred
correspondingly at the oil–water interface. In the emulsion stabilized by the OCD/VE inclusion
complex, the lipid oxidation product content was the lowest among the four samples. This may
have been due to the particles forming an interfacial film on the outer surface of the oil droplets,
which prevented contact between the lipid hydroperoxide and the oxygen donor. On the other hand,
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the natural antioxidant (VE) presented in the clathrate particles released slowly to give longer-term
protection for the emulsion.
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3. Materials and Methods

3.1. Materials

β-CD was purchased from Shanghai Yuanye Bio-Technology Co., Ltd. (Shanghai, China) and dried
in a vacuum for 24 h. The 2-octen-1-ylsuccinic anhydride (OSA) was purchased from Sigma-Aldrich
Chemical Co. (Milwaukee, WI, USA). VE (purity > 97%) was purchased from Aladdin Industrial Inc.
(Shanghai, China). Other reagents and chemicals were of analytical reagent grade.

3.2. Molecular Docking

The crystal structures of β-CD, OSA (PubChem CID: 5362689), and VE (PubChem CID: 86472)
were obtained from the RCSB Protein Data Bank (PDB 200 ID: 3CGT) and PubChem database.
Molecular docking (β-CD vs. VE, OSA vs. VE) was performed using AutoDock Tools 4.2 software
(Scripps Research Institute, La Jolla, CA, USA). The receptor remained rigid, and the ligand remained
flexible. The autogrid box parameter was set to 60 Å × 60 Å × 60 Å, and the grid spacing parameter
was 0.375 Å. The calculation was performed using the Lamarckian genetic algorithm (LGA), and other
parameters were set to default values [39]. The docking results were analyzed using PyMOL 1.8.x
(DeLano Scientific LLC, Palo Alto, CA, USA) and Discovery Studio platform (version 4.5.0, Biovea Inc,
Omaha, NE, USA).

3.3. Preparation of OCD/VE Inclusion Complex

OCD was prepared under optimized alkaline conditions by esterifying β-CD with OSA,
according to our previous method [14]. Briefly, the pH of the β-CD suspension (10%, w/w) was
adjusted to 8.5 with NaOH solution (3%, w/v), and the temperature was controlled at 50 ± 1 ◦C. OSA
(3%, based on the β-CD dry weight) was added slowly and the reaction was completed when the pH
reached a constant value. After the completion of the reaction, the solution was neutralized to pH 6.5
with 3% HCl and freeze-dried. The OCD was obtained by washing the freeze-dried power samples
using hexane/isopropanol (3:1 v/v) five times. OCD (3 g, dry weight) was dissolved in Milli-Q water
(10%, w/w) and stirred for 1 h until the OCD dissolved completely. a certain mass ratio of VE (OCD: VE
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= 30: 1, 25: 1, 20: 1, 16: 1, 12: 1, 10: 1) was dissolved in isopropyl alcohol and added dropwise to the
OCD solution. The inclusion complexes were obtained by stirring the mixture at a certain temperature
(35, 40, 45, 50, 55, or 60 ◦C) for a certain time (2, 3, 4, 5, 6, or 7 h), and were then stored at 4 ◦C for 12 h
under a sealed nitrogen atmosphere. Subsequently, the mixture solution was evaporated to remove
the isopropyl alcohol and then freeze-dried. The dried powder samples were washed with isopropyl
alcohol to remove the residual VE. The absorbance of the supernatant was measured with a UV-vis
spectrophotometer (TU 1810 SPC) at 292 nm. The VE content was calculated using a standard curve.
The inclusion rates (X, %) of VE were calculated using the following equation:

X = (B−C×N×V)/B× 100% (1)

where B (mg) is the total mass of added VE, C (mg/mL) is the VE concentration of the washing liquid
(after being diluted) determined from the VE standard curve, N is the dilution ratio of the washing
liquid, and V (mL) is the total volume of the washing liquid.

3.4. Scanning Electron Microscopy (SEM)

The morphology of β-CD, OCD, OCD/VE inclusion complex, and the physical mixture of OCD
and VE were assessed using scanning electron microscopy (Quanta 250, FEI Co., Hillsboro, OR, USA).
Prior to examination, samples were prepared by mounting about 0.5 mg of powder onto a 5 × 5 mm
silicon wafer affixed via graphite tape to an aluminum stub. The powder was then sputter-coated for
40 s at a beam current of 38–42 mA with a 200 layer of gold/palladium alloy. An accelerating potential
of 50.0 kV and an Everhart-Thornley detector (ETD) detector was used.

3.5. Atomic Force Microscopy (AFM)

Ten microliters of solution of β-CD, OCD, OCD/VE inclusion complex, or the physical mixture
of OCD and VE (10 µg/mL) was deposited on the surface of a cut mica plate, dried in a desiccator,
and captured in tap mode. The AFM image of the sample was captured using an atomic force
microscope (EKYS-121, Veeco, Santa Barbara, CA, USA). The resonance frequency was set at 300 kHz
and the force constant was 40 N/m.

3.6. Fourier-Transform Infrared Spectroscopy (FT-IR)

The dried powders were blended with potassium bromide, pressed into tablets, and examined
using a Fourier-transform infrared spectrometer (FTIR) (TENSOR27, Bruker, Germany) equipped
with a deuterated triglycine sulfate detector (DTGS) in the range of 4000~500 cm−1 at a resolution of
4 cm−1 [40].

3.7. X-Ray Diffraction (XRD)

X-ray diffraction spectra were recorded on a D8 advance powder XRD diffractometer
(Bruker, Germany) with a copper target X-ray tube set at 40 kV. The measurement angle 2θ range was
5◦ to 50◦, the scan step length was 0.04 degrees, and the scan speed was a 38.4 s/step. The powder
samples were placed in a rectangular aluminum cell and measured at ambient temperature.

3.8. 13C CP/MAS NMR

Lyophilized powder samples were packed into 4 mm zirconia rotors and then measured directly
using a 13 C CP/MAS NMR spectrometer (Avance 400 MHz, Bruker, Germany). The field strength was
9.40 T, the speed was 15 kHz, the pulse width was 90◦, the cross-polarization time was 4 µs, the contact
time was 2 ms, and the sampling time was 34 ms. The sampling interval was 2 s, the number of scans
was 1024, and the spectral width was 300 ppm [10].
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3.9. Emulsion Preparation

β-CD, OCD, OCD/VE inclusion complex, and β-CD/VE inclusion complex (1.5 g, dry weight)
were suspended in Milli-Q water (88.5 g) with stirring at room temperature for 24 h to obtain a solution.
The solutions (90 g) were then mixed with camellia oil to achieve a final mass of 100 g. The fine
emulsion was pre-homogenized using an Ultra-Turrax device (T18 basic, IKA, Staufen, Germany) at
24,000 rpm for 3 min, and then homogenized through an ultra-high-pressure homogenizer (Nano
DeBEE, BEE International Inc., South Easton, MA, USA) operated at 30 MPa. After homogenization,
sodium azide (0.01%, w/w) was added to the emulsions to inhibit the growth of microorganisms.

3.10. ζ-Potential Measurements

The ζ-potential was measured via a phase analysis light-scattering technique using a Malvern
Zetasizer (Nano ZS90, Malvern Instruments, Worcestershire, UK). Emulsion samples were diluted
1000-fold with Milli-Q water prior to measurement to avoid any multiple scattering effect. The diluted
emulsions were mixed thoroughly and then injected into the sample cell, in which the temperature
was maintained at 25 ◦C. The ζ-potential of each sample was calculated from the average of triplicate
measurements on the diluted emulsion.

3.11. Particle Size Distribution Measurements

According to the method reported by Li, Fang, Al-Assaf, Phillips, and Jiang [41], a Malvern
Mastersizer 2000 (Zetasizer Nano-ZS, Malvern Instruments, Worcestershire, UK) was used to
determinate the particle size distribution of the emulsion. Briefly, a few drops of the emulsion
samples were dispensed in the water in the measuring cell of the instrument with stirring at 2000 rpm
until the obscuration degree was approximately 15%, and the refractive indices of camellia oil and
water were set to 1.47 and 1.33, respectively.

3.12. Creaming Stability Measurement

A 15 mL of the freshly prepared emulsion was injected into the vial and stored at room temperature
for 1 week to observe the stratification of the emulsion. The creaming index (CI, %) was calculated as
follows:

CI = (Height of the serum layer/Total height of the emulsion) × 100% (2)

3.13. Emulsion Oxidative Stability

The degree of lipid oxidation was assessed via 2-thiobarbituric acid reactive substances (TBARSs).
The emulsions were placed in tightly sealed screw-cap test tubes and incubated at 50 ◦C in the dark
for up to 30 days to allow lipid autoxidation. TBARSs were tested according to the method reported
by Mei, Decker, and McClements [7] and were calculated from the standard curve prepared using
1,1,3,3-tetraethoxypropane. Briefly, a TBA solution was prepared by mixing 15 g of trichloroacetic acid,
0.375 g of TBA, 1.76 mL of HCl (12 N), and 82.9 mL of H2O. TBA solution (100 µL) was mixed with
3 mL of 2% butylated hydroxytoluene in ethanol, and 2 mL of this solution was mixed with 0.3 mL
of the emulsion and 0.7 mL of H2O. The mixture was then heated in a boiling water bath for 15 min,
cooled to room temperature using tap water, and centrifuged at 2000 g for 15 min. The absorbance was
measured at 532 nm.

3.14. Statistical Analysis

All tests were performed in triplicate. Analysis of variance was performed, and results were
evaluated using the Tukey–Kramer multiple comparison test (p < 0.05) using the SPSS 17.0 statistical
software (SPSS Inc., Chicago, IL, USA). Origin (Origin Lab Co., Pro.8.0, Northampton, MA, USA)
software was used for data processing and to create charts.
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4. Conclusions

In this study, β-CD was modified with OSA and the esterification product (OCD) was used to
prepare an OCD/VE inclusion complex. In addition, the structure of the OCD/VE inclusion complex was
characterized using FT-IR, XRD, 13C CP/MAS NMR, AFM/SEM, and molecular docking. The results of
the FT-IR analysis suggested that VE was entrapped into the cavity of OCD. Compared with OCD and
the physical mixture, the OCD/VE inclusion complex exhibited a special channel-type XRD pattern
with characteristic diffraction angles (2θ) at 10.7◦, 11.7◦, 12.6◦, and 17.8◦. The physical stability of the
emulsions stabilized with OCD and its physical mixture and inclusion complex were evaluated by
particle size distribution, ζ-potential, and CI. Due to the introduction of OSA groups, the droplet size of
the β-CD-stabilized emulsion was significantly higher than that of those stabilized by OCD. In addition,
the smaller droplet size and lower peak width of the OCD/VE showed that the introduction of VE was
also beneficial to the stability of the emulsion. Among all the samples, the OCD/VE inclusion complex
showed the strongest ability to protect the oil droplets and reduced the content of lipid oxidation in
the emulsion.
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