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Evolved interactions stabilize many coexisting phases in
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Phase separation has emerged as an essential concept for the spatial organization
inside biological cells. However, despite the clear relevance to virtually all physiological
functions, we understand surprisingly little about what phases form in a system of many
interacting components, like in cells. Here we introduce a numerical method based on
physical relaxation dynamics to study the coexisting phases in such systems. We use our
approach to optimize interactions between components, similar to how evolution might
have optimized the interactions of proteins. These evolved interactions robustly lead to
a defined number of phases, despite substantial uncertainties in the initial composition,
while random or designed interactions perform much worse. Moreover, the optimized
interactions are robust to perturbations, and they allow fast adaption to new target
phase counts. We thus show that genetically encoded interactions of proteins provide
versatile control of phase behavior. The phases forming in our system are also a concrete
example of a robust emergent property that does not rely on fine-tuning the parameters
of individual constituents.
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Biological cells are incredibly complex and consist of thousands of different biomolecules
that move and react rapidly. Yet, cells display robust behavior, partly because they
separate molecules into distinct compartments. One important class of compartments
is biomolecular condensates, which have now been identified in eukaryotes (1–3),
prokaryotes (4–6), and plants (7, 8). In all systems, multiple different condensates
coexist, and some condensates, like the nucleolus (9) and nuclear speckles (10), even
possess subcompartments. The collective organization of biomolecules into condensates
is explained by phase separation (11), which is a physical mechanism where a gain in
enthalpic interactions offsets the entropy loss when molecules are confined. Since all
proteins interact weakly by various mechanisms (12), phase separation is widely expected
in the proteome (13) and transcriptome (14). However, it is still mysterious how cells
regulate phase separation.

Biomolecular condensates need to form robustly, despite internal and external uncer-
tainties that cells cannot control. Having the right condensates, in the right situation,
at the right time is crucial since condensates participate in almost all cellular processes
(15), they affect the fitness of prokaryotes (16), and malfunctioning is implicated in many
diseases (17). It is particularly mysterious how cells reliably form many different kinds of
condensates in a common cytosol, despite copy number fluctuations of all components.
Are the interactions between components tuned such that the right condensates form
reliably? It is conceivable that multiple driving forces of phase separation (12) have been
adjusted over evolutionary time scales. Indeed, theoretical studies (18, 19), numerical sim-
ulations (20, 21), and in vitro experiments (22, 23) demonstrated that small modifications
of the sequence of a protein can have profound impact on its phase separation behavior.
However, it is not clear whether these results on single components can be transferred to
multicomponent mixtures.

While the theoretical basis of phase separation is well understood in binary mixtures
(11, 24–26), even predicting equilibrium states is challenging in multicomponent mix-
tures. This is due to enormous variability in heterotypic interactions, which leads to
complex phase diagrams (27). We can now construct complete phase diagrams for up
to five components (28) and predict the associated phase morphology (29). This showed
that the number of coexisting phases typically depends on the overall composition of the
system, but it is unclear how this phase count depends on the component count and
the specific interaction matrix. Answering this question is critical since typical biological
condensates consist of many components (27, 30–32), and the scaffold-client picture (33),
where a single scaffold component dominates the phase behavior, might not always apply
(34). State-of-the-art numerical techniques can simulate spatially resolved compositions of
up to 16 components (35, 36), but these techniques are often too costly to truly explore the
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space of possible interactions. The formation of many different
phases can be studied elegantly when molecules are provided
by reservoirs (37–39), but phase coexistence cannot be directly
examined with this method. Instead, random matrix theory has
been used to unveil parameter regimes of multicomponent fluids
that lead to many coexisting phases (36, 40–43). However, it is
unclear how well random interactions capture real proteins, which
have evolved for millions of generations. In fact, it is unclear what
properties of interacting proteins need to be conserved during
evolution for robust phase separation behavior.

Results

We here present an approach to analyze multiphase equilibrium
states of multicomponent liquids that is based on relaxation
dynamics. We then use this model to investigate how components
need to interact such that a given number of phases form reliably.

A Simplified Physical Model Reveals Equilibrium States. We
consider an isothermal, incompressible liquid composed of N
different components and an inert solvent. In equilibrium,
such a system can in principle form N + 1 liquid phases (44),
which are homogeneous regions with distinct composition.
However, in typical realistic systems, fewer phases form since
some components might be miscible. To reveal how the number
of phases formed depends on the interactions of the components,
we consider the general case of M coexisting phases with volumes
V (n) for n = 1, . . . ,M . Since phases are homogeneous, their
composition is fully described by the particle counts N

(n)
i for

each component i = 1, . . . ,N or the associated volume fractions
φ
(n)
i = νN

(n)
i /V (n), where we consider equal molecular

volumes ν for simplicity. Note that the fraction of the inert
solvent, φ(n)

0 = 1−
∑N

i=1 φ
(n)
i , is not an independent variable.

Multiple phases can coexist when the associated free energy
F =

∑M
n=1 V

(n)f ({φ(n)
i }) is minimal, where f is the free energy

density that depends on the local composition. We here consider
regular solution theory (45),

f ({φi}) =
kBT

ν

[
φ0 ln(φ0) +

N∑
i=1

φi ln(φi) +

N∑
i,j=1

χij

2
φiφj

]
,

[1]
where kBT is the thermal energy scale and the first two terms
capture the entropic contributions of the solvent and all other
components, respectively. Conversely, the last term quantifies the
enthalpic interaction between all components. The elements of
the interaction matrix χij can, for instance, be derived from the
interaction energies wij between components i and j on a lat-
tice, χij = z (2wij − wii − wjj )/(2kBT ), where z is the lattice
coordination number (28, 46). This implies that the diagonal
entries vanish, χii = 0, while the off-diagonal entries capture the
relevant balance between heterotypic and homotypic interactions
(Fig. 1A). Note that effective repulsion (χij > 0) can originate
not only from heterotypic repulsion (wij > 0) but also from
homotypic attraction that outweighs the heterotypic interaction
(wii + wjj < 2wij ).

The multicomponent liquid reaches equilibrium when F is
minimal, implying that the chemical potentials μi = ν∂f /∂φi

and the pressures P =
∑

i φi∂f /∂φi − f are equal between all
phases (26). We express these quantities in nondimensional form,
μ̂i = μi/kBT and P̂ = Pν/kBT , for each phase n,

μ̂
(n)
i = ln(φ(n)

i )− ln(φ(n)
0 ) +

N∑
j=1

χijφ
(n)
j [2a]

P̂ (n) =− ln(φ(n)
0 ) +

N∑
i,j=1

χij

2
φ
(n)
i φ

(n)
j . [2b]

The equilibrium conditions for the system then read

μ̂
(1)
i = μ̂

(2)
i = · · ·= μ̂

(M )
i and [3a]

P̂ (1) = P̂ (2) = · · ·= P̂ (M ), [3b]

for i = 1, . . . ,N , which are (M − 1)N and M − 1 nonlinear
equations, respectively. Additionally, there are N equations for
the conservation of particles,

∑
n N

(n)
i = const, and an equation

for volume conservation,
∑

n V (n) = const. Taken together,
these equations can in principle be solved for the M volumes
V (n) and NM particle counts N (n)

i , although this is generally
challenging (28).

The equilibrium conditions [3a] and [3b] describe the local
coexistence of phases of potentially different composition φ

(n)
i .

Since these conditions only involve the intensive quantities φ(n)
i ,

coexisting volume fractions can be determined without specifying
the extensive volumes V (n), similar to the Maxwell construction
in a binary system (26). To extend this idea to multicompo-
nent liquids, we exploit that all systems relax to equilibrium by
exchanging particles between phases until Eqs. 3a and 3b are
satisfied. In the simplest case, this exchange is described by

∂t̂φ
(n)
i = φ

(n)
i

M∑
m=1

[
φ
(m)
i

(
μ̂
(m)
i − μ̂

(n)
i

)
+ P̂ (m) − P̂ (n)

]
,

[4]
where t̂ is a nondimensional time (SI Appendix, SI Text).
Clearly, Eq. 4 is at a stationary state, ∂t̂φ

(n)
i = 0, when the

equilibrium conditions [3a] and [3b] are obeyed. We show in
SI Appendix, SI Text, that the converse is also true, so the relax-
ation dynamics given by Eq. 4 lead us to equilibrium states whose
composition we can then analyze further (SI Appendix, Fig. S1).
These states depend on the interaction matrix χij and the initial
compositions φ

(n)
i (t̂ = 0). Consequently, if we sampled all

initial compositions, we would discover all possible equilibrium
configurations and thus recover the phase diagram associated with
a particular interaction matrix χij (28).

Practically, we sample phase space by initializing the M phases
with random compositions chosen uniformly over all allowed
volume fractions (SI Appendix, SI Text). This accounts for the typ-
ical cellular situation where concentrations fluctuate widely and
where initial compositions of small phases depend on the details
of nucleation (47, 48). This initialization also precludes abnormal
situations where a component is present only in trace amounts
in all phases (SI Appendix, Fig. S2). Random initial conditions
imply that the dynamics described by Eq. 4 can lead to various
stationary states, even for identical interaction matrices. Fig. 1D
shows trajectories for two representative cases, revealing the typical
situation that some phases reach identical composition. We deter-
mine the number K of distinct, coexisting phases by clustering
all M phases based on the similarity of their final composition
(Materials and Methods). Repeating this procedure over many
random initial conditions, we can estimate the distributionP(K ),
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Fig. 1. A dynamical system recovers coexisting phases of multicomponent liquids. (A) Schematic of N = 4 components with attractive (χij < 0, green arrows
between orange/red and teal/gray components) and repulsive (χij > 0, pink lines between remaining pairs) interactions. (B) Schematic showing how the N-
component liquid is initially split into M = 4 phases of random composition. After equilibrating chemical potentials and pressures, only K = 2 phases of
distinct composition remain. (C) Interaction matrix χij corresponding to A. (D) Two representative simulations with different initial composition for χij of C.
The composition variation [〈(φ(n)

i )2〉i − 〈φ(n)
i 〉2

i ]
1/2 is shown as a function of time t̂. (E) Frequencies P(K) of phase counts K for random initial conditions. The

performance g follows from a convolution of P(K) with weights (gray area) (Eq. 5).

which corresponds to the frequency with which K different
condensates form simultaneously inside a cell. While cells surely
also control compositions of these condensates, we focus on their
number since this is a more fundamental requirement, e.g., to
prevent formation of aberrant condensates.

Random Interactions Do not Lead to Reliable Phase Counts. To
gain intuition for the behavior of the multicomponent system, we
first consider random interaction matrices χij . To compare with
the literature (36, 40–42), we draw entries independently from a
normal distribution with mean χ̄ and variance σ2

χ (Fig. 2A). For
each parameter pair (χ̄,σ2

χ), we investigate 104 realizations of χij

and initial compositions and summarize the resulting distribution
P(K ) by its mean and SD. Fig. 2B shows that only a single
phase forms when interactions are generally weak (low χ̄ and σχ),
consistent with an ideal solution where entropy favors mixing.
When interactions are increased without strong variations (larger
χ̄, low σχ), a demixing transition happens at χ̄≈ χ̄crit, and
K ≈ N + 1 phases are typical at large χ̄. Here all components
segregate from each other and form separate phases, each enriched
in a single component. Fig. 2C shows that the width of the phase
count distribution, SD(K ) = 〈(K − 〈K 〉)2〉1/2, is largest in the
transition zone, indicating that the actually observed K strongly
depends on the chosen interaction matrix and initial composition.
The critical value χ̄crit, where the demixing transition takes places,
increases with the component count N (Fig. 2D), which confirms
a trend that was observed in earlier work (40, 42). Fig. 2B
also shows that the width of the transition zone is generally
broader for larger σχ, consistent with the fact that interactions

are more variable. Interestingly, the statistics of the phase count K
become independent of χ̄ for large variations σχ. In this case, we
observe K ≈ N /2, which was previously conjectured for χ̄= 0
(36). Taken together, our simplified dynamics are consistent with
known results for random matrices.

The results shown in Fig. 2B indicate that random interactions
of N components can lead to approximately 1, N /2, and N
phases in large regions of the parameter space, while other values
require fine-tuning. Even if it is possible to find parameters χ̄ and
σχ that on average lead to a desired phase count K∗, it will not
always be reached since the actual distribution of the number of
phases, P(K ), possesses a significant width (Fig. 2C ). To quantify
how well the system reaches a target phase count K∗, we define
the performance

g =

Kmax∑
K=1

P(K ) exp
[
− (K −K∗)

2

2w2

]
, [5]

which is constructed such that 0< g ≤ 1 and g = 1 if and only
if all initial conditions lead to K∗ phases. Here w controls how
strongly deviations from the target K∗ are punished (Fig. 1E).
Fig. 2E shows that the maximal performance of the random en-
semble is g ≈ 0.3, even though the choiceK∗ = 5 is close toN /2,
so large σχ leads to 〈K 〉 ≈K∗. Indeed, SI Appendix, Fig. S3,
shows that random ensembles perform even worse for other targets
K∗. Taken together, it is thus not sufficient to vary the two
parameters χ̄ and σχ of the random interactions to obtain a
particular phase count reliably.
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Fig. 2. Random interaction matrices cannot target specific phase counts K reliably. (A) Distribution P(χij) of the entries of the interaction matrix. (B and C) 〈K〉
and SD(K) as a function of the mean χ̄ and SD σχ of the distribution for the interactions χij for N = 9 components (Insets show example matrices). The SD is
calculated over initial conditions and averaged over the ensemble of χij. (D) 〈K〉 ± SD(K) as a function of χ̄ at σχ = 1 for N = 5, 15, 25. The dot indicates the
demixing transition point χ̄crit. (Inset) χ̄crit as a function of the component count N (linear fit, χ̄crit = 3 + 0.3 N). (E) Performance g associated with data from B
for K∗ = 5 and w = 1. (F and G) Distribution of the solvent fraction φ0 (F) and composition angles θ (G) shown as histograms and using kernel density estimation
(lines) for N = 9, σχ = 6, and several χ̄. (H) Distribution of the number of components enriched in phases for N = 9, σχ = 6, and several χ̄. In B–H, averages are
over 104 realizations, and distribution means are indicated as vertical bars on the horizontal axes.

Equilibrium phases resulting from random interactions also
show strong composition variations. For instance, the solvent
fraction φ0 varies between 0 and 0.5 (Fig. 2F ). We quantify
differences of phase compositions using the composition angle
θnm = arccos(�φn .�φm/|�φn | · |�φm |), which is simply the angle
between the composition vectors �φn = (φ

(n)
1 , . . . ,φ

(n)
N ) of two

phases n and m (36) (Fig. 2 G, Inset). Note that θ is zero when
phases have identical composition (but not necessarily the same
total concentration), while θ = π

2 when compositions are orthog-
onal, i.e., when they have no components in common. While
compositions of initial phases are similar (SI Appendix, Fig. S2F ),
they typically become very different after equilibration (Fig. 2G).
In particular, the mean difference increases with stronger repulsion
(larger χ̄). However, even for the strongest repulsion, there is
significant overlap between phases, indicating that components
are not cleanly sorted into distinct phases. To quantify this, we
count for each phase how many components have a fraction larger
than 1.5 times the average fraction. The number of such enriched
components is smaller for stronger interactions, although it varies
widely (Fig. 2H ). Taken together, typical random interaction ma-
trices cannot provide a reliable phase count K, so some additional
structure is required.

Naively Structured Interactions Also Do not Lead to Reliable
Phase Counts. To elucidate what structure in interaction matrices
reliably leads to a desired phase count K∗, we next group the N
interacting components in K∗ clusters. We impose a repulsive in-
teraction χ+ between components belonging to different clusters,
while components within a cluster exhibit a weak interaction χ−.
We expect that components in the same cluster cosegregate, so
the system behaves as if it consisted of K∗ effective components
that all repel each other with strength χ+. Indeed, Fig. 3A shows
that demixing into many phases happens when χ+ is sufficiently
large, while the intracluster interaction χ− has a weaker effect.
Cosegregation even takes place when the intracluster interaction
is slightly repulsive (χ− > 0). However, while these designed
matrices display expected behavior, they still have significant
variations, and the resulting performance is only marginally better
than that of random matrices (Fig. 3B). This is also visible in the
distribution of the composition angles θ shown in Fig. 3C : even
for strong repulsion (large χ+), there is a significant fraction of
phases with similar composition (θ ≈ π/4), even though exactly
two components are enriched in each phase (Fig. 3D). It seems
as if weakly concentrated components, including the solvent,
prevent reliable cosegregation of clustered components. We thus

A B C D

Fig. 3. Interaction matrices with block structure cannot target specific phase counts K reliably. (A and B) Mean phase count 〈K〉 and performance g as functions
of the interaction χ+ between different blocks and the interaction χ− within blocks for N = 10 components arranged in K∗ = 5 equal blocks (Insets in A
show example matrices). (C) Distribution of composition angles θ shown as histograms and using kernel density estimation (lines) for several χ+ at χ− = 0.
(D) Distribution of the number of components enriched in phases for several χ+ at χ− = 0. A–D show averages over 104 initial compositions. Distribution
means are indicated by vertical bars.
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find that creating interaction matrices with desired behavior is not
as straightforward as we had hoped.

Evolutionarily Optimized Interactions Lead to Reliable Phase
Counts. Neither completely random nor fully structured inter-
action matrices are very realistic in biology since the interaction
energies χij summarize complex interactions of proteins (12),
which change continuously during evolution (22). We thus
next ask whether an evolutionary optimization of interaction
matrices can reliably lead to mixtures with a particular target phase
count K∗.

To mimic biology, we evolve an ensemble of individuals, char-
acterized by interaction matrices χij , over multiple generations.
We initialize a population of 32 individuals with randomly
chosen interaction matrices χij using χ̄= χ̄crit and σχ = 1.
For each individual, we numerically determine P(K ) and the
associated performance g (Eq. 5), which will now play the
role of a fitness. In the selection step, we remove the 30% of
the population with lowest performance, replacing them by
randomly chosen high-performance individuals to maintain
population size. We then mutate the interactions χij of all
individuals by adding independent random numbers from a
normal distribution with zero mean and SD σe. Repeating this
procedure for many generations improves the performance of all
individuals, so that they reliably reach the target K∗. However,
we also noticed that this naive optimization results in very large
interaction magnitudes (SI Appendix, Fig. S4), which might be
unrealistic. To prevent such unphysical behavior, we additionally
scale the interaction matrix χij by χbound/〈|χij |〉 if its mean
absolute value 〈|χij |〉 exceeds the threshold χbound. This limits
the average interaction magnitude, 〈|χij |〉 ≤ χbound, but the
evolutionary optimization still discovers interaction matrices with
a precise phase count (Fig. 4A) and perfect performance (Fig. 4B)
(SI Appendix, Fig. S5). Optimized interaction matrices thus vastly
outperform random matrices and allow targeting specific phase
counts K∗ despite strong fluctuations in initial composition.

The outstanding performance of evolved interaction matrices
χij is surprising since we limited the interaction magnitude
(Fig. 4C ) and use highly variable initial compositions. What
properties of χij lead to the excellent performance g? Simply
visualizing optimized interaction matrices (Fig. 4D) does not

reveal any obvious structure. In any case, we showed in Fig. 3
that block matrices are not optimal, so any obvious clustering
might actually be detrimental. The distribution of the entries
χij of optimized interaction matrices is very broad (Fig. 4E),
although its width is directly limited by our constraint of 〈|χij |〉.
For sufficiently large N, the distribution is well described by a
normal distribution (dotted blue line). This is surprising since
unstructured random matrices chosen from such a normal distri-
bution did not perform well (Fig. 2). The similarity to the random
ensemble also shows in the distribution of the solvent fraction
φ0 (compare Fig. 4F to Fig. 2F ) and the number of enriched
components (compare Fig. 4H to Fig. 2H ). In contrast, the
distribution of composition angles θ is slightly different (compare
Fig. 4G to Fig. 2G). However, 〈θ〉 is larger for the random
ensemble with large χ̄, implying more distinct phases. Taken
together, optimized matrices share many similarities with random
matrices, although minute differences apparently lead to a much
improved performance.

The evolutionary optimization quickly discovered interaction
matrices that lead to a reliable phase count, and these matri-
ces evolve continuously (Movie S1). This raises the question of
whether this task is actually difficult; how frequent are optimal
matrices in the space of all matrices? Our analysis of random
matrices clearly showed that matrices must fulfill some basic
requirements to have a phase count K close to the target K∗.
In particular, the average magnitude of the entries χij and the
associated SD need to be chosen such that 〈K 〉 ≈K∗ (Fig. 2B).
While we showed that the ensemble of random matrices with these
properties does not work optimally (Fig. 2E), individual matrices
from the ensemble might perform well. To quantify this, we de-
termined the performance g for 64 random matrices characterized
by a particular choice of χ̄ and σχ. SI Appendix, Fig. S6 shows
that we easily discover matrices with high performance and that
a large fraction of all matrices with suitable statistics, determined
by 〈χij 〉 and SD(χij ), performs optimally. Taken together, this
implies that subtle properties of the interaction matrices govern
their performance.

Performance of Evolutionarily Optimized Interactions Is Ro-
bust. We showed that interaction matrices leading to exactly K∗
phases can be obtained through random trial and error or by
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Fig. 4. Evolutionary optimized interactions result in reliable phase counts K. (A and B) Phase count K and performance g as functions of generation for different
number of components N. The target phase count K∗ = 5 and the maximal performance g = 1 are indicated by dotted lines. (C) Interaction strength 〈χij〉 and
SD(χij) as a function of generation. (D) Examples of optimized interaction matrices for various N. Components have been clustered by similarity. (E) Distribution
of interaction strengths in the final matrices. The blue dotted line indicates a normal distribution that best fits the case N = 15. (F and G) Distribution of the
solvent fraction φ0 (F) and composition angles θ (G) shown as histograms and using kernel density estimation (lines) for several N. The corresponding means are
indicated as vertical bars. (H) Distribution of the number of components enriched in phases for several N with means indicated as vertical bars. In A–H, model
parameters are K∗ = 5, w = 1, σe = 0.3, and χbound = 5. Each population contains 32 individuals, which were initialized with random matrices. A–C for each N
show ensemble mean and associated SE (SEM) of eight independent repetitions. The statistics of the resulting 256 optimized matrices are shown in E–H.
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A B

C D

Fig. 5. Mixtures with more components are typically more robust. (A) Performance 〈g〉 ± SD(g) of optimized interaction matrices when one row (and column)
is perturbed by normally distributed random numbers with SD σp for several component counts N at K∗ = 5. Averages are over all 256 optimized matrices from
Fig. 4. For each matrix, g is determined from an ensemble of 64 perturbations and random initial conditions. (B) Performance g when a mixture optimized with
N components loses (cross symbols) or duplicates (plus symbols) a component for various N at K∗ = 5. SD is smaller than symbol size. (C and D) Evolution of
〈g〉 ± SEM(g) as a function of generation when the target phase count is decreased from K∗ = 5 to K∗ = 4 (C) or increased from K∗ = 5 to K∗ = 6 (D) for several
N. Each of the eight optimized populations from Fig. 4 is evolved twice. The Inset in C shows the generation at which individual trajectories exceed a performance
of 0.8 for various N.

evolutionary optimization. This situation corresponds to maxi-
mizing the performance g in a fixed environment without any
fluctuations beyond the initial composition. However, biological
systems constantly face additional fluctuations, both internally
(e.g., changes of the component count) and externally (e.g.,
changing environment). Such systems not only need to work in
a particular case, but they need to be robust to these fluctuations,
too. To see how evolution of multicomponent phase separation
fares in such challenging situations, we next study the dynamics
when interaction matrix χij , the number N of components, or
the target phase count K∗ varies.

We start by perturbing a single component in the evolution-
arily optimized interaction matrices χij by choosing a random
row (and column) to which we add uncorrelated random num-
bers from a normal distribution of vanishing mean and SD σp.
Fig. 5A shows that the performance of optimized matrices is only
weakly affected for σp � 2, while larger perturbations reduce the
performance significantly. Mixtures with more components are
more sensitive to these perturbations, presumably because our
procedure modifies the interaction between the chosen compo-
nent and all other ones, so larger mixtures exhibit more pertur-
bations. Taken together, we find that optimized mixtures still
form phases reliably even when interaction energies are perturbed
by ∼ kBT .

We next test the robustness of the system against changes
in component count N itself, which captures gene loss and
duplication in real systems. We quantify the effect of changing
N by measuring the performance g when one of the components
of the optimized interactions matrices is removed or duplicated.
Fig. 5B shows that removing a component reduces the perfor-
mance substantially, although the reduction is smaller for larger
N. Conversely, duplicating a component has hardly any effect
on performance. Taken together, this suggests that using more

components to form a fixed number of phases is more robust to
internal fluctuations, like variations in component count.

We next consider external fluctuations of the environment.
Since we do not model the environment explicitly, we consider
changes of the target phase count K∗, assuming that the environ-
ment changes such that organisms need to form fewer or more
phases. Changing K∗ by 1 will necessarily reduce the perfor-
mance from the optimal value g ≈ 1 to g = exp(− 1

2w
−2)≈ 0.6

(Eq. 5). To see how well different systems adapt to new environ-
ments, we study how quickly the performance recovers under the
evolutionary dynamics. Fig. 5C shows that individuals quickly
adjust to a lower target count, although the generation at which
this happens varies widely (Fig. 5 C, Inset). This adaptation tends
to be a bit slower for more components, presumably because
more interactions have to be adjusted. Conversely, adaptation to
an increased target count K∗ is easier with more components
(Fig. 5D). Note that the smallest system with N = 7 does not
succeed to meet the target K∗ = 6 reliably due to the constraint
on 〈|χij |〉. Taken together, this suggests that there is a larger
flexibility in the phase composition at larger N, which allows us to
quickly find an interaction matrix resulting in an additional phase.
Reducing the phase count is more complicated, likely because
many interactions have to be adjusted. In fact, there is a trade-
off between robustly reaching a constant phase count K∗ despite
perturbations and using the same perturbations to flexibly adjust
to new environments.

Discussion

Understanding equilibrium properties of biomolecules is crucial
before we can tackle the more challenging problem of a living
system. We here proposed a method to study how the many
interacting constituents of a cell spontaneously segregate into
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different phases. This method recovers the demixing transition
that was previously observed when many components exhibit
random interactions (36, 42). We also find a variable phase count
for a given set of interactions, which is a signature of the complex
phase diagrams (28). Beyond these limiting cases, our method can
efficiently handle arbitrary interactions involving several tens of
different components, thus increasing the range of systems that
can be studied.

We use our method to optimize interaction matrices to yield a
precise phase count. These optimized interactions are also robust
to perturbations and allow a fast adaption to an increased target
phase count, particularly if many components are involved. In
contrast, forming fewer phases seems to be more challenging for
larger mixtures, presumably because these mixtures are actually
robust to perturbations. It will be interesting to study this trade-off
between robustness and evolvability in more detail in the future.

Optimal interaction matrices are surprisingly easy to discover,
and even random matrices have a high chance of yielding a robust
number of phases, which is independent of the initial compo-
sition. On the contrary, other random matrices from the same
ensemble perform much worse. What are properties that separate
the optimal matrices from generic ones? Answering this question
is directly relevant to biomolecular condensates, where hidden
structures in intrinsically disordered regions might strongly affect
the phase behavior of proteins (49). Another question concerns
the composition of phases resulting from optimal interactions. So
far, we focused on maintaining a robust phase count to ensure
all relevant condensates, but no aberrant phases, form. However,
the large space of optimal matrices might additionally allow the
control of partitioning of key components. Our method can also
be extended to describe more complex behavior of biomolecular
condensates, including response to external cues (19, 50), active

regulation (51–53), and noise buffering (54, 55). Ultimately, our
predictions could be tested using engineered condensates (56) and
quantitative reconstitution (32). Besides these concrete applica-
tions for biomolecular condensates, our method might also answer
more fundamental questions about evolving systems: how can a
cell exhibit robust functions while its proteins evolve (57–59)?
We hope that our abstract model and method for determining
equilibrium states will illuminate the fundamental problem of
how variable microscopic interactions lead to robust collective
properties.

Materials and Methods

We solve Eq. 4 using an explicit scheme with adaptive time stepping (60). Since
the simulation typically converges exponentially, we conclude that a station-
ary state has been reached when all ∂̂tφ

(n)
i < 10−4. For each choice of χij,

we run 64 simulations with random initial conditions (SI Appendix, SI Text) for
M = N + 2 initial phases to estimate the distribution of the phase count K, which
is the minimal number of points�xm so that minm

(
‖�xm − �φ(n)‖

)
≤ 10−2 for all

phases n. The kernel density estimates shown in Figs. 2–4 are based on Gaussian
kernels whose SD is 10 % of the range of the x axis (61).

Data Availability. Source code of the numerical method has been deposited in
GitHub (https://github.com/zwicker-group/paper-multicomponent-evolution).
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