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Abstract: Chitosan oligosaccharide (COS), derived through hydrolysis of chitosan, has been proved to
be an effective plant immunity elicitor, eco-friendly, and easily soluble in water, and influenced several
secondary metabolites content to improve fruit qualities. COS are widely used in agriculture to
improve the defense response in plants. The purpose of this study was to investigate the pre-harvest
treatment effect of COS on the quality of strawberry (Fragaria × ananassa cv. qingxiang). COS was
dissolved in distilled water at a concentration of 50 mg·L−1 and sprayed at four different growth
stages of strawberry plants, namely seedling stage, before flowering, fruit coloring (the stage of
fruit from white to red) and full bloom. Uniform size, shape, color, without any visible damage,
and disease-free fruits were harvested for determining the quality. The results showed that the fruit
firmness, viscosity, lignin, sugars, protein, total soluble solid, and titratable acidity content increased
in COS-treated fruits compared to control. In addition, COS pre-harvest treatment had a positive effect
on anthocyanin, total phenol, flavonoid, vitamin C content and DPPH(2,2-diphenyl-1-picrylhydrazyl)
scavenging activity of strawberry. Moreover, COS also increased the cell wall composition and
regulated gene expression of some important enzymes involved in ethylene compound biosynthesis
and cell wall degradation. The finding of this study suggests that pre-harvest application of COS is
very useful for improving quality and antioxidant capacity of strawberry.
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1. Introduction

Strawberry (Fragaria × ananassa cv. qingxiang) is one of the most popular and widely consumed
berries due to its taste, sweetness and healthy function. The taste of strawberry is related to its hardness,
viscosity, sugars, protein, total soluble solid, and titratable acidity content [1]. It is a good source
of polyphenolic compounds such as flavanols and has antioxidant activity [2]. This, together with
higher vitamin C content in strawberries, contributes beneficial effects on the maintenance of consumer
health [3]. The strawberry has higher antioxidant activities than orange, grape, banana, apple, etc. [4].

Pesticides are widely applied in most strawberry farmland during growth and development.
High pesticide residues are reported in the fruits, which are harmful for consumer’s health. Therefore,
nowadays, consumers demand more natural, environmentally friendly fruit production, with high
quality and without any chemical preservatives and pesticide residues [5]. To decrease the pesticide
residues and to enhance the nutritional quality of fruits and vegetables, an effective eco-friendly
compound is essential.
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Some reports noticed that the application of chemical agents to enhance fruit quality and shelf life
increase the risk of adding contaminants with food products and results in negative environmental
impact. Another eco-friendly natural compound, chitosan, has the potential to increase shelf life
and fruit quality, but low solubility of bulk chitosan in aqueous media limits its wide spectrum
of application.

Chitosan oligosaccharide (COS), derived through hydrolysis of chitosan [6], is a water-soluble
compound and has been proved as an effective elicitor of plant immunity. Generally, elicitor
pretreatment is an advanced method for plant resistance because it costs less energy than directly
induced defense and is less harmful to plant growth [7]. In another experiment, COS significantly
reduced the disease lesion size on tomato fruits when the tomato plants were pretreated with 1.0% or
2.5% (w/v) COS solution 10 days before being inoculated with Colletotrichum sp. [8]. COS has been
considered a potent plant immunity elicitor and used on different plants such as Arabidopsis, tobacco
and grapevine [9,10]. The number of spikes, grains per spike and total grain yield were increased by
spraying COS at tillering stage of wheat [11]. However, another reporter [12] noticed that chitosan is a
teratogenic compound when a high dose of chitosan (150 mg/kg body weight) is administrated orally
to Wistar female rats. In our research, we used a very low dose, 50 mg/L, as foliar spray. Furthermore,
COS is easily soluble in water and it is not harmful, which also supports many previous reports.
COS have been the subject of increased attention in terms of their pharmaceutical and medicinal
applications, due to their nontoxic and high-solubility properties as well as their positive physiological
effects [13]. Gol et al. [14] also reported that plant elicitors such as chitosan, abscisic acid, methyl
jasmonate and some other chemical agents have been reported to promote the quality and antioxidant
activity of strawberry when exogenously applied. COS treatment promoted polyphenol content in
Greek Oregano [15] and improve vitamin and polyphenol content in cherries [16]. These results
suggest that COS not only triggers plant immunity, but also influences several secondary metabolites
in plant to improve quality of fruits. COS are considered to be an environmentally friendly plant
regulation substance, owing to its high solubility, non-toxicity and biocompatibility. Therefore, it is of
interest to study the effect of COS on strawberry fruit quality.

Research on the role of ethylene in fruit ripening and its signaling transduction pathways have
been studied extensively in recent decades. Previous reports indicate that ethylene is possibly involved
in the regulation of nonclimacteric fruit ripening [17]. The role of ethylene in climacteric fruit ripening
and its molecular mechanisms are well studied but in respect of nonclimacteric fruits is far behind.
Formation of 1-aminocyclopropane-1-carboxylic acid (ACC) from S-Adenosyl methionine (SAM) via
ACC synthase (ACS) activity, and conversion of ACC to ethylene through ACC oxidase (ACO). Fruit
softening is associated with cell wall disassembly and during fruit softening, pectin and hemicellulose
in cell walls undergo solubilization and depolymerization, which contributes to cell wall loosening [18].
Most of the studies on ripening-related cell wall hydrolyses have examined the activities of pectin
esterase (PE), pectin lyase (PL), polygalacturonase (PG) and endo-1,4-D-glucanase (EG) in various
fruit [19]. However, to our knowledge, there is no scientific literature available regarding the effect of
COS pre-harvest treatment on quality characteristics of strawberry fruit. Therefore, the present study
has been undertaken with the objective of elucidating the potential of COS on quality improvement
of strawberry.

2. Results and Discussion

2.1. Effect of COS Pre-Harvest Treatment on Strawberry Fruit Texture

Hardness is an important physical parameter used to assess the quality of fruits during ripening.
At harvest, strawberry fruits showed different hardness values that could be due to different lignin
content. Hardness, viscosity and lignin content of COS-pre-treated strawberries were significantly
higher (p < 0.05) than untreated fruits. The hardness of COS-pre-treated fruits was 3.73 N, while in
untreated fruits was 3.10 N (Figure 1A). The viscosity also increased in COS-treated group (Figure 1B).



Int. J. Mol. Sci. 2018, 19, 2194 3 of 13

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 13 

 

N, while in untreated fruits was 3.10 N (Figure 1A). The viscosity also increased in COS-treated 
group (Figure 1B). 

 
Figure 1. Effect of COS pre-harvest treatment on hardness (A); viscosity (B) and lignin (C) content of 
strawberry fruit. Data represent the means ± SD. The * represent means significantly different 
according to T test at p < 0.05 level. CK: Spraying water pre-harvest; COS: Spraying COS pre-harvest. 

The lignin content of COS-treated fruit was approximately 50% higher than untreated fruit 
(Figure 1C). Hardness and viscosity are very important indices of fruit texture. The increased 
hardness in fruits may be due to the increased viscosity and the strength of cell-to-cell bonding [13]. 
Yan et al. [20] reported that the COS pre-harvest treatment increased the hardness in jujube fruits. In 
most cases, the viscosity of strawberry is closely related to the content of sugars, which are the 
composition of the cell wall. Constant increasing of lignin content in COS-treated fruits indicated 
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Figure 1. Effect of COS pre-harvest treatment on hardness (A); viscosity (B) and lignin (C) content
of strawberry fruit. Data represent the means ± SD. The * represent means significantly different
according to T test at p < 0.05 level. CK: Spraying water pre-harvest; COS: Spraying COS pre-harvest.

The lignin content of COS-treated fruit was approximately 50% higher than untreated fruit
(Figure 1C). Hardness and viscosity are very important indices of fruit texture. The increased hardness
in fruits may be due to the increased viscosity and the strength of cell-to-cell bonding [13]. Yan et al. [20]
reported that the COS pre-harvest treatment increased the hardness in jujube fruits. In most cases,
the viscosity of strawberry is closely related to the content of sugars, which are the composition of the
cell wall. Constant increasing of lignin content in COS-treated fruits indicated that COS could induce
lignin biosynthesis. The accumulation of lignin in the cell walls of higher plants provides hardness
and the stability of the structure [21].

2.2. Effect of COS Pre-Harvest Treatment on Strawberry Cell Wall Components

The hardness of COS-treated fruit was higher than the untreated fruits, and in general,
the difference in hardness was reflected by the differences in components of the cell wall. Five major
compositions of cell wall were extracted in this study. Except for water-soluble pectin, the other
four cell wall components were significantly enhanced by COS pre-harvest treatment compared to
untreated fruits (Table 1). The crude cell wall content of control and COS-treated fruits were 1.8%
and 2.2%, respectively. The strawberry fruit softening has been characterized by the solubilization
and depolymerization of pectins from cell walls [22]. According to previous report, the ionic pectin,
its covalent bonding, hemicellulose, and cellulose content were closely related to the texture [21].
They also reported that during the ripening process, only the ionic cross-links remain and so the
hardness of fruits is partly due to the content of ionic bond pectin [19]. The increase of hemicelluloses
and celluloses are closely correlated with the hardness. The cellulose and pectin may be locked together
by covalent links between some xyloglucan molecules and pectin [23]. Our results suggested that COS
pre-harvest treatment increased the proportion of the ionic pectin, its covalent bonding, hemicellulose
and cellulose content. These changes in the cell wall composition might have played a role in the
increased hardness of strawberry.
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Table 1. Effect of COS pre-harvest treatment on strawberry fruit cell wall composition.

Treatments
Fresh Weight

(g)
Crude Cell Wall Extract

Total Quantity (g) A (%) B (%) C (%) D (%) E (%)

CK 5 0.09 9.85 ± 3.05 6.34 ± 1.93 7.37 ± 1.40 24.42 ± 2.69 20.06 ± 2.26
COS 5 0.11* 8.30 ± 2.38 7.41 ± 2.52 9.88 ± 3.31 * 26.86 ± 1.78 24.24 ± 1.31 *

A: Water-soluble pectin; B: Ionic pectin; C: Covalent bonding type of pectin; D: Hemicellulose; E: Cellulose. Data
represent the means ± SD. The symbol star (*) means significantly different according to T test at p ≤ 0.05 level. CK:
Spraying water pre-harvest; COS: Spraying COS pre-harvest.

2.3. Effect of COS Pre-Harvest Treatment on Strawberry Quality and Taste

Quality and taste are important for the value of fruits. Soluble solids content (SSC), titratable
acidity (TA), total sugar (TS) and the ratio of TS/TA are important factors for evaluating fruit
quality [24].

The pre-harvest application of COS increased the sugar content (TS) of strawberry which improved
the taste. Previous reports showed that pre-harvest spraying of antagonistic yeast plus chitosan
increased the total soluble solid (TSS) content in grape [25].

The TA content significantly increased (p < 0.05) in the COS-treated fruit compared to the control
(Figure 2A). SSC content in the control fruit was 8.94%, whereas it was 9.84% in COS-treated fruits
(Figure 2B). From the result it was noted that TS content in strawberries was significantly higher
(p < 0.05) in COS-treated fruits (21.24 mg·g−1) than the control fruits (17.96 mg·g−1) (Figure 2C).
Significant difference was also observed in the case of TS/TA ratio between COS (1.39) and control
(1.04) group. The higher TS/TA ratio indicates better taste and quality of strawberry fruits in
COS-treated group.
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Figure 2. Effect of COS pre-harvest treatment on quality of strawberry fruit. (A) Titratable acidity;
(B) Solid soluble content; (C) Sugar content. Data represent the means ± SD. The symbol star (*) means
significantly different according to T test at p ≤ 0.05 level. CK: Spraying water pre-harvest; COS:
Spraying COS pre-harvest.
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2.4. Effect of COS Pre-Harvest Treatment on Strawberry Antioxidant Activity

The DPPH assay is a common method to measure the antioxidant capacity of fruits.
In this study, it was found that the comparative DPPH free radical scavenging activity of the

strawberry was significantly increased (p < 0.05) by pre-harvest spraying COS (16% higher than
the control) (Figure 3A). The total antioxidant capacity of the strawberry depends mainly on the
vitamin C [26], polyphenols, flavonoids and anthocyanins content [27]. Antioxidant activity based
on free radical scavenging in strawberry fruit has a potential function in anti-hyperglycemia and
anti-hypertension [28]. In our study, vitamin C, total phenol, flavonoids and anthocyanins content were
increased, which implied that COS pre-harvest treatments have positive effects on antioxidant activity.
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Figure 3. Effects of COS pre-harvest treatment on antioxidant activity of strawberry fruit. (A) DPPH
scavenging activity; (B) Vitamin C content; (C) Total phenol content; (D) Flavonoid content;
(E) Anthocyanin content. Data represent the means ± SD. The symbol star (*) means significantly
different according to T test at p ≤ 0.05 level. CK: Spraying water pre-harvest; COS: Spraying
COS pre-harvest.
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The vitamin C content of strawberry was significantly increased (p < 0.05) by pre-harvest spraying
of COS and it was 20.02% higher than the control (Figure 3B). Vitamin C is a typical nutrient, and its
content is often considered as a significant marker of overall nutrient quality [29]. Chitosan coatings
improved the vitamin C content of strawberries; however, the bulk chitosan is poorly soluble in
aqueous media which limits its wide application [14]. The phenolic compounds (a major secondary
metabolite in plants) are well-known to have antioxidant properties [30]. The phenol content of the
COS-treated group was significantly (p < 0.05) increased compared to the control group (Figure 3C).
Calcium chloride treatment and temperature control methods have been used to promote the total
phenol content in strawberry [31].

Flavonoids are a major group in the family of phenolic compounds with antioxidant and biological
activity that have been identified in fruits [30]. As shown in Figure 3D, the flavonoid content of control
and COS were 21.34 and 29.59 mg·g−1, respectively. The flavonoids from COS treatments increased
38% compared to control, which indicates that COS pre-harvest treatment significantly influenced
the flavonoid content [32]. Flores and Ruiz del Castillo [33] reported that methyl jasmonate is a safe
hormone and it could increase the flavonoid content of loquat fruit and red raspberry.

Anthocyanins are the most abundant flavonoid compounds in strawberry fruit. In this study,
it was observed that pre-harvest spraying of COS significantly enhanced the accumulation of
anthocyanins and it was higher in COS-treated fruits (23.63 mg·100 g−1) than the untreated fruits
(21.11 mg·100 g−1) (Figure 3E). Total anthocyanin content of strawberry was increased by COS
pre-harvest treatment, which may lead to higher antioxidant activity.

2.5. Effects of COS Pre-Harvest Treatment on Strawberry Gene Expression

To explore the effects of COS on ethylene synthesis and cell wall degradation, the expression
of important genes in these signaling pathways, including FaACS, FaACO (the ethylene synthesis
pathway gene) FaPL, FaPE, and FaEG (the cell wall degradation pathway gene), were examined. FaPL,
FaPE and FaEG have been reported to be involved in degradation of cell walls, resulting in tissue
maceration [34] and the expressions of FaPL, FaPE and FaEG genes in fruits were associated with fruit
softening. In this study, the expressions of FaPL, FaPE and FaEG genes were significantly suppressed
by COS treatment compared to control, which indicates that COS-treated fruit were firmer than control.
The result suggests that COS treatment could inhibit the gene expression of FaPL, FaPE and FaEG in
strawberry, resulting in delayed degradation of the cell wall by inhibiting cell wall degradation enzyme
gene expression, which is consistent with the results of cell wall fraction change. Previous reports
suggested that the phytohormone ethylene plays an important role in strawberry fruit ripening [35].
Strawberry is a nonclimacteric fruit, but in recent years some studies reported that ethylene is possibly
involved in the regulation of nonclimacteric fruit ripening. This study showed that COS influenced
the ethylene pathway by reducing the expression of FaACS and FaACO gene. It was also observed that
FaACO and FaACS genes expression were significantly suppressed by COS treatment compared to
control fruits (Figure 4).

In this study, we focus on the quality improvement of strawberry by COS pretreatment. It is
interesting that the fruit hardness is higher in the COS-treated group than in the control group. Besides
the hardness, there is more crude cell wall content in the COS-treated group, especially the ionic
pectin, hemicellulose and cellulose content, which are closely correlated with the hardness. These
results implied that during post-harvest, the fruit of the COS-treated group may be easier to preserve.
In addition, the gene expression analysis results also showed that the ripening-related gene is also in a
relatively lower profiling expression, which also suggests that COS-treated fruit experience a slower
post-harvest ripening process.
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in ethylene compound biosynthesis and cell wall degradation ((A) PL: Pectin lyase; (B) PE: Pectin
esterase; (C) EG: Endoglucanase; (D) ACS: ACC synthetase; (E) ACO: ACC oxidase). The error bars
represent the standard deviation of three biological replicates. Stars indicate significant differences.
Data represent the means ± SD. The * are significantly different according to T test at p ≤ 0.05 level.
The ** are significantly different according to T test at p ≤ 0.001 level. CK: Spraying water pre-harvest;
COS: Spraying COS pre-harvest.

3. Materials and Methods

3.1. Chemicals

Chitosan oligosaccharide (degree of polymerization = 2~10; degree of deacetylation > 95%)
was obtained from Dalian GlycoBio Co., Ltd., (Dalian, China). Folin-Ciocalteu reagent was
procured from Solarbio (Beijing, China). trans-1,2-diaminocyclohexanetetraaceticacid (CDTA),
1,1-diphenyl-2-picrylhdrazyl (DPPH), gallic acid, vitamin C, sodium carbonate, sodium hydroxide,
sulfuric acid and hydrochloric acid were purchased from Sigma (St. Louis, MO, USA). All other
chemicals and solvents were of analytical grade and obtained from Chinese manufacturers.

3.2. Treatment of Strawberry

COS was dissolved in distilled water at a concentration of 50 mg·L−1. The COS solution was
sprayed at the rate of 375 L·ha−1 in a commercial orchard (Zhuanghe City, China) at four different
growth stages of strawberry plants, namely seedling stage, before flowering, fruit coloring (the stage
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of fruit from white to red) and full bloom. The control group was treated with equal amount of water
at the same time.

Fresh and mature strawberry fruits were harvested (April 2015). Twenty fruits from each treatment
group were selected, with uniform size, shape, color without any visible damage, disease for further
study. For biological analyses the fruits were immediately frozen in liquid nitrogen, and stored at −80 ◦C.

3.3. Texture Analyses

“TA.XT.plus Texture Analyser” (Stable Micro Systems Ltd., Surrey, UK) along with the measuring
probe P/5S (5 mm Spherical stainless steel, supplied with the Texture Analyser) were employed for
texture determination. The system was equipped with texture profile analysis (TPA). Hardness was
measured as the maximum penetration force (N) reached during tissue breakage. The maximum
penetration force was set as 25 N. Other measurable parameters were: pretest speed 1 mms−1;
test speed 1 mms−1 penetrating distance of 5 mm into the fruit. The measurement was triggered
automatically at 0.01 N. The maximum force required for sample compression was calculated as an
average of 10 measurements.

3.4. Preparation and Fractionation of Cell Wall

The cell wall preparation was done as described by Brummell et al. [19] with some modification.
Five grams of frozen fruit material was homogenized in 20 mL of 80% ice-cold ethanol using a Polyton
homogenizer. Insoluble residue was washed with 80% ice-cold ethanol, re-suspended in Tris-buffered
phenol, precipitated with ethanol, washed with 95% ethanol, re-suspended in chloroform: methanol
(1:1, v/v), and washed with acetone. Aliquots (100 mg) of acetone-insoluble cell wall fractions were
sequentially extracted twice with CDTA for 24 h and Na2CO3 containing 0.1% NaBH4 for 24 h to
isolate ionically and covalently bound pectin, respectively. The depectinated cell wall residue was
stirred with 1 M KOH with the addition of 20 mM NaBH4 for 18 h at 20 ◦C; thereafter, it was filtered,
and supernatant was collected as a hemicellulose (1 M KOH) fraction. The residue was purified by
stirring it for 2 h with 4 M KOH containing 20 mM NaBH4. After filtration, samples were stirred three
times with 0.1 M HCl at 85 ◦C for 30 min and then three times with 1 M NaOH at 85 ◦C, and finally
rinsed with hot deionized water to obtain cellulose fraction.

3.5. Lignin Analysis

Lignin content of fruit was measured according to the method of Morrison [36] with some
modifications. One gram strawberry was homogenized in ice-cold 95% ethanol using a plastic pestle
and then using an ultrasonic disruptor. The homogenate was centrifuged at 3000× g for 10 min.
The resultant pellet was washed three times with 95% ethanol and twice with a 1:2 (v/v) mixture
of ethanol to hexane and allowed to air-dry at 37 ◦C overnight. The dried pellet was ultrasonically
homogenized in acetic acid and centrifuged at 1000× g for 5 min. 300 mL 25% acetyl bromide in acetic
acid was added to each sample. After heating at 70 ◦C for 30 min, 270 mL 2 M NaOH, 30 mL 7.5 M
hydroxylamine hydrochloride, and 900 mL acetic acid were added to each sample. The samples were
centrifuged at 1000× g for 5 min, and the absorbance of the supernatant was measured at 280 nm to
determine the lignin content.

3.6. Total Sugars (TS) Analysis

The content of TS in ripe fruits was estimated by Anthrone-sulfuric acid method with minor
modifications [37]. Five gram fruit was homogenized in 50 mL deionized water and the extract was
boiled for 30 min. The sample was allowed to cool at room temperature, filtered and diluted with
water to 100 mL. 1 mL of extract was mixed with 4 mL Anthrone-sulfuric acid reagent, boiled for
10 min and allowed to cool. The absorbance of the solution was measured at 620 nm and colorimeter.
The standard curve was prepared by using pure glucose at a concentration of 0.1–1.0 mg/L in distilled
water. Finally, the percentage of total sugar was determined by using the following formula:
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% Total sugar ( g/100 g of fruits) =
Amount of sugar obtained

Weight of samples
× 100

3.7. Soluble Solid Content (SSC) and Titratable Acidity (TA) Content

Ten strawberry fruits were selected randomly from control and COS treatment group and
homogenized in a mortar, filtered through muslin cloth. The SSC content of the fruit juice was
determined by measuring the refractive index with a hand-held refractometer (Shanghai optical
instrument, 2 W) at 25 ◦C. The results were expressed as percentages [38].

TA was analyzed by titration method with 0.1 M NaOH to pH 8.3 using phenolphthalein as
indicator and calculated using the following formula.

Citric acid (%)

=
Titre (mL)×NaOH normality (0.1 N)× vol. made up (50 mL)× citric acid eq. weight (64 gm)× 100

Vol. of sample for titrate (5 mL)×wt. of sample taken (10 g)× 1000

3.8. Antioxidant Activity

Fruits (5 g) were ground in liquid nitrogen with mortar and pestle. The powder was added
to 75 mL of methanol containing 0.2% acetic in a conical flask and incubated for 2 h at 60 ◦C. After
filtration, the residue was extracted with fresh solvent as described above. Filtrates were centrifuged
at 10,000× g for 15 min and clear supernatant was stored at −20 ◦C for further analysis.

The antioxidant activity of strawberry was assessed according to the method described by Patras
et al. [39]. Briefly, 2 mL of the extract was mixed with 2 mL of 0.1 mm DPPH solution and incubated at
room temperature for 30 min in the dark. Absorbance was then read at 517 nm using methanol as a
blank and ascorbic acid as a positive control. The radical scavenging effect was measured as a decrease
in the absorbance of DPPH and calculated by using the following equation: scavenging activity (%) =
(Acontrol − Asample)/Acontrol × 100.

3.9. Vitamin C Content

The Vitamin C content was estimated in accordance with the 2,6-dichlorophenolindophenol
titration method [1]. Briefly, strawberry (5 g) was homogenized in 50 mL of 0.02 g·mL−1 oxalic acid
solution and then centrifuged at 15,000× g for 15 min at 4 ◦C. The supernatant (10 mL) was titrated
to a permanent pink color by 0.1% 2,6-dichlorophenolindophenol. Vitamin C concentration was
calculated according to the titration volume of 2,6-dichlorophenolindophenol using following formula
and expressed as mg·100 g−1 FW.

Ascorbic acid (mg/100 g) =
Titre (mL)× dye factor × vol.made up (mL) × 100

Aliquot used for estimation (mL) × sampleweight (g)

3.10. Total Anthocyanins Content

Total anthocyanins were extracted by pH differential method [39]. Absorbance was measured at
510 nm and 700 nm in buffer at pH 1.00 and pH 4.5, using A = (A510 − A700) pH 1.0 − (A510 − A700)
pH 4.5. Anthocyanin content was calculated by the following formula: Anthocyanins content (mg·100
g−1 FW) = [(A/€ × L) × V/m] ×MW × 100. Where A is the absorbance, € the cyaniding-3-glucoside
molar extinction coefficient (22,400), L the cell path length (1 cm), MW the molecular weight of
anthocyanin (449.2).

3.11. Total Phenol Content (TPC)

Total phenol compounds were determined using the Folin-Ciocalteu method [40]. Briefly, for each
test tube, 200 µL extract (matched control), 2 mL of 1:10 Folin-Ciocalteu’s reagent and 4 mL Na2CO3

(1 M) were added. The test tube was incubated for 2 h at room temperature in the dark and absorbance
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values were measured at 765 nm. Gallic acid (1 mg·mL−1) was used as the standard and the results
were expressed as mg gallic acid eq. g−1 FW.

3.12. Flavonoids Content

The flavonoid content was estimated by a colorimetric assay [41]. One mL extract and 0.5 mL of
5% sodium nitrite was added in a 10 mL volumetric flask. After 6 min, 0.5 mL of 10% aluminum nitrate
was added and allowed to stand for 6 min. Subsequently, 4% sodium hydroxide and 70% ethyl alcohol
of 4 mL each was added and allowed to stand for 12 min. Finally, the absorbance was measured at
502 nm. Comparisons were made with standards of known rutin concentrations, and the results were
expressed as mg·g−1 FW.

3.13. RNA Extraction, cDNA Preparation and Gene Expression Analysis

Frozen tissues (5 g) from at least 5 samples were ground in a mortar using a pestle in the presence
of liquid nitrogen. Total RNA was extracted using the hot borate method as described Landi et al. [42].
RNA was quantified by absorbance at 260 nm. After the treatment with RNase-free DNase (Promega
Biotech Ibérica. Madrid, Spain), RNA of the same quality was reverse transcribed into cDNA with
AMV Reverse Transcriptase (Takara, Kusatsu, Japan). Dilutions of cDNA were used as templates in
q-PCR total mRNA was reverse transcribed using polyT primers and the First Strand cDNA Synthesis
Kit for RT-PCR (AMV) (Roche Farma, SA, Barcelona, Spain) following the manufacturer’s instructions.

The real time qPCR amplification was performed with gene-specific primers (Table 2). 26S18S
gene (a housekeeping gene) was used as internal control for all the strawberry genes. Each reaction was
performed in triplicate for each sample in 20 µL final volume containing 5 µL cDNA, 25 pmol specific
primers, and 10 µL of Power SYBR Green PCR Master Mix (Applied Biosystems) according to the
manufacturer’s protocol. PCRs were carried out using the ABIVeriti (Applied Biosystems, Foster City,
CA, USA) for 2 min at 95 ◦C and then for 40 cycles as follows: 5 s at 95 ◦C, 10 s at 58 ◦C and 10 s at 72 ◦C.
The specificity of the PCR amplification was confirmed with a melt curve analysis consisting of a 0.1 ◦C
temperature gradient from 55 to 90 ◦C. Primer efficiencies were determined for each oligonucleotide
pair. To account for different primer efficiencies, relative quantification of transcript levels to the
reference. Relative expression levels were calculated using the 2−∆∆Ct method [43].

Table 2. Gene-specific oligonucleotides primers pairs used for RTqPCR. The accession number of each
gene was obtained from GenBank.

Name Gene Gene ID Sequence of the 5–3 Primers, Forward/Reverse

FaPL 101301735 CTCGTTTGCGTATCGG
TGCGTGCTCATTCCA

FaPE 101310153 TTGGACCACATTTCGC
GGTCGGCTCATCTTTGT

FaACO 101298627 TACCTCAAGCACCTTCCTCGC
TTAGTGCCAAAGGTAGGACTA

FaACS AY912491 GAGAACACGAAACTCCAAG
CCAAGAAGACATCAACCC

FaEG 101301481 AACGAGTTTGGTTGGGATAA
GCAGGAACGATAGCGAAG

26S-18S X58118 ACCGTTGATTCGCACAATTGGTCATCG
TACTGCGGGTCGGCAATCGGACG

Note: The Ct values for each qRT-PCR reaction were normalized in relation to the Ct value corresponding
to an interspacer 26S-18S strawberry RNA gene (housekeeping gene) using the primers Fa18S-U:
5′-ACCGTTGATTCGCACAATTGG TCATCG-3′ and Fa18S-L: 5′-TACTGCGGGTCGGCAATCGGACG-3′.



Int. J. Mol. Sci. 2018, 19, 2194 11 of 13

3.14. Statistical Analyses

All the measurements were conducted at least triplicate. Data were expressed as mean ± SD (n =
3). The data were analyzed using the SPSS 19.0 (IBM, New York, NY, USA) software for analysis of
variance and Duncan’s test. The significance was established at p ≤ 0.05.

4. Conclusions

The results of the present study indicate that the pre-harvest spraying of COS seemed to have a
beneficial impact on quality improvement of strawberry. Fruit treated with COS had positive effect
on fruit firmness, viscosity, lignin, vitamin C, total phenol and antioxidant activity. Moreover, COS
also increased the cell wall content and suppressed the expression of genes involved in the ethylene
signaling pathway, which reduced the softness and increased the shelf life of fruit. These results imply
that COS may not only improve strawberry quality, but also have positive effect on extending its
shelf life. Combined with its well-known plant defense induction activity, COS could be used as an
eco-friendly, nontoxic substitute substance to traditional pesticides in fruit crops.
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