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Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit
commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded.
But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC
having these features, the receiver can always learn a non-trivial amount of information on the sender’s
committed bit before it is unveiled, while his cheating can pass the security check with a probability not less
than 50%. The sender’s cheating is also studied. The optimal CSQBC protocols that can minimize the sum of
the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also
discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

Q
uantum bit commitment (QBC) is a two-party cryptography including the following phases. In the
commit phase, Alice (the sender of the commitment) decides the value of the bit b (b 5 0 or 1) that she
wants to commit, and sends Bob (the receiver of the commitment) a piece of evidence, e.g., some

quantum states. Later, in the unveil phase, Alice announces the value of b, and Bob checks it with the evidence.
The interval between the commit and unveil phases is sometimes called the holding phase. A QBC protocol is
called unconditionally secure if any cheating can be detected with a probability arbitrarily close to 1. Here Alice’s
cheating means that she wants to change the value of b after the commit phase, while Bob’s cheating means that he
tries to learn b before the unveil phase.

QBC is an essential primitive for building quantum multi-party secure computations and other ‘‘post-cold-war
era’’ multi-party cryptographic protocols1,2. Unfortunately, it is widely believed that unconditionally secure QBC
is impossible3,4. This result, known as the Mayers-Lo-Chau (MLC) no-go theorem, was considered as putting a
serious drawback on quantum cryptography.

To evade the problem, the concept ‘‘cheat sensitive quantum bit commitment (CSQBC)’’ was proposed5–10,
where the probability for detecting the cheating does not need to be arbitrarily close to 1. Instead, it merely
requires the probability to be nonzero. With this loosen security requirement, many insecure QBC protocols can
be regarded as secure CSQBC. Therefore, at the first glance it seems that CSQBC will be very easy to achieve.

But intriguingly, here we will show that there still exists boundary for the security of a typical class of CSQBC.
Especially, Bob can always feel free to measure the quantum states to learn b, while he stands at least 50% chances
to escape Alice’s detection.

Results
Common features of CSQBC. By checking the existing CSQBC protocols5–10, we find that they all share the
following common features (note that the names Alice and Bob are used reversely in Refs. 7, 9, 10):

(1) During the holding phase, the receiver Bob owns a quantum system Y encoding Alice’s committed bit b.
(Y can either be prepared by the sender Alice, or be prepared by Bob and sent to Alice, who returns it to Bob
after performing some certain operations according to her choice of b. It also does not matter whether Alice
prepared and kept another quantum system entangling with Y.)

(2) Bob knows the definitions of rB
0 and rB

1 directly before the end of the commit phase. (That is, these
definitions are either clearly stated by the protocol, or announced to Bob by Alice classically. Bob does
not need to perform operations on any quantum system to gain knowledge of these definitions.) Here rB

0
and rB

1 are the density matrices of Bob’s Y corresponding to b 5 0 and b 5 1, respectively.
(3) To detect Bob’s cheating, at the unveil phase Alice can check whether the state of Y is intact. (It does not

matter whether the entire Y or only a small part can be checked.)
(4) To detect Alice’s cheating, at the unveil phase Bob can learn a nontrivial amount of information on the

value of b from Y, even without any help from Alice.
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The last feature indicates that there exists at least one operation
known to Bob, which can output a bit b9 when being applied on Y,
and b9 5 b should occur with a probability larger than 1/2. As a result,
there must be rB

0=rB
1 . This is a main difference from the original

QBC, where there is generally rB
0^rB

1 so that it can be uncondition-
ally secure against dishonest-Bob.

The original purpose of CSQBC having these features is as follows.
Alice’s cheating strategy suggested in the MLC no-go theorem is
based on the Hughston-Jozsa-Wootters (HJW) theorem11, which
applies to the case rB

0^rB
1 . Therefore with feature (4), i.e., rB

0=rB
1 ,

Alice’s cheating becomes detectable so that the MLC no-go theorem
can be evaded. On the other hand, if Bob takes advantages of rB

0=rB
1

and performs measurements to discriminate the committed bit b, the
quantum state will be disturbed. In this case, with feature (3) Bob’s
cheating will be detected with a certain probability when Alice asks
him to return the quantum state and checks wether it remains undis-
turbed, so that the goal of CSQBC can be met.

But with a rigorous quantitative analysis on the probability of
detecting Bob’s cheating, we will find that it is always not sufficiently
large when Bob applies some specific measurements. Therefore any
CSQBC protocol having the above four features will be bounded by
the security limit below.

Notations and Bob’s cheating strategy. According to Eq. (9.22)
of Ref. 12, the trace distance D rB

0 ,rB
1

� �
:tr rB

0 {rB
1

�� ���2 (where

Aj j:
ffiffiffiffiffiffiffiffiffi
A{A
p

) between rB
0 and rB

1 satisfies

D rB
0 ,rB

1

� �
~ max

P
tr P rB

0 {rB
1

� �� �
, ð1Þ

where the maximization is taken over all positive operators P # I,
with I being the identity operator. The above feature (2) of CSQBC
guarantees that Bob knows how rB

0 and rB
1 are defined. Thus he can

find the positive projectors P 5 Pm that maximizes tr P rB
0{rB

1

� �� �
. If

rB
0 stands a higher probability to be projected successfully than rB

1
when applying Pm, then we takes P0 ; Pm and P1 ; I 2 Pm.
Otherwise we takes P0 ; I 2 Pm and P1 ; Pm. Feature (1) ensures
that Bob owns the system Y encoding Alice’s committed bit b during
the holding phase. Therefore, by applying the positive operator-

valued measure (POVM) P{
0P0,P{

1P1

n o
on Y, Bob can discriminate

between rB
0 and rB

1 and learn Alice’s committed b with the maximal
probability allowed by D rB

0 ,rB
1

� �
.

To analyze rigorously the probability for Bob to escape Alice’s
detection with this POVM, let H be the global Hilbert space con-
structed by all possible states of Y (either b 5 0 or 1). Since P0, P1 are
positive projectors, there exists an orthonormal basis {jeiæ} of H (the
following proof remains valid regardless whether {jeiæ} is known to
Alice or Bob), in which P0, P1 can be expressed as

P0~
X

i

e 0ð Þ
i

��� E
e 0ð Þ

i

D ���,
P1~

X
i

e 1ð Þ
i

��� E
e 1ð Þ

i

D ���, ð2Þ

where e 0ð Þ
i

��� En o
| e 1ð Þ

i

��� En o
~ eij if g.

Meanwhile, before Bob applying any measurement, the general
form of the initial state of Y can always be written as

W6Yj iini~
ffiffiffi
a
p X

i

l
0ð Þ

i f 0ð Þ
i

��� E
6 e 0ð Þ

i

��� E

z
ffiffiffi
b

p X
i

l
1ð Þ

i f 1ð Þ
i

��� E
6 e 1ð Þ

i

��� E
,

ð3Þ

where 0 # a # 1, b 5 1 2 a, and
X

i

l
0ð Þ

i

��� ���2~X
i

l
1ð Þ

i

��� ���2~1 (sum

over all possible i within each corresponding subspace). The values of

a, b, l
0ð Þ

i ’s and l
1ð Þ

i ’s are chosen by Alice according to the value of her
committed bit b. Here W is a quantum system that Alice may intro-

duce and keep to herself, which entangles with Bob’s Y. All f 0ð Þ
i

��� E
’s

and f 1ð Þ
i

��� E
’s are the vectors describing the state of W, which are not

required to be orthogonal to each other. In the case where Alice does

not introduce such a system, we can simply set all f 0ð Þ
i

��� E
’s and f 1ð Þ

i

��� E
’s

to be equal, so that Eq. (3) still applies.

The security bound on Bob’s cheating. As elaborated in the 1st
subsection of Methods section, when dishonest-Bob applies the

above POVM P{
0 P0,P{

1P1

n o
on Y, we find that the probability for

Bob’s cheating to pass Alice’s detection successfully is

PB~
1
2
z

1
2

2a{1ð Þ2, ð4Þ

and the amount of mutual information he obtained is

Im~1{h að Þ: ð5Þ

Here h(a) ; 2a log2 a 2 (1 2 a) log2(1 2 a) is the binary entropy
function.

With Eqs. (4) and (5), we plot PB and Im as a function of a in FIG. 1.
Since 0 # a # 1, FIG. 1 and Eq. (4) both gives

PB§50%: ð6Þ

The minimum PB 5 50% can be reached when Alice chooses a 5 0.5.
Thus we come to the conclusion that Bob can always learn Alice’s
committed b with the maximal probability allowed by the trace dis-
tance between rB

0 and rB
1 , while his cheating stands at least 50%

chance to escape Alice’s detection.
It may look weird that FIG. 1 seems to indicate that the more

amount of information that Bob obtains, the easier he can pass
Alice’s detection. But we must note that the amount of Bob’s
information is not chosen by himself. Instead, it is determined by
the value of a that Alice chooses. That is, once Alice determines
which state is used for encoding her committed bit, the maximum
amount of information that Bob can obtain is also fixed.

On the other hand, the above result indicates that Alice should
make a as close to 0.5 as possible, so that Bob’s information and
successful cheating probability can be minimized. However, note
that she has to choose the initial state Eq. (3) within the range
restricted by the protocol. Due to the feature (4) of CSQBC, the trace
distance D rB

0 ,rB
1

� �
has to be nonzero, Therefore, generally a cannot

be made very close to 0.5, as we will see in the examples below.

Examples. In the CSQBC protocol in Ref. 5, Bob’s system Y is a
single qubit, whose state is either j0æ or j2æ (j1æ or j1æ) when Alice
commits b 5 0 (b 5 1). Here j0æ and j1æ are orthogonal to each other,

+j i: 0j i+ 1j ið Þ
. ffiffiffi

2
p

. So we have rB
0 ~ 0j i 0h jz {j i {h jð Þ=2 and

rB
1~ 1j i 1h jz zj i zh jð Þ=2. Define

e 0ð Þ�� E
:cos {p=8ð Þ 0j izsin {p=8ð Þ 1j i,

e 1ð Þ�� E
:cos 3p=8ð Þ 0j izsin 3p=8ð Þ 1j i:

ð7Þ

Then Bob’s operation for maximally discriminating rB
0 and rB

1 is to
measure Y in the basis {je(0)æ, je(1)æ}, i.e., he applies the projector
P0 5 je(0)æ Æe(0)j. When the projection is successful (unsuccessful),
he takes b9 5 0 (b9 5 1) as the decoded result. With this method,

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9398 | DOI: 10.1038/srep09398 2



b9 will match Alice’s actual committed bit b with the probability
cos2 p=8ð Þ^85:36%. Meanwhile, Alice’s four input states can be
expanded in the {je(0)æ, je(1)æ} basis as

0j i~cos p=8ð Þ e 0ð Þ�� E
zsin p=8ð Þ e 1ð Þ�� E

,

{j i~cos p=8ð Þ e 0ð Þ�� E
{sin p=8ð Þ e 1ð Þ�� E

,

1j i~{sin p=8ð Þ e 0ð Þ�� E
zcos p=8ð Þ e 1ð Þ�� E

,

zj i~sin p=8ð Þ e 0ð Þ�� E
zcos p=8ð Þ e 1ð Þ�� E

:

ð8Þ

Comparing with Eq. (3), we can see that there is either a 5 cos2(p/8)
or a 5 sin2(p/8). Substitute them into Eq. (4) will both yield
PB 5 sin4(p/8) 1 cos4(p/8) 5 75%. That is, in the CSQBC protocol
in Ref. 5, Bob can learn Alice’s committed bit with reliability 85.36%
(i.e., his mutual information is 1{h 0:8536ð Þ^0:4 bit) before the
unveil phase, while he can pass Alice’s security check with
probability 75%. This protocol is corresponding to the dash lines in
our FIG. 1.

Another example can be found in Ref. 13, where we illustrated how
our above cheating strategy applies on the CSQBC protocol in Ref. 9.
This protocol looks more complicated than the one in Ref. 5, as the
committed bit b is encoded with many qubits, instead of a single one.
The authors of Ref. 9 merely analyzed the individual attack of the
receiver (note that they used the names Alice and Bob reversely)
where the qubits are measured one by one. Then it is concluded that
the cheating can be detected with a probability arbitrarily close to 1.
But as we shown above, instead of individual measurements, the

dishonest receiver can apply a two-element POVM P{
0P0,P{

1 P1

n o
on the entire state encoding the committed bit. When this state
consists of many qubits, each basis vector jeiæ of the Hilbert space
H is a multi-level state describing all qubits. Thus the projectors P0,
P1 in Eq. (2) are actually collective measurements. The detailed form
of P0, P1 is given in Eq. (2) of Ref. 13. As a result, it was further
elaborated there that this collective measurement is as effective as
individual measurements on learning the committed bit, while it
causes much less disturbance on the multi-qubit state. Once again,
the probability for the cheater to escape the detection was shown13 to
be not less than 50%. With the increase of the qubit number n, this
probability can even be arbitrarily close to 100%.

Alice’s cheating strategy. Alice’s cheating strategy used in the MLC
no-go theorem requires the condition rB

0^rB
1 , which no longer holds

in CSQBC. Nevertheless, she can still apply the same strategy in
CSQBC and try her luck. To give a detailed description of the
strategy, first let us model the coding method in CSQBC more
precisely. For generality, consider that in the protocol, besides
Bob’s system Y, there is another system E. Alice’s different
committed values of b is encoded with different states of the
combined system E fl Y. System E is kept at Alice’s side during
the commit and holding phases, and is required to be sent to Bob at
the unveil phase to justify Alice’s commitment. Let rEB

0 and rEB
1

denote the density matrices of E fl Y corresponding to b 5 0 and
b 5 1, respectively. Note that in all existing CSQBC protocols5–10,
there is no such a system E. But we include it here, so that the model
can cover more protocols that may be proposed in the future.

In this scenario, Alice’s cheating strategy is as follows. At
the beginning of the protocol she introduces an ancillary system W
which is a copy of E fl Y. Since the fidelity

F rEB
0 ,rEB

1

� �
:tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rEB

0ð Þ1=2
rEB

1 rEB
0ð Þ1=2

q
between rEB

0 and rEB
1

satisfies12

F rEB
0 ,rEB

1

� �
~ max

y0j i, y1j i
y0 y1j jh ij j, ð9Þ

where the maximization is over all purifications jQ0æ of rEB
0 and jQ1æ

of rEB
1 into W fl E fl Y, Alice finds the real and positive jy0æ, jy1æ

that reach the maximum, i.e.,

F rEB
0 ,rEB

1

� �
~ y0 y1jh i~ y1 y0jh i: ð10Þ

Then she prepares the initial state of W fl E fl Y as

ycj i~
y0j iz y1j i

N
, ð11Þ

where the normalization constant

N~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z y0 y1jh iz y1 y0jh i

p
: ð12Þ

She uses this state to complete the rest of the commit protocol. With
this method, the value of b is not determined during the commit
phase.

In the unveil phase, Alice decides whether she wants to unveil
b 5 0 or b 5 1. Then she simply uses jycæ as jybæ to complete the

Figure 1 | Bob’s successful cheating probability PB (red line) and mutual information Im (blue line) on Alice’s committed bit b as a function of a that
Alice chooses for the initial state Eq.(3). The dash lines mark the values for the protocol in Ref. 5.
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protocol. From the symmetry of jQ0æ and jQ1æ in Eq.(11), we can see
that her successful cheating probabilities for b 5 0 and b 5 1 are both

PA~ y0 ycjh ij j2~ 1z y0 y1jh ið Þ 1z y1 y0jh ið Þ
2z y0 y1jh iz y1 y0jh i

~
1zF rEB

0 ,rEB
1

� �
2

:

ð13Þ

Therefore, in any specific CSQBC protocol, the Alice’s exact cheating
probability can be calculated once the definition of rEB

0 , rEB
1 is known.

The optimal protocols are trivial. Now we will try to find the
CSQBC protocols which can optimally detect the cheating of both
parties, i.e., minimizing the sum of Alice’s and Bob’s cheating
probabilities.

Note that Eq. (4) depends on the specific value of a in the state
Eq. (3) that Alice chooses in a single run of the protocol, while
F rEB

0 ,rEB
1

� �
in Eq. (13) is the statistical result of all the legitimate

states allowed by the protocol. Thus it is hard to compare Eq. (13)
and Eq. (4) directly and give a general result without knowing the
details on the composition of rEB

b in a specific protocol.
Fortunately, in all existing CSQBC protocols5–10, there is no system

E. The form of the states of Bob’s system Y alone carries all the
information of b. Thus the trace distance D rEB

0 ,rEB
1

� �
~D rB

0 ,rB
1

� �
.

For any protocol of this kind (as well as protocols having system E but
still satisfying D rEB

0 ,rEB
1

� �
~D rB

0 ,rB
1

� �
), we can replace both a and

F rEB
0 ,rEB

1

� �
with D rB

0 ,rB
1

� �
, as elaborated in the 2nd subsection of

Method, where we obtain

PA§1{
D rB

0 ,rB
1

� �
2

, ð14Þ

and

PB§

1zD rB
0 ,rB

1

� �2

2
: ð15Þ

These two equations suggest that PA and PB cannot be minimized
simultaneously in the same protocol, because reducing PA requires a
higher D rB

0 ,rB
1

� �
, while it will result in a higher PB at the same time.

Moreover, we must note that the above PA and PB are obtained
assuming that the actions of both parties in the protocol will always

be checked. But this is impossible, because they share the same system
W fl E fl Y. In the unveil phase, either Bob will measure E fl Y to
check Alice’s action, or he is required to return Y to Alice who checks
his action. These cannot be done simultaneously. Suppose that in a
CSQBC protocol, Bob’s action is checked with probability f (0 # f # 1),
and Alice’s action is checked with probability 1 2 f. When one’s
action is not checked, he/she can cheat successfully with probability
1. Thus the cheating probabilities PA and PB should be replaced by

P�A~fz 1{fð ÞPA ð16Þ

and

P�B~ 1{fð ÞzfPB, ð17Þ

respectively. Combining them with Eqs. (14) and (15), we find

P�AzP�B§2{
fzD rB

0 ,rB
1

� �
2

zfD rB
0 ,rB

1

� � 1zD rB
0 ,rB

1

� �
2

:

ð18Þ

Since 0 # f # 1 and 0ƒD rB
0 ,rB

1

� �
ƒ1, we find another security

lower bound of CSQBC

P�AzP�B§
3
2
: ð19Þ

To find the optimal protocol that can reach this bound, we plot the
lower bound of P�AzP�B as a function of D rB

0 ,rB
1

� �
and f in FIG. 2

according to Eq. (18). It shows that there are two types of protocols
that can both reach the minimum P�AzP�B~3=2, denoted as points
A and B in FIG. 2, respectively, with the parameters (A)
D rB

0 ,rB
1

� �
~1, f 5 0, and (B) D rB

0 ,rB
1

� �
~0, f 5 1. Type (A) pro-

tocols mean that rB
0 and rB

1 are orthogonal so that P�A reaches its
minimum 1/2. However, rB

0 and rB
1 can be distinguished perfectly

and Bob’s action is never checked. Thus P�B~1, i.e., he can always
learn Alice’s committed b with reliability 1 and never get caught. In
type (B) protocols, rB

0~rB
1 so that Bob learns nothing about b. But

Alice’s action is never checked so that she can unveil b as whatever
she wants, with a successful cheating probability P�A~1. Therefore,
we can see that these optimal protocols are all trivial as they are

Figure 2 | The lower bound of the sum of the cheating probabilities P�AzP�B as a function of the trace distance D rB
0 ,rB

1

� �
and the probability f with

which Bob’s action is checked. A and B denote the points that reach the minimum P�AzP�B~3=2.
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completely insecure against one of the parties. Thus they do not seem
to have any practical usage.

The fair protocol. Since the protocols that can minimize P�AzP�B all
look useless, let us consider the protocol satisfying P�A~P�B so that it is
fair for both parties, and try to minimize P�A, P�B in this case. From
Eq. (37) we can see that the inequality Eq. (15) can become equality
when �a2~a2, i.e., all the states allowed to be chosen in the protocol
for committing the same b value should have the same a value. Also,
note that the lowest bounds in Eqs. (14) and (18) cannot be reached
by most D rB

0 ,rB
1

� �
, because these inequalities can become equalities if

and only if F rB
0 ,rB

1

� �
~1{D rB

0 ,rB
1

� �
, which requires rB

0~rB
1 .

Therefore, only the above optimal protocols can reach these
bound. For this reason, to calculate P�A precisely in other protocols,
we should use Eq. (13) instead of Eq. (14). To compute F rEB

0 ,rEB
1

� �
in

Eq. (13), for simplicity we consider only the protocols in which there
are

rEB
0 ~rB

0~
a 0

0 1{a

" #
,

rEB
1 ~rB

1~
1{a 0

0 a

" #
,

ð20Þ

then

F rB
0 ,rB

1

� �
~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1{að Þ

p
,

D rB
0 ,rB

1

� �
~2a{1:

ð21Þ

Combining them with Eqs. (13), (16), (17) and (15) (the latter
becomes equality once we choose �a2~a2), then by solving P�A~P�B
we yield

f~
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1{að Þ

p
{1

2a{1ð Þ2z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1{að Þ

p
{2

: ð22Þ

Any protocol satisfying this equation is fair for both parties. Now let
us find the minimal value of P�A~P�B. Substituting this f into Eq. (17),
we obtain

P�A~P�B~
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1{að Þ

p
z1

� �
2a2{2az1ð Þ{2

4a2{4az2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1{að Þ{1

p : ð23Þ

By solving dP�A
�

da~0, we find that the minimal cheating
probabilities in such protocols are P�A~P�B~0:904, which can be
obtained when a^0:885, i.e.,

ffiffiffi
a
p

^0:941^cos 19:850ð Þ. In this
case f^0:469.

A simple protocol having these parameters is: Alice sends Bob the
state cos(19.85u) j0æ 6 sin(19.85u) j1æ (sin(19.85u) j0æ 6 cos(19.85u) j1æ)
if she wants to commit b 5 0 (b 5 1). In the unveil phase, with
probability f^0:469 Bob returns the state and Alice checks whether
it remains undisturbed, with probability 1{f^0:531 Bob measures
the state and checks whether it agrees with the value of Alice unveiled b.

Nevertheless, there is the difficulty in finding a method for decid-
ing which party will be checked in a single run of the protocol.
Dishonest Alice (Bob) would like to decrease 1 2 f (f) so that
P�A P�B
� �

can be raised. Thus they do not trust each other and may
not collaborate. The CSQBC protocol in Ref. 5 adopts a process called
‘‘the game’’ to handle this problem, which is very similar to quantum
coin flipping (QCF) protocols14. However, Ishizaka15 showed that
this process provides extra security loophole to Bob, so that there
is a cheating strategy for him to learn b with reliability 61.79% (which
is lower than what can be obtained with our cheating strategy, as
calculated in the Examples section) while passing Alice’s check with
probability 100% (which is higher than that of our strategy). It was

further shown in Ref. 16 that due to the inexistence of ideal black-
boxed QCF, any CSQBC protocol based on biased QCF cannot be
secure. Therefore, it remains unclear how to build a fair CSQBC
protocol with P�A~P�B while minimizing P�A and P�B.

Discussion
In summary, we showed that any CSQBC protocol having the above
four features is subjected to the security bound Eq. (6). Protocols
satisfying D rEB

0 ,rEB
1

� �
~D rB

0 ,rB
1

� �
is further bounded by Eq. (19).

Note that the insecurity of QCF-based CSQBC protocols (e.g.,
Refs. 5, 6) was already pinpointed out in Refs. 15, 16. But our proof
also applies to the non-QCF-based ones.

Our result should not be simply considered as a generalization of
the MLC no-go proof. Instead, it is a complement. This is because the
MLC no-go proof applies to QBC protocol with rB

0^rB
1 . But as

pointed out in Ref. 9, CSQBC does not need to satisfy this require-
ment so that it may evade the MLC theorem. On the contrary, our
proof works for the case rB

0=rB
1 , thus it fills the gap where the MLC

proof left. Meanwhile, the MLC theorem concentrates on the cheat-
ing of Alice. It does not exclude the existence of protocols which is
unconditionally secure against dishonest Bob only. On the other
hand, our result shows that Bob can always cheat in CSQBC regard-
less Alice is honest or not.

It will be interesting to study whether there can be CSQBC protocols
without the above four features. It seems that Kent’s relativistic QBC17–19

and our recent proposals20,21 do not satisfy feature (1), while the protocol
in Ref. 22 does not have feature (2), as elaborated in Ref. 23. However,
these works are aimed to achieve the original QBC, instead of CSQBC.
Also, Refs. 20–23 have not gained wide recognition yet. Thus it is still an
open question whether it is possible to build non-relativistic CSQBC
protocols which are not limited by the above security bounds, without
relying on computational and experimental constraints.

Methods
Calculating Bob’s cheating probability. Consider the POVM {P{

0 P0, P{
1 P1} defined

in Eq. (2). After Bob applies it on Y, there can be two outcomes.
(I) The projection outcome is P0. Then Bob takes b9 5 0 as his decoded result of

Alice’s committed bit b. With Eqs. (2) and (3) we yield

P0 W6Yj iini~
ffiffiffi
a
p X

i

l
0ð Þ

i f 0ð Þ
i

��� E
6 e 0ð Þ

i

��� E
: ð24Þ

Thus this case will occurs with the probability

pI~a, ð25Þ

while the resultant state of W fl Y is

W6Yj iI~
1ffiffiffiffi
pI
p P0 W6Yj iini: ð26Þ

As described in feature (3) of CSQBC, at the unveil phase Alice may require Bob to
return Y and check whether it remains intact in its initial state. The maximal prob-
ability for Alice to find out that Bob has already projected jWflYæini into jWflYæI is
bounded by

~pI~1{ I W6Y W6Yjh iini

�� ��2
~1{

1
pI

a2:
ð27Þ

Thus the total probability for (case (I) occurred) AND (Alice failed to detect Bob’s
cheating) is

pI 1{~pI

� �
~a2: ð28Þ

(II) The projection outcome is P1. Then Bob takes b9 5 1 as his decoded result of
Alice’s b. Now

P1 W6Yj iini~
ffiffiffi
b

p X
i

l
1ð Þ

i f 1ð Þ
i

��� E
6 e 1ð Þ

i

��� E
: ð29Þ
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Obviously, this case will occurs with the probability

pII~1{pI : ð30Þ

Meanwhile, the resultant state of W fl Y in this case is

W6Yj iII~
1ffiffiffiffiffiffi
pII
p P1 W6Yj iini: ð31Þ

The maximal probability for Alice to find out that Bob has already projected jWfl

Yæini into jW fl YæII is bounded by

~pII~1{ II W6Y W6Yjh iini

�� ��2
~1{

1
pII

b2:
ð32Þ

Thus the total probability for (case (II) occurred) AND (Alice failed to detect Bob’s
cheating) is

pII 1{~pII

� �
~b2: ð33Þ

Taking both cases (I) and (II) into consideration, the overall probability for Bob’s
cheating to pass Alice’s detection successfully is

PB~pI 1{~pI

� �
zpII 1{~pII

� �
~a2zb2

~
1
2
z

1
2

2a{1ð Þ2:
ð34Þ

Meanwhile, since the projection outcome will either be P0 or P1 with the prob-
abilities pI and pII 5 1 2 pI, respectively, Bob’s b9 will match Alice’s b with the
probability pI or 1 2 pI too. Note that h(1 2 pI) 5 h(pI). Thus the amount of mutual
information that Bob obtains with this POVM is

Im~1{h pIð Þ~1{h að Þ: ð35Þ

Bounding the cheating probabilities with trace distance. Suppose that there are
many states allowed to be chosen randomly for committing b 5 0 in the protocol,
each of which takes the form of Eq. (3), but with different values of the coefficients a,

b, l
0ð Þ

i ’s and l
1ð Þ

i ’s. Bob applies the optimal POVM to decode b. Then Eq. (3) indicates
that he can learn b correctly with probability �a, i.e., the average of a. Meanwhile, it is
well-known that the maximal probability for discriminating two density matrices rB

0 ,
rB

1 is 1zD rB
0 ,rB

1

� �� ��
2. Therefore

D rB
0 ,rB

1

� �
~2�a{1: ð36Þ

Since Eq. (4) shows that Bob’s average cheating probability for these states is

PB~
1z 2a{1ð Þ2

2
§

1z 2�a{1ð Þ2

2
, ð37Þ

we have

PB§

1zD rB
0 ,rB

1

� �2

2
: ð38Þ

Similar discussion is also valid for the states for committing b 5 1, except that a
should be replace by b 5 1 2 a. But Eq. (38) remains the same because Eq. (4) satisfies
PB(1 2 a) 5 PB(a).

On the other hand, since12

F rB
0 ,rB

1

� �
§1{D rB

0 ,rB
1

� �
, ð39Þ

from Eq. (13) we yield

PA§1{
D rB

0 ,rB
1

� �
2

: ð40Þ
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