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Abstract

Purpose: This work aimed to improve breast screening program accuracy using automated classification. The goal was to
determine if whole image features represented in the discrete cosine transform would provide a basis for classification.
Priority was placed on avoiding false negative findings.

Methods: Online datasets were used for this work. No informed consent was required. Programs were developed in
Mathematica and, where necessary to improve computational performance ported to C++. The use of a discrete cosine
transform to separate normal from cancerous breast tissue was tested. Features (moments of the mean) were calculated in
square sections of the transform centered on the origin. K-nearest neighbor and naive Bayesian classifiers were tested.

Results: Forty-one features were generated and tested singly, and in combination of two or three. Using a k-nearest
neighbor classifier, sensitivities as high as 98% with a specificity of 66% were achieved. With a naive Bayesian classifier,
sensitivities as high as 100% were achieved with a specificity of 64%.

Conclusion: Whole image classification based on discrete cosine transform (DCT) features was effectively implemented with
a high level of sensitivity and specificity achieved. The high sensitivity attained using the DCT generated feature set implied
that these classifiers could be used in series with other methods to increase specificity. Using a classifier with near 100%
sensitivity, such as the one developed in this project, before applying a second classifier could only boost the accuracy of
that classifier.
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Introduction

Quality control systems have greatly improved the consistency

of mammograms and technical advances have shortened exam

time without negatively impacting performance [1]. The USA

screening programs apparently operate at a sensitivity of 84.1%

and a specificity of 90.4% [2]. Radiologist performance is an

important component of program performance and no matter

how skilled, reporting physicians will miss some cancers that, in

retrospect, were visible in the mammogram [3]. Physician

performance varies widely. One study reported a mean sensitivity

of 77% with a range of 29% to 97%. In that study, specificity

ranged from 71% to 99% with an average of 90% [3]. As may be

expected, higher specificity and positive predictive value has been

shown to correlate with more experience [3–5]. Double readings

have been shown to significantly increase accuracy [6–9]. Sickles

and colleagues [10] reported performance benchmarks based on

an analysis of six breast cancer screening registries and more than

600 radiologists. Of particular interest, the abnormal findings rate

was 8% and this was associated with a positive predictive value of

31.4%.

Various factors contribute to physician performance. Experi-

ence, specialized training and reading volume correlate with better

performance [4]. Presentation difficulty is correlated with poorer

performance, but readers disagree on what is a difficult

presentation [11]. The reasons for screening misses are varied,

but in one study the single largest factor was that patent evidence

was overlooked [12]. This may be due to reader fatigue [13]. In

addition, there is evidence to suggest that low prevalence

predisposes screening radiologists to false negatives [14]. Preva-

lence appeared not to influence aggregate performance measures

[15] but did negatively correlate with inter-observer variability

[16] in that readers were more consistent in the clinical than in the

laboratory environment. Evans and colleagues further investigated

the prevalence effect [14].They were interested to learn if

prevalence in breast screening resulted in a criterion shift as

noted in other situations [17]. They found that false negative rates

fell significantly as prevalence increased (12% high versus 30%

low). On the other hand, the false positive rate did not differ

significantly between the two states. Thus, it appears that

increasing the prevalence of disease in the body of reviewed work

may improve performance in the key false negative statistic.

A useful approach to improving detection is by enlisting a

second reader. This is implemented in many reading centers.

Alternatively, computer algorithms have been enlisted as second

readers [8,9,18,19]. The typical computer aided detection (CAD)
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approach includes a machine learning or training phase followed

by pattern recognition and classification phase. When abnormal-

ities are detected, they are marked for the radiologist’s review. An

inefficiency with this method is that many uninteresting objects

may be marked, potentially reducing the specificity and increasing

the time required for review [5,20–22]. As a consequence, an

increase in sensitivity may be accompanied by a decrease in

specificity [5,23].

An alternate approach to improving the efficiency of screening

programs by pre-selecting higher likelihood cases has been

reported [24–26]. Mammograms were transformed and filtered

using a variety of wavelets. Features extracted from the resulting

maps were used to remove low risk cases from further

consideration. In one report this method provided near perfect

sensitivity with greater than 60% specificity [26]. We postulated

that discriminate use of the discrete cosine transform might

provide useful classification features to identify normal mammo-

grams.

This work was undertaken to improve breast screening program

accuracy using automated classification. The goal was to

determine if whole image features represented in the transform

would provide a basis for binary classification, normal or

suspicious. The overall approach taken consisted of four sequential

steps. 1. Preprocessing, in which images were prepared by

removing useless information and standardizing size, resolution,

and bit depth. 2. Transformation- Images were cosine transformed

to arrange image data by spatial frequency in two dimensions. 3.

Feature extraction- A small group of values were calculated from

the transform for each image. 4. Classification- Machine learning

was used to classify images by comparing them with images of

known pathology. The output would be two pools, one containing

normal and the other suspicious images. If successful the pool

containing suspicious images would be enriched in cancer positive

cases and subsequent interpretation achieve a lower false negative

rate.

Materials and Methods

Programs for this work were developed in Mathematica version

8.0. Input data was obtained from two publicly available

mammographic image databases. The Digital Database for

Screening Mammography (DDSM) [27,28] and the Mammo-

graphic Image Analysis Society (MIAS) databases [29]. Both

included ‘‘ground truth’’ data that describes the type and location

of abnormalities present in the images. Images were extracted,

rescaled to 200 mm resolution and padded or cropped to 10242

pixels.

The subset of the MIAS database used in this study consisted of

205 normal, 54 benign cases and 41 malignant cases all in the

mediolateral oblique (MLO) view. The DDSM medial lateral

oblique (MLO) view data subset consisted of 269 normal, 70

suspicious (5 benign cases and 65 malignant) cases and the DDSM

cranio-caudal (CC) view data subset contained 278 normal, 73

suspicious (5 benign cases and 68 malignant) cases.

Artifacts such as orientation tags were removed using a large-

bright-object binary mask based on peak separation in the

intensity histogram. Half-mean or mean value provided the best

discrimination. The Hadamard product of the mask and the

original image produced an image containing only the relevant

breast tissue.

Frequency space maps were generated using the discrete cosine

transform. In these, data were partitioned into L-shaped blocks,

each twice the width of the proceeding block. The DC coefficient

and the mean, standard deviation, skewness, and kurtosis

determined for each of the ten blocks in the map, provided 41

features per map.

Two classification approaches were tested, k-nearest neighbor

(KNN) and naive Bayesian.

K-nearest neighbor
The twenty-five closest neighbors to each image feature were

stored in the database as was their ordering and their fractional

distance (d/dmax). Combinations of two and three features were

also tested.

Vote taking was used to determine classification. Votes were

unweighted or weighted according to distance and/or prior

probability. The algorithm was tested for between 1 and 25

calculated neighbors for each test image using the leave-one-out

cross validation. The classification was found by adding the values

assigned to the first k neighbors for each image. Suspicious images

were assigned a vote value of +1 (x weighting) and normal images

were assigned a vote value of 21 (x weighting). Adding the votes

resulted in a value greater than or equal to zero if the consensus

was suspicious and less than zero if normal.

Twelve variations of the classifier were calculated. For each

variation, and each number of neighbors, the feature vector with

the highest sensitivity was selected and recorded along with its

specificity.

Naive Bayesian classifier
For the naive Bayesian classifier, the program ran in two stages.

First, posterior probabilities for all forty-one features were

calculated. Next, these were compared with truth-data to

determine the sensitivity and specificity of each feature.

Identically binned feature-histograms for normal and suspicious

images were established. These were populated with the images

according to their feature value. The number of normal and

suspicious images in each bin provided the probability value for

that feature value. Next each image feature was tested using leave-

one-out cross validation.

The likelihood that the test image was suspicious (or normal)

was calculated as likelihoodsuspicious = (suspicious counts)/(total

suspicious).

Posterior probabilities (PP) were calculated as the likelihoods

(suspicious or normal) multiplied by the corresponding prior

probabilities. Suspicious posterior probability was normalized to

the sum of the normal and suspicious posterior probability. The

normalized posterior probability that an image was suspicious was

then added to the database.

The whole process was repeated for all images in the set, for

each feature and using between two and 20 bins. This process was

repeated using combinations of two and three features (820 and

10660 possible combinations). For each additional feature added,

separate histograms were generated and likelihoods calculated.

Once the database was populated with probabilities for each

image for every possible combination of one, two, and three

features, then sensitivity and specificity were calculated. In order to

determine if an image was deemed suspicious, a certain suspicious-

threshold probability had to be chosen, above which the image

would be classified as suspicious. Since the classifications of images

in the training set were known and all posterior probabilities were

calculated, thresholds were chosen based on this data.

For 100% sensitivity, the lowest probability of a suspicious

image being suspicious was used as the threshold. Specificity was

then incrementally increased by using the second lowest proba-

bility of a suspicious image being suspicious as the threshold.

Sensitivity and specificity were calculated for various threshold

values in order to generate ROC data for each experimental setup.

Breast Image Classification
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Optimal setup parameters were determined using the single

feature classifier.

Statistical comparisons were performed for ROC curves

following the methods of Delong [30]. Paired and unpaired t-

tests were performed as appropriate.

Results

Two classification engines were examined, k-nearest neighbor

and Bayesian. In both cases, various conditions were investigated

to determine each engine’s optimal performance. This data is

reported in the following sections.

k-nearest neighbor
Determining the best features. Testing the MIAS, DDSM

MLO and DDSM CC datasets using single feature classifiers for

between 1 and 25 neighbors took on the order of minutes for each

set. For each of the 12 variants of the classifier, the most sensitive

feature or feature set was recorded with its corresponding

specificity (not shown). For MIAS the three best features

(sensitivity values in brackets) were block 2 skewness (16.8%),

block 2 kurtosis (21.9%), and block 1 standard deviation (39.4%).

For DDSM MLO the three best features were block 3 skewness

(19.1%), block 4 mean (26.7%), and block 2 standard deviation

(42.0%). For DDSM CC the three best features were block 6

kurtosis (10.8%), block 1 kurtosis (21.9%), and block 3 skewness

Table 1. KNN classifier performance.

Data No. of Neighbors Distance weighting
Prior Probability
Weighting Sensitivity (%) Specificity (%) PPV NPV

MIAS 2 N N 69.5 51.7 0.40 0.78

DDSM (MLO) 2 N N 82.9 78.8 0.35 0.92

DDSM (CC) 2 N N 83.6 80.9 0.52 0.95

MIAS 1 or 2 Y N 51.6 72.2 0.47 0.76

DDSM (MLO) 3 Y N 65.7 85.1 0.53 0.91

DDSM (CC) 5 Y N 61.6 89.6 0.61 0.90

MIAS 3 N Y 83.2 34.6 0.37 0.81

DDSM (MLO) 13 N Y 98.6 63.2 0.41 0.99

DDSM (CC) 23 N Y 98.6 75.2 0.51 1.00

MIAS 2 Y Y 69.5 52.5 0.41 0.79

DDSM (MLO) 15 Y Y 98.6 65.7 0.43 0.99

DDSM (CC) 12 Y Y 97.3 75.9 0.51 0.99

Note. The factors were tested using the best three features for each dataset.
doi:10.1371/journal.pone.0091015.t001

Figure 1. Unweighted KNN classifier. Sensitivity (Sen, solid lines) and specificity (Sp, dashed lines) versus Number of Neighbors for all three
datasets. MIAS (red), DDSM MLO (green), DDSM CC (black).
doi:10.1371/journal.pone.0091015.g001
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(69.1%). In each trial using a combination of three features

provided the best results.

Trial 1: Unweighted majority voting. The first variant of

the k-nearest neighbor classifier assigned all votes an identical

weight. For each data set, the best sensitivity was found using two

neighbors and three features (Table 1). This configuration

achieved 69.5% sensitivity and 51.7% specificity for MIAS,

82.9% sensitivity and 78.8% specificity for DDSM MLO and

83.6% sensitivity and 80.9% specificity for DDSM CC. The

positive predictive value (PPV) ranged from 35 to 52% and the

negative predictive value (NPV) from 78 to 95% (Table 1). This

classifier trended toward higher specificity and lower sensitivity

(Figure 1) as the number of neighbors included increased.

Trial 2: Distance weighted votes. Using votes weighted by

distance, the best sensitivities were found using three features

(Table 1). For the MIAS set, the highest sensitivity was 51.6% with

Figure 2. Distance weighted KNN classifier. Sensitivity (Sen, solid lines) and specificity (Sp, dashed lines) versus Number of Neighbors for all
three datasets. MIAS (red), DDSM MLO (green), DDSM CC (black).
doi:10.1371/journal.pone.0091015.g002

Figure 3. Prior probability weighted KNN classifier. Sensitivity (Sen, solid lines) and specificity (Sp, dashed lines) versus Number of Neighbors
for all three datasets. MIAS (red), DDSM MLO (green), DDSM CC (black).
doi:10.1371/journal.pone.0091015.g003
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72.2% specificity. For the DDSM MLO set, the best performance

was 65.7% sensitivity and 85.1% specificity for 3 neighbors. For

the DDSM CC set, the best performance obtained was 61.6%

sensitivity and 89.6% specificity for 5 neighbors. This classifier

achieved a PPV ranging from 47 to 51% and an NPV ranging

from 76 to 91%. With more neighbors, the sensitivity and

specificity diverge further, with the effect most pronounced in the

MIAS set (Figure 2).

Trial 3: Prior probability weighted votes. With votes

adjusted for the prior probabilities (Table 1). For MIAS the highest

was 92.7% sensitivity and 39.0% specificity with 6 neighbors. For

DDSM MLO the highest was 98.6% sensitivity and 63.2%

specificity with 13 neighbors. For DDSM CC the highest was

98.6% sensitivity and 75.2% specificity with 23 neighbors. The

classifier achieved a PPV range from 37 to 51% amd an NPV

range from 81 to 100%. Unlike the first two classifiers, this one

favored sensitivity over specificity (Figure 3).

Trial 4: Distance weighted and prior adjusted

voting. When using both distance weighting and prior proba-

bilities, the best classifiers used three features (Table 1). For MIAS

the highest was 85.4% sensitivity and 55.1% specificity with 24

neighbors. For DDSM MLO, the highest was 98.6% sensitivity

and 65.7% specificity with 15 neighbors. For DDSM CC, the

highest was 97.3% sensitivity and 75.9% specificity with 12

neighbors. The classifier provided a PPV range of 41 to 51% and

an NPV range of 79 to 99%. Weighting by neighbor distance, did

not have a significant positive effect on the performance of the

classifiers.

Bayesian classification
The naive Bayesian classifier was tested for all data sets using 1,

2 and 3 features and 2 to 25 histogram bins. The classification

histograms were optimized at 12 bins for MIAS and DDSM MLO

and 13 bins for the DDSM CC data. Thresholds were adjusted to

generate ROC curves.

Best performing features at 100% sensitivity
For the MIAS data set, the best performing features were: block

3 kurtosis, for one feature classifiers, DC offset and block 3 kurtosis

for two feature classifiers, and DC offset, block 1 skewness and

block three kurtosis for three feature classifiers.

For the DDSM MLO data set, the best performing features

were block 4 mean for one feature classifiers, block 4 mean and

block 3 skewness for two feature classifiers, and block 2 standard

deviation, block 2 skewness, and block 3 skewness for three feature

classifiers.

Finally, for the DDSM CC data set, the best performing

features were: block 2 standard deviation for one feature classifiers,

block 2 standard deviation and block 3 skewness for two feature

classifiers, and block 4 mean, block 2 standard deviation, and

block 3 skewness for three feature classifiers.

Feature vector size
Figure 4 shows the specificity achieved for each of the data sets

using one, two, or three features. Two feature classifiers performed

better than one, and generally three feature classifiers performed

better than two. However, there were diminishing gains with the

third added feature.

Using a Bayesian classification scheme permits adjusting its

performance on the training set. When the sensitivity was adjusted

(97–98%) to allow a few false negative images, specificity increased

by 2 percentage points for MIAS, 9 percentage points for MLO

and 15 percentage points for the CC data set (Table 2). The PPV

for MIAS did not change but that of MLO increased by 7

percentage points and that of CC increased by 11 percentage

points. The NPV declined by 4 percentage points for MIAS and 1

percentage point for MLO and CC data sets. After classification,

the MIAS suspicious data sets had a 15% increased disease

prevalence and disease doubled in the MLO and CC data sets.

Overall accuracy. The best classified data sets were the

DDSM MLO and DDSM CC. They performed far better than

the smaller MIAS set.

Receiver operating characteristic (ROC) curves were calculated

for all the datasets using one, two or three features. In all cases

classification was better than random. Figure 5 provides the results

when three features were used in the classification. The number of

features used in classification did not significantly alter the ROC

response within each dataset (Table 3). The MIAS set produced

Figure 4. Effect of feature vector size on Bayesian classifier performance. Specificity versus sensitivity for all datasets. One (light grey), two
(medium grey) or three (dark grey) feature combinations were tested at three sensitivity levels.
doi:10.1371/journal.pone.0091015.g004
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the poorest performance (Figure 5). The DDSM MLO and CC

datasets offered better classification and did not differ significantly

from each other (Table 3). The MIAS performance differed

significantly from that of the other two datasets (Table 3).

At 100% sensitivity, for DDSM MLO with a three feature

classifier, 64.3% specificity was obtained. In other words 173

normal images may be removed from the set of 339 images.

Discussion

The ability of features derived from a discrete cosine transform

(DCT) of mammograms to distinguish normal from suspicious

breast images was tested in three datasets.

The algorithms were adjusted to get the best possible accuracy

for MIAS (sensitivity of 100% and a specificity of 19.0%). When

the DDSM MLO set was introduced, using the exact same

algorithm, there was a substantially better performance (sensitivity

of 100% and a specificity of 64.3%). Since the DDSM subset used

here was only slightly larger than the MIAS, size probably did not

have a significant impact. However, the datasets were qualitatively

different. In the MIAS set, 60 of the 95 suspicious images were

benign, whereas in the DDSM set only 5 of the 70 suspicious

images were benign. Furthermore, all five of those benign findings

were contralateral to a malignant image. In a separate experiment

a new data set will be created to determine if the benign findings

rate degrades the separation of normal from suspicious images.

Choosing the best classifier is often an arbitrary exercise [5].

Here, since a false negative might have severe health repercus-

sions, features and classifiers with the highest sensitivities were

chosen as ‘‘best’’. Choosing classifiers with the highest sensitivity

provided a consistent basis of comparison.

In this study neither the KNN nor the naive Bayesian classifiers

emerged as superior under all conditions. However, the naive

Bayesian classifier had some favorable characteristics. For

example, as an eager learner, it had a more efficient operational

phase. Since all that needed to be taken from the training phase

were two histograms per feature, storage requirements were low.

In addition, computational requirements for classification were

low. The k-nearest neighbor classifier on the other hand required

the feature values and classifications for all images in the training

set to be saved, requiring more storage. Classification of each new

image required comparison to every image in the training set

before votes could be tabulated.

The naive Bayesian classifier is also quite flexible. The threshold

of what to consider normal and what to consider suspicious can be

changed without having to retrain the classifier. This allows the

selection of how much emphasis to place on sensitivity and how

much to trade off for increased specificity. An adjustable KNN

classifier could be developed by changing the weighting assigned

to suspicious and normal neighbor votes. As seen for the prior

adjusted results though, this produces some odd behavior in the

Table 2. Bayesian classifier performancea.

Data
Sensitivity
(%)

Specificity
(%) PPV NPV

Prevalence
Gainb

MIAS 1.00 0.19 0.37 1.00 1.15

MIAS 0.99 0.20 0.37 0.98 1.15

MIAS 0.98 0.21 0.37 0.96 1.16

DDSM (MLO) 1.00 0.64 0.42 1.00 2.04

DDSM (MLO) 0.99 0.72 0.48 0.99 2.32

DDSM (MLO) 0.97 0.73 0.49 0.99 2.35

DDSM (CC) 1.00 0.62 0.41 1.00 1.97

DDSM (CC) 0.99 0.76 0.52 1.00 2.51

DDSM (CC) 0.97 0.77 0.53 0.99 2.54

aClassification was performed using the best three features for each dataset.
bPrevalence gain = TP/(TP+FP)c/TP/(TP+FP)o is the fractional increase of truly
positive images in the suspicious classification.
doi:10.1371/journal.pone.0091015.t002

Figure 5. Bayesian three feature classifier performance. Sensitivity versus 1-specificity. The performance of the classifier was tested on MIAS
(red), DDSM CC (blue and DDSM MLO (black) datasets. as was the case for one and two features the algorithm performed much better on the CC and
MLO datasets.
doi:10.1371/journal.pone.0091015.g005
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classifier depending on the number of neighbors used

(Figures 1–3).

The classifiers used no more than three features. Despite this

small feature vector size, the results were still quite accurate. Using

such a small number of features ensured that over training would

not be an issue. The consistent high performance of these features

for different data sets and different classification algorithms

suggests that the high classification rates are due more to the

features themselves than to the classifiers or to random chance.

The high sensitivity attained using the DCT generated feature

set means that one of the classifiers developed in this project could

be used in series with other computer aided detection methods to

increase overall accuracy [31]. Using a classifier with near 100%

sensitivity, such as the one developed in this project, before

applying a second independent classifier may boost the overall

accuracy. At 100% sensitivity, no suspicious images are lost, while

some (64% in the case of naive Bayesian classification of DDSM

MLO) of the normal images can be removed to a separate low

priority processing queue. In the high priority queue, the second

classifier is given a smaller group of images that are more likely to

be suspicious.

It appears that the DCT feature based classifiers performance is

in the useful range [10]. Sickles and colleagues have provided

reference values to compare the performance of mammographic

stations [10]. If we assume that their published PPV mean values

have a normal distribution, the performance of the KNN and

Bayesian classifiers here is significantly better than these bench-

marks.

This classifiers had two outputs, one that contained only normal

images and the other contained normal and suspicious images.

The algorithm allows selection of a sensitivity threshold. Disease

prevalence in output one can be zero or can be detuned to allow

false negatives. In the first instance, all of the suspicious images are

in output two. If this output was referred to a mammographer the

performance obtained may approximate that described by Evans

and colleagues [14]. They claim that interpretation performance

improves when disease incidence increases. At the very least,

triaging the exams into high an low priority streams may reduce

reader fatigue, a factor thought to contribute to false negative

findings[13]. Investigations are underway to determine the extent

of enrichment possible in a contemporary clinical setting and if

that enrichment results in a lower false negative rate.
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