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Abstract: In the current study, the phytochemical constituents of volatile organic compounds (VOCs)
obtained from Sida rhombifolia L. were identified by GC-FID and GC-MS analysis. A total of 73 volatile
organic compounds were identified. The major components of S. rhombifolia VOCs were identified as
palmitic acid (21.56%), phytol (7.02%), 6,10,14-trimethyl-2-pentadecanone (6.30%), oleic acid (5.48%),
2-pentyl-furan (5.23%), and linoleic acid (3.21%). The VOCs are rich in fatty acids (32.50%), olefine
aldehyde (9.59%), ketone (9.41%), enol (9.02%), aldehyde (8.63%), and ketene (6.41%). The antiox-
idant capacity of S. rhombifolia VOCs was determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate
(DPPH), 2,2-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS), and ferric
reducing/antioxidant power (FRAP) methods with butylated hydroxytoluene (BHT) and Trolox
as standard. The VOCs showed dose-dependent antioxidant activity with IC50 (50% inhibitory
concentration) values of 5.48 ± 0.024 and 1.47 ± 0.012 mg/mL for DPPH and ABTS assays, respec-
tively. FRAP antioxidant capacity was 83.10 ± 1.66 mM/g. The results show that the VOCs distilled
from S. rhombifolia have a moderate antioxidant property that can be utilized as a natural botanical
supplement or an antioxidant.

Keywords: Sida rhombifolia L.; volatile organic compounds (VOCs); GC-MS; GC-FID; antioxidant
activity

1. Introduction

To prevent oxidation in many industries and biological systems, synthetic antioxidants
are commonly used. However, studies assessing the toxicology of those synthetic com-
pounds have demonstrated their adverse impact on human health [1]. In the face of global
public health challenges owing to the overuse of chemically synthesized compounds, there
has been a paradigm shift toward nature, and natural product research potentially plays a
pivotal role. Faced with many stresses and environmental challenges, coupled with being
sedentary, plants have developed many functional molecules to protect themselves [2].
Those plant-derived molecules may be more economical and could be exploited as effective
antioxidant alternatives to offer a viable solution [3].

China has a rich flora in terms of biodiversity in Asia. Endemic and medicinal plants
in this rich flora constitute a vital place. The genus Sida (Malvaceae) has about 200 species
generally scattered in tropical and subtropical areas, whose pharmacological uses have
been supported by several studies [4–6]. S. rhombifolia L., commonly known as teaweed
and Queensland hemp, is an erect perennial shrub bearing yellowish flowers. The alternate
leaves are dull green and linear–oblong to lanceolate and sometimes rhombic, with serrate
margins and finely stellate hairs on the upper surface of the leaf and a dense amount
of stellate hairs on the undersurface, making it look white (Figure 1). S. rhombifolia is
a reputed Chinese herbal medicine traditionally used as a remedy for various ailments,
such as stomach pain, diarrhea, gastritis, enteritis, and dysentery. In addition, stems of
S. rhombifolia abound in mucilage and are employed as emollients and demulcents both
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for internal and external use. The herb is also helpful as a febrifuge with pepper [7]. In
addition to ethnomedicinal observations, in vitro studies show that the hexane, acetone,
and methanol extractions from S. rhombifolia possess anti-hyperglycemic, antioxidant, and
anti-inflammatory properties [8]. Polyphenol-rich fractions from S. rhombifolia showed
considerable antibacterial activity against cotrimoxazole-resistant bacteria strains com-
pared with the standard antibiotic [9]. Pharmacological investigations have revealed the
antinociceptive capacity of ethyl acetate extracts [10]. S. rhombifolia also showed potential
for increased wound healing and analgesic properties [11–13]. Since many multifactorial
diseases mentioned above are associated with oxidative stress [14], and S. rhombifolia is
attached to numerous ethnomedicinal importance, the antioxidant activities of S. rhombifolia
VOCs should be tested. However, comprehensive information on the chemical composition
and antioxidant activities of VOCs distilled from S. rhombifolia is still lacking in the literature.
To fill the gap, jointly with offering scientific support and a chemical basis, the present
study was designed to obtain the phytochemical composition and chemically characterize
the antioxidant capacity of S. rhombifolia VOCs.
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Figure 1. The morphological photographs of tested S. rhombifolia showing the leaves, flowers, fruits,
and seeds released from fruits.

2. Results
2.1. Volatile Components Yield and Phytochemical Characterization

The hydrodistillation of S. rhombifolia biomass using a Clevenger-type apparatus
permitted us to obtain volatile oil with a yield of 0.2 mL from 1.5 kg of S. rhombifolia
biomass. The chemical compositions of S. rhombifolia VOCs are listed in detail in Table 1
along with their retention times (RT), retention index (RI), concentration (%), and CAS ID
according to their order of elution on the column in GC-MS. The ion chromatogram of S.
rhombifolia VOCs is shown in Figure 2.
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Table 1. Chemical composition of VOCs distilled from S. rhombifolia. 

No. RT RI a RI b Compound Area (%) Identification Method CAS ID 
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Figure 2. Ion chromatogram of S. rhombifolia volatile organic compounds derived from GC–MS.

Table 1. Chemical composition of VOCs distilled from S. rhombifolia.

No. RT RI a RI b Compound Area
(%)

Identification
Method CAS ID

1 5.022 878 874 1-Hexanol 0.54% RRI, MS 111-27-3
2 5.868 907 907 Heptanal 0.55% RRI, MS 111-71-7
3 8.143 987 981 1-Octen-3-ol 0.53% RRI, MS 3391-86-4
4 8.437 995 990 2-Pentyl-furan 5.23% RRI, MS 3777-69-3
5 8.721 1005 1003 trans-2-(2-Pentenyl) furan 0.70% RRI, MS 70424-14-5
6 8.781 1007 1004 Octanal 1.54% RRI, MS 124-13-0
7 9.348 1029 - 2-Decyne 1.12% MS 2384-70-5
8 9.512 1036 1022 Eucalyptol 0.26% RRI, MS 470-82-6
9 9.615 1039 1031 2-Ethylhexanol 0.71% RRI, MS 104-76-7
10 9.932 1051 1038 Benzeneacetaldehyde 0.33% RRI, MS 122-78-1
11 10.332 1065 1055 2-Octenal, (E)- 0.95% RRI, MS 2548-87-0
12 10.75 1079 1172 1-Nonanol 1.02% RRI, MS 143-08-8
13 11.47 1103 1103 Linalool 0.83% RRI, MS 78-70-6
14 11.585 1108 1112 Nonanal 1.99% RRI, MS 124-19-6
15 12.681 1152 1143 5-Ethyl-6-methyl-3-hepten-2-one 0.28% RRI, MS 57283-79-1
16 12.856 1159 1153 (E,Z)-2,6-Nonadienal 0.52% RRI, MS 557-48-2
17 13.02 1165 1157 (E)-2-Nonenal 1.71% RRI, MS 18829-56-6
18 13.249 1174 1161 endo-Borneol 0.26% RRI, MS 507-70-0
19 13.86 1196 1193 2-Decanone 2.34% RRI, MS 693-54-9
20 14.165 1208 1205 Decanal 1.18% RRI, MS 112-31-2
21 14.367 1217 1218 (E,E)-2,4-Nonadienal 0.57% RRI, MS 5910-87-2
22 14.531 1225 1223 β-Cyclocitral 0.27% RRI, MS 432-25-7
23 15.507 1266 1267 (Z)-2-Decenal 0.72% RRI, MS 2497-25-8
24 16.26 1296 1295 (E,Z)-2,4-Decadienal 0.64% RRI, MS 25152-83-4
25 16.789 1320 1326 (E,E)-2,4-Decadienal 2.83% RRI, MS 25152-84-5
26 17.826 1368 1366 2-Undecenal 0.54% RRI, MS 2463-77-6
27 18.055 1378 1376 Farnesane 0.31% RRI, MS 3891-98-3
28 18.311 1389 1384 β-Damascenone 1.32% RRI, MS 23726-93-4
29 18.568 1400 1400 Tetradecane 0.24% RRI, MS 629-59-4
30 18.715 1407 1404 6,10-dimethyl-2-undecanone 0.26% RRI, MS 1604-34-8
31 19.31 1436 1436 β-Copaene 0.42% RRI, MS 18252-44-3
32 19.735 1457 1453 6,10-dimethyl-5,9-undecadien-2-one 1.07% RRI, MS 689-67-8
33 19.877 1464 1463 4,11-Dimethyltetradecane 0.54% RRI, MS 55045-12-0

34 20.297 1483 1483 octahydro-4a,7,7-trimethyl-,
cis-2(1H)-Naphthalenone 0.14% RRI, MS 7056-56-6

35 20.368 1487 1488 Curcumene 0.31% RRI, MS 644-30-4
36 20.444 1490 1491 trans-β-Ionone 1.43% RRI, MS 79-77-6
37 21.977 1568 1571 trans-Nerolidol 0.19% RRI, MS 40716-66-3
38 22.043 1571 1576 3,7,11-trimethyl-1-dodecanol 0.18% RRI, MS 6750-34-1
39 22.397 1589 1589 (E,E)-Pseudoionone 0.25% RRI, MS 3548-78-5
40 22.616 1599 1600 Hexadecane 0.45% RRI, MS 544-76-3
41 22.883 1614 1614 Tetradecanal 0.34% RRI, MS 124-25-4
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Table 1. Cont.

No. RT RI a RI b Compound Area
(%)

Identification
Method CAS ID

42 23.936 1671 1667 6,9-Heptadecadiene 0.34% RRI, MS 81265-03-4
43 24.012 1675 1678 Bulnesol 1.36% RRI, MS 22451-73-6
44 24.089 1679 1680 13-Methyltetradecanal 1.40% RRI, MS 75853-51-9
45 24.476 1699 1700 2-Pentadecanone 0.38% RRI, MS 2345-28-0
46 24.771 1716 1715 Pentadecanal 1.36% RRI, MS 2765-11-9
47 25.66 1767 1769 Myristic acid 0.36% RRI, MS 544-63-8
48 26.549 1818 1815 Hexadecanal 0.21% RRI, MS 629-80-1
49 26.925 1840 1840 Neophytadiene 0.25% RRI, MS 504-96-1
50 27.062 1848 1846 6,10,14-Trimethyl-2-pentadecanone 6.30% RRI, MS 502-69-2
51 27.345 1865 1877 Pentadecanoic acid 0.32% RRI, MS 1002-84-2
52 27.771 1890 1878 (E)-2-Hexadecenal 0.40% RRI, MS 22644-96-8
53 27.924 1899 1900 1,2-Epoxyoctadecane 0.17% RRI, MS 7390-81-0
54 28.295 1922 1916 Farnesylacetone 1.23% RRI, MS 1117-52-8
55 28.382 1928 1926 Hexadecanoic acid, methyl ester 0.54% RRI, MS 112-39-0
56 28.737 1950 1947 Isophytol 0.45% RRI, MS 505-32-8
57 29.233 1980 1975 n-Hexadecanoic acid 21.56% RRI, MS 57-10-3
58 29.489 1996 1994 Hexadecanoic acid, ethyl ester 0.55% RRI, MS 628-97-7
59 29.609 2003 2010 (Z)-9-Octadecanal 0.28% RRI, MS 2423-10-1
60 30.231 2044 2042 Oxacyclooctadecan-2-one 0.27% RRI, MS 5637-97-8
61 30.575 2067 2069 Heptadecanoic acid 0.28% RRI, MS 506-12-7
62 30.788 2080 2075 Linoleyl methyl ketone 0.83% RRI, MS 29204-24-8
63 31.033 2096 2093 Methyl linoleate 1.01% RRI, MS 112-63-0
64 31.131 2102 2098 Methyl linolenate 0.28% RRI, MS 301-00-8
65 31.192 2106 2106 γ-Palmitolactone 0.29% RRI, MS 730-46-1
66 31.38 2119 2113 Phytol 7.02% RRI, MS 150-86-7
67 31.704 2141 2131 Linoleic acid 3.21% RRI, MS 60-33-3
68 31.77 2146 2152 Oleic acid 5.48% RRI, MS 112-80-1
69 32.092 2168 2177 Octadecanoic acid 1.28% RRI, MS 57-11-4
70 33.968 2298 2300 Tricosane 0.25% RRI, MS 638-67-5
71 34.748 2356 2364 4,8,12,16-Tetramethylheptadecan-4-olide 0.27% RRI, MS 96168-15-9
72 36.636 2498 2500 Pentacosane 0.31% RRI, MS 629-99-2
73 41.426 2898 2900 Nonacosane 0.29% RRI, MS 630-03-5

Concentration calculated from total ion chromatogram. RI a: calculated retention index. RI b: retention index
obtained from mass spectral database. RRI: relative retention indices calculated against n-alkanes. Identification
method based on the relative retention indices (RRI) of authentic compounds on the HP-5MS column. MS,
identified based on computer matching of the mass spectra with Nist/EPA/NIH 2020 Mass Spectral Database
and comparison with literature data.

A total of 73 compounds were identified in S. rhombifolia VOCs, contributing 94.34%
of the total volatile oils, containing a complex mixture of phytochemical components. The
percentage concentrations of each compound were calculated by GC-FID data. Palmitic
acid (21.56%), phytol (7.02%), 6,10,14-trimethyl-2-pentadecanone (6.30%), oleic acid (5.48%),
2-pentyl-furan (5.23%), and linoleic acid (3.21%) were found to be major components.

2.2. Antioxidant Properties

In the present study, the antioxidant activities of S. rhombifolia VOCs were evaluated
by the DPPH, ABTS, and FRAP assays.

2.2.1. DPPH Assay

The present study applies the test as a simple, quick, adequate test for the comparative
evaluation of volatile organic compounds. The radical scavenging capacity of the S. rhombi-
folia VOCs was tested using the stable free radical DPPH• [15]. Figure 3 demonstrates the
effective concentrations of VOCs distilled from S. rhombifolia required to scavenge DPPH
radical and the scavenging values (RSA%) as an inhibition percentage. The antioxidant
activity increased with VOC concentrations in a dose-dependent manner. At the highest
tested concentration (8 mg/mL), S. rhombifolia VOCs showed 62.98% antioxidant activity,
while BHT and Trolox, the standard antioxidants, showed 84.70% (200 µg/µL) and 94.24%
(100 µg/µL) activity, respectively.
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2.2.2. ABTS Assay

As seen in Figure 4, volatile organic compounds distilled from S. rhombifolia scavenged
ABTS• free radicals in a dose-dependent manner. The ABTS IC50 was 1.47 ± 0.012 mg/mL,
as shown in Table 2.
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Table 2. Antioxidant activities of S. rhombifolia for VOCs expressed as IC50 values (mg/mL) for
DPPH, ABTS, and FRAP assays.

Samples
DPPH 50% Effective

Concentration
(mg/mL)

ABTS 50% Effective
Concentration

(mg/mL)

FRAP Antioxidant
Capacity (mM/g)

S. rhombifolia VOCs 5.48 ± 0.024 1.47 ± 0.012 83.10 ± 1.66
BHT 0.042 ± 0.002 0.006 ± 0.001

Trolox 0.015 ± 0.001 0.014 ± 0.001

2.2.3. FRAP Assay

As shown in Table 2, the antioxidant capacity of S. rhombifolia VOCs evaluated by
the FRAP method was 83.10 ± 1.66 mM/g, which is about 10 times lower than standard
antioxidant BHT. Since ferrous ions (Fe2+) are considered as one of the most effective
pro-oxidants in food production, the modest chelating effects of the S. rhombifolia VOCs
would be beneficial.
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3. Discussion

In the present study, it should be noted that the class of fatty acid (saturated fatty
acid and unsaturated fatty acid) (32.50%) represents the highest percentage, followed by
olefine aldehyde (9.59%), ketone (9.41%), enol (9.02%), aldehyde (8.63%), ketene (6.41%),
and furan derivatives (5.93%). The classification of chemical composition is visually shown
in Figure 5.
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Figure 5. The percentage composition of chemical composition classes distilled from S. rhombifolia.

The predominance of palmitic acid signifies that the oil was of palmitic acid chemotype,
which has been reported to be biochemically important. To be specific, at given concen-
trations, palmitic acid was proved to show selective cytotoxicity to human leukemic cells
but no cytotoxicity to normal HDF (human dermal fibroblast) cells. Furthermore, human
leukemic cell line apoptosis can also be induced by palmitic acid [16]. In addition, previous
studies indicated that palmitic acid showed strong antimetastatic activity by restraining
tumor metastasis regulation proteins and antiproliferative activity by inducing G1 phase
arrest in human prostate cancer cells [17]. Previous findings indicated that palmitic acid but
not palmitoleic acid could impair insulin-induced Akt (Ser473) by inhibiting the activity and
expression of the SERCA2 gene [18]. Moreover, palmitic acid-predominate volatile oil from
Diplazium squamigerum was determined to possess relatively strong antioxidant capacity by
ORAC assay [19]. The abundance of phytol should also be noted. This acyclic monosatu-
rated diterpene alcohol exhibited hepatotoxicity in rats, with induction of necrosis and/or
apoptosis [20], antitumor activities in tumor cell lines (PC-3, MCF-7, HL, HT-29, Hs294T,
A-549, and MDA-MB-231) and in rats [21]. Moreover, phytol possessed antimicrobial [22],
anti-inflammatory [23], antidiabetic [24], and hypolipidemic [25] properties. The essential
oil which contains a relatively high amount 6,10,14-Trimethyl-2-pentadecanone seemed
to be endowed with anti-inflammatory, cytotoxic, and antibacterial activities [26–28]. 2-
Pentylfuran has been reported in other studies to be the major component in some other
plants such as Cirsium setidens and Albizia lebbeck and those 2-pentylfuran-domainated
volatile oils exhibited anti-nociceptive, anti-inflammatory, antioxidant, and anti-cancer
activities [29,30]. The α-β unsaturated compounds were also identified at noteworthy
levels (12.43%). It was well established that α-β-unsaturated moiety-bearing compounds
could activate the NRF2/KEAP1 signaling pathway, which can be described as the chief
regulator of endogenous antioxidant responses to oxidative stress. Moreover, the reactivity
of α-β-unsaturated moiety-bearing compounds explained the VOCs’ significant free radical
scavenging activity [31]. Thus, the traditional uses of S. rhombifolia to treat various ailments
may be due to the main components mentioned above.

Owing to the high number of species, Sida is a taxonomically complex genus. Hence
the comparison of phytochemical components between S. rhombifolia and other species is



Molecules 2022, 27, 7067 7 of 11

needed. Much of the chemical studies were carried out focusing on polar components of
Sida genus such as S. acuta, S. spinosa, and S. cordifolia. However, concerning essential oil or
VOC investigations of the genus Sida, only one study has been published on the species S.
cordifolia, demonstrating good capacity of anti-microorganisms including Staphylococcus
aureus, Candida guilliermondii, and so forth [32].

Various assays for evaluating antioxidant activity depend on different free radical
generators acting through distinct mechanisms [33]. To evaluate the effectiveness of an-
tioxidants, several analytical methods and various substrates should be used so that more
aspects of antioxidant effectiveness are covered. DPPH and ABTS radicals are relatively
stable free radicals and can be reduced by sulfur-containing biomolecules such as cysteine,
ascorbate, GSH, and butylated hydroxyanisole. Accordingly, ABTS and DPPH are widely
used to analyze various extracts in in vitro antioxidant activity [34].

VOCs can possess relatively good antioxidants when activity is similar to or higher
than reference antioxidants. However, in the present study, S. rhombifolia VOCs exhibited a
relatively weak antioxidant effect against the DPPH free radical, as the activity of standard
antioxidants BHT and Trolox at 100 µg/µL were higher than the VOCs at the highest
tested concentration. The lower IC50 value indicates a stronger capacity of the VOCs to act
as DPPH scavengers while the higher IC50 value indicates a relatively lower scavenging
capacity. The IC50 of S. rhombifolia VOCs was 5.48 ± 0.024 mg/mL determined by the DPPH
method, as shown in Table 2. The low antioxidant capacity characterized by DPPH is due
to the fact that the DPPH method was used to evaluate the antioxidant capacity of phenolic
compounds [35], while no phenolic, tannins, and flavonoid compounds were identified
from S. rhombifolia VOCs.

The difference between the results of the DPPH assay and ABTS assay may be ascribed
to the slightly different mechanism: Although both ABTS assay and DPPH assay are tests
based on “Mixed mode” (hydrogen atom transfer, electron transfer, and proton-coupled
electron transfer mechanisms may play roles in varied proportions) as described in a
previous review [36], the DPPH reaction equation can be formulated primarily with respect
to the HAT mechanism as mentioned above, whereas the ABTS• radical is mainly based on
the electron transfer mechanism [37].

The FRAP test is a typical single electron transfer method measuring the reduction
from the ferric ion (Fe3+) complex to the ferrous ion (Fe2+) complex as a measure of total
antioxidant activity. In addition, Cao and Prior observed no correlation between FRAP
and ABTS methods [38]. Hence, the evaluation of overall antioxidant activity via multiple
assays to generate the “antioxidant profile” is highly recommended by Prior et al. [39].

4. Material and Methods
4.1. Plant Material

The aerial parts of S. rhombifolia were collected in Jiuzhou Town, Lingshan County,
Qinzhou City, Guangxi Province, China. The collections were carried out in May 2022. The
species were duly identified by Prof. Hong Zhao, Marine College, Shandong University. A
voucher specimen was deposited in Marine College with the following registration num-
bers: VS2144. The plant material of S. rhombifolia was packaged correctly and maintained
under refrigeration (−18 ◦C) until VOC extraction.

4.2. VOC Extraction

The fresh leaves and stems (3 kg) of S. rhombifolia were smashed into powders and
submitted to a 5 L round bottom flask. The VOCs of the plant material were extracted by
hydrodistillation in a Clevenger-type apparatus for approximately 4 h [40]. To enhance the
extraction yield, the VOCs were separated from the aqueous layer by diethyl ether, with an
ensuing drying process via the Termovap Sample Concentrator and anhydrous sodium
sulfate. The obtained VOCs joined the former into glass flasks and were stored at a low
temperature (−4 ◦C) for further analysis.
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4.3. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis

GC–MS analysis was carried out on an Agilent gas chromatograph–mass spectrometer
(7890-5975C) equipped with a fused silica capillary column, type HP-5MS (30 m × 0.25 mm
× 0.25 µm). The chromatography conditions were as follows: injector temperature: 270 ◦C,
carrier gas: helium at a flow rate of 1.10 mL/min, temperature-rising program: initial oven
temperature was 60 ◦C, increasing by 7 ◦C/min to 220 ◦C and held stable for 6 min, then
growing by 10 ◦C/min to 280 ◦C and held steady for 6 min. Then, the mass spectrometer
conditions were as follows: EI: 70 ev, 230 ◦C, the mass scan range of 40–450 Da, and
acquisition frequency of 2. Quadrupole temperature was 150 ◦C and 0.5 µL samples
were injected.

The VOCs and n-alkane (C8–C30) were analyzed under the same conditions. The data
processing was carried out by the Agilent MassHunter Qualitative Analysis 10.0 program,
and the relative abundance of each compound in the VOCs was determined by peak area
normalization. The identification of the VOCs’ components was carried out by calculat-
ing their retention indices (RI) in a temperature-dependent programmed condition and
compared with the recorded peaks and RI existing in the spectral library (NIST/EPA/NIH
2020). The mass spectrums of target compounds were also used. The retention indexes (RI)
of the identified compounds were determined by Kovat’s method [41].

4.4. Antioxidant Activity Determination
4.4.1. DPPH Method

The radical scavenging ability against the 2,2-diphenyl-1-picryl-hydrazyl-hydrate
(DPPH) was assayed. The experimental procedure was adapted from Nenadis et al. (2002)
and Munteanu et al. (2021) [36,42] with some modifications. Briefly, BHT (butylated hydrox-
ytoluene) and Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) were used
as the positive control. An amount of 100 µL of ethanol and 150 µL prepared 0.17 mmol/L
DPPH were added to the microplate as control. Aliquots of 50 µL BHT solutions or VOCs at
different concentrations were added to 200 µL ethanol without DPPH in 96-well microplates
serving as the sample blank. Aliquots of 50 µL BHT prepared above or VOC solutions
were pipetted to prepare 100 µL ethanolic DPPH in the 96-well microplate. The absorbance
was measured at 516 nm by an Epoch microplate absorbance spectrophotometer after
incubation of compounds to be tested for 30 min under dark conditions. The readings for
each sample were recorded using the software Microplate Manager. Tests were carried out
in triplicate. Radical scavenging activity (RSA%) was calculated according to the equation:

RSA% =

(
1 −

ASample − ASample Blank

AControl

)
× 100%

where ASample is the absorbance of the tested sample at different concentrations, AControl is
the absorbance of the control (ethanolic DPPH solution), and ASample Blank is the absorbance
of the ethanolic sample without DPPH. IC50 was then calculated.

4.4.2. ABTS•+ Scavenging Activity

The ABTS•+-scavenging capacity was measured [43] as described with minor modifica-
tions. The ABTS•+ free radical was produced by mixing ABTS (2,2-azinobis-(3-
ethylbenzothiazolin-6-sulfonic acid) diammonium salt) in a concentration of 7.4 mmol/L
with potassium persulfate (K2S2O8) in a concentration of 2.6 mmol/L. The mixture was
stored in a dark environment at room temperature for 12 h, permitting the entire generation
of free radicals. The resulting free radical solution was diluted in absolute ethanol. To
determine the free radical scavenging activity, 150 µL aliquot of diluted ABTS•+ solution
was mixed with 100 µL of sample in gradient-diluted ethanolic solutions (0.1 mg/mL,
0.25 mg/mL, 0.5 mg/mL, 1 mg/mL, 2 mg/mL, and 4 mg/mL) in a 96-well plate. Each
test of a given concentration was carried out in triplicate. After 10 min of incubation, the



Molecules 2022, 27, 7067 9 of 11

absorbance at 734 nm was read by an Epoch microplate absorbance spectrophotometer.
The percentage inhibition (inhibition%) of the tested VOCs was calculated as follows:

Inhibition% =
A0 − A

A0
× 100%

where A0 is the absorbance of 100 µL diluted ABTS•+ solution mixed with 150 µL ethanol
at 734 nm, while A is the absorbance of 100 µL diluted ABTS•+ solution mixed with 150 µL
sample solution at 734 nm. IC50 was then calculated.

4.4.3. FRAP (Ferric Reducing/Antioxidant Power) Assay

The capacity of the VOCs of S. rhombifolia to reduce chelated ferric iron (Fe3+) was
determined according to the method shown in previous studies [44,45]. A standard solution
of the Trolox represents positive control. The working agent was prepared as follows, A:
pH 3.6 acetate buffer solution, B: 10 mmol/L TPTZ solution, and C: 20 mmol/L Fe3+

solution, and the working agent was mixed at a proportion of 10:1:1, respectively. Solutions
of 1 M HCl and 40 mM HCl were used to acidify the working agent. An amount of
50 µL of different dilutions of VOCs (4000 µg/mL, 2000 µg/mL, 1000 µg/mL, 500 µg/mL,
250 µg/mL, and 100 µg/mL) and 0.25 mg/mL Trolox solution (2 µL, 5 µL, 10 µL, 15 µL,
and 20 µL) were mixed with 200 µL FRAP working reagent in a 96-well microplate. The
blank solution was prepared similarly by replacing VOCs with distilled water. All tests
were performed in triplicates and averaged. After 30 min of reaction time, the absorbance
of the resulting solution was measured at 593 nm by an Epoch microplate absorbance
spectrophotometer. The concentration of Fe2+-TPTZ (antioxidant capacity) was calculated
by comparing the absorbance at 593 nm with the standard curve of the Trolox standard
solutions.

5. Conclusions

The present study investigated the chemical composition of the volatile oil obtained
from S. rhombifolia growing in China. The major components of S. rhombifolia VOCs were
identified as palmitic acid (21.56%), phytol (7.02%), 6,10,14-trimethyl-2-pentadecanone
(6.30%), oleic acid (5.48%), 2-pentyl-furan (5.23%), and linoleic acid (3.21%). The chemical
profile of the VOCs was dominated by fatty acids, unsaturated aldehydes, and ketones. The
VOCs showed dose-dependent antioxidant activity with IC50 values of 5.48 ± 0.024 mg/mL
and 1.47 ± 0.012 mg/mL for DPPH and ABTS assays, respectively. FRAP antioxidant
capacity was 83.10 ± 1.66 mM/g. The VOCs of S. rhombifolia exhibited moderate antioxidant
activity by ABTS, and FRAP methods and low antioxidant capacity by the DPPH method.

Future research involving VOCs of Sida species may employ the reported outcomes of
this study as valuable chemotaxonomic markers to unravel the infrageneric evolutionary
correlations across this particularly unique genus. Nevertheless, the outcomes of in vitro
antioxidant activity reported in this study demand verification with in vivo assays before
considering using these volatile organic compounds in human care.
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