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Abstract: Baculoviruses are widely encountered in nature and a great deal of data is 

available about their safety and biology. Recently, these versatile, insect-specific viruses 

have demonstrated their usefulness in various biotechnological applications including 

protein production and gene transfer. Multiple in vitro and in vivo studies exist and support 

their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also 

demonstrated high potential in RNAi applications in which several advantages of the virus 

make it a promising tool for RNA gene transfer with high safety and wide tropism.  
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1. Introduction 

Baculoviruses are insect specific viruses that are widely present in nature. They have a long research 

history [1,2] and a wide variety of data is available about their biology [2] and biosafety [3,4]. The insect 

specificity of baculoviruses has led in their use as natural insecticides against forestry and agriculture 

pests [1,5]. The large family of Baculoviridae includes over 600 known lepidoptera, hymenoptera  

and diptera infecting members [6–8]. The double-stranded circular supercoiled DNA genome  

(80–180 kbp) [9–11] of the virions is condensed into a nucleoprotein structure known as a core [12]. The 
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core is within a rod-shaped capsid, that is an average of 30–60 nm in diameter and 250–300 nm in  

length [11,13–15] and it is capable of accommodating large DNA inserts [16]. The core and the capsid 

form the viral nucleocapsid. Membrane-enveloped nucleocapsids form virus particles or virions [17]. 

Traditionally baculoviruses were divided into two morphologically distinct genera: Nuclear 

polyhedrosis viruses (NPVs) and granulosis viruses (GVs). New classification divides baculoviruses into 

four genera: Alphabaculovirus (lepidopteran-specific NPV), betabaculovirus (lepidopteran-specific 

Granuloviruses), gammabaculovirus (hymenopteran-specific NPV) and deltabaculovirus (dipteran-specific 

NPV) [6,18]. NPVs are further divided on the basis how they are embedded into viral occlusion bodies 

(VOBs) comprised of enveloped nucleocapsids in a polyhedrin matrix [19]. They can be packaged as a 

single nucleocapsid or multiple nucleocapsids per envelope. GVs, on the contrary, have only a single 

virion within in a very small inclusion body [17]. 

In nature, baculoviruses have a biphasic infection cycle and two different forms of viruses have 

specific roles in different stages of the viral life cycle. Occlusion derived virions (ODVs) are responsible 

for the horizontal transmission of infection between insects by contaminating the soil and plants [20], 

whereas the budded viruses (BVs) are responsible for the systemic spread of the virus within the insect. 

The primary infection cycle begins when VOBs enter the insect from a virus-contaminated plant [21,22]. 

The polyhedrin matrix dissolves in the alkaline environment of the insect midgut [23] and leads to the 

release of the ODVs. ODVs fuse with the columnar epithelial cells of the digestive tract and enter the 

midgut cells [24]. While in the cell, the nucleocapsids are transported into the nucleus where the 

transcription and virus replication take place. During the later lytic cycle of infection, BVs are produced 

which exit the cell from its basolateral side [25]. These viruses then further spread the infection within 

the insect through the tracheal system and hemolymph [25–29]. VOBs are produced later on during the 

infection and the insect dies releasing the VOBs into the environment. ODV and BV do not only have 

different roles during the infection cycle but they are also structurally different. Though the 

nucleocapsids of ODV and BV are similar, the virions have different lipid and protein profiles within 

their envelopes [30]. This is based on the origin of the envelopes. The ODV envelope is derived from 

the nuclear membrane of the insect cell, whereas the BV envelope is acquired from the host cell 

membrane [31]. The virions have also different entry mechanisms that they use to enter the host cells. 

BVs enter cells via endocytosis [32], whereas ODVs enter the midgut epithelial cells by directly fusing 

with the cell surface membrane [32–35]. 

2. Autographa californica Multiple Nucleopolyhedrovirus 

Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the most extensively studied 

baculovirus, represents a prototype of the family Baculoviridae. The genome of the virus (134 kbp) has 

been sequenced and predicted to contain 156 open reading frames, 218 transcription start sites and  

120 polyadenylation sites [36,37]. The major capsid protein of the virus is vp39 whereas the major 

envelope glycoproteins are gp64 (BV) and p74 (ODV). gp64 is involved in the formation of peplomer 

structures at one end of the rod-shape virion [38]. The basic DNA-binding protein of the virus, p6.9, is 

responsible for packaging the viral DNA in insect cells [31,39,40]. AcMNPV has been shown to enter 

insect cells by endocytosis [32,41] in which gp64 has an essential role. The glycoprotein gp64 mediates 

virus attachment [38] to the cell surface as well as internalization [38] and pH-dependent escape of the 
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virus nucleocapsid from the endosomes [42]. gp64 is also necessary for the production of infective 

viruses and is important in the virus egress from the cells [43]. 

The BV of AcMNPV has been broadly used in biotechnology [2,41,44] and the baculovirus 

expression vector system (BEVS) has become one of the most commonly used methods to produce 

recombinant proteins [17,45]. Proteins produced with this system include e.g., FDA and EMA accepted 

vaccine products Cervarix®, Provenge® and FluBlok® [46–48]. The production of the proteins generally 

takes place in insect cells derived from Spodoptera furgiperda (Sf9 and Sf21AE) and Trichoplusia ni 

(BTI-Tn-5B1-4) [49,50]. These insect cells are able to perform most of the necessary post-translational 

modifications excluding the N-glycosylation pathway which is more simpler in insect cells [45,51,52]. 

However recently, an insect cell line SfSWT-5 was developed in which an inducible mammalianized 

protein N-glycosylation pathway can take place [53]. The BEVS system enables fast and easy production 

of recombinant proteins, and due to the scalability of the system, the production of large quantities of 

desired proteins is possible requiring that the genes of interest are placed under the control of strong 

AcMNPV promoters, such as polyhedrin or p10 promoter [17,54]. In addition to production of various 

proteins [45], the BEVS has been applied for eukaryotic surface display [55], vaccination [56], drug 

screening [57], and as well as in production of viral like particles [58] and other gene transfer vectors, 

such as adeno-associated viruses (AAV) [59] and lentiviruses [60]. 

3. Baculovirus Applications in Vertebrate Cells 

Despite being highly insect specific, AcMNPV was well shown to enter human cells already in the 1980s 

[61]. It however took until 1990s when AcMNPV was shown to efficiently transfer genes into vertebrate  

cells, especially hepatocytes, if containing an expression cassette including a target cell functional 

promoter [62,63]. From there on the virus has been successfully utilized in various different types of  

in vitro and ex vivo gene transfer applications in many types of dividing and nondividing [15,64,65] 

vertebrate cell lines, primary cells, progenitor cells, induced pluripontent (iPS) and stem cells [66–68]. 

These comprise a broad spectrum of cells of human, monkey, porcine, bovine, rabbit, rat, mouse, hamster, 

fish, sheep and avian origin [69–78] and the list of permissive cells is constantly expanding [69]. Known 

well-permissive targets for the baculovirus-mediated gene transfer includes cells of the hepatic, kidney 

and osteosarcoma origin while the poorest are those of hematopoietic origin [70]. 

The outcome of baculovirus transduction in vitro is dependent on several factors and can be enhanced 

by optimizing transduction conditions and vector design [79–83]. Modifications in the transduction 

protocol, such as extended incubation time and transduction at temperatures under 37 °C have been 

shown to lead to enhanced gene expression [61,84–88]. On the other hand, multiple re-additions 

(supertransduction) of the virus can be used to extend the transient transgene expression [87,89]. 

Although AcMNPV can enter a variety of cells from different origin, efficient uptake does not 

necessarily guarantee efficient gene expression [90,91]. One of the important aspects, which has a role in 

the efficiency of transduction, is the choice of cell culture medium. Commonly used Dulbeccos’s modified 

Eagle’s medium (DMEM) has been shown to hinder baculovirus-mediated gene delivery [79,80,92] 

whereas the use of RPMI 1640 medium can yield remarkably better results [80]. Several medium 

supplements have also been reported to aid in baculovirus-mediated gene delivery and lead to increased 

gene expression. These include, e.g., histone deacetylase inhibitors like sodium butyrate or trichostatin 
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A [71,93]. Microtubule interfering substances, such as nocodazole or vinblastine, can aid virus-mediated 

gene delivery as intact microtubule network has been shown to hinder the cytoplasmic transport and 

nuclear entry of baculoviral nucleocapsid [15,94]. Protein kinase activator Phorbol 12-myristate 13-acetate 

and DNA methyltransferase inhibitors have also been shown to boost the transgene expression [90,95]. 

The toxicity of these substances, however, needs to be taken into account in their use [96]. 

Yet another way to achieve enhanced gene delivery and increase virus tropism is to modify the 

baculoviral envelope. The major baculoviral envelope glycoprotein, gp64, has been most commonly 

engineered for this purpose [55,97]. Given the essential role of gp64 in the infection of insect cells and 

transduction of mammalian cells [98], addition of extra copies of gp64 on the viral envelope has been 

shown to lead to better transduction efficiency [99]. In addition, gp64 has been engineered to house 

different peptides or proteins [55,100]. Also, the use of vesicular stomatitis virus envelope G-protein 

(VSVG) [101] and its truncated version (VSV-GED) has not only led to broadened virus tropism but 

also to enhanced transduction both in vitro as well as in vivo [75,99,102–105]. Additional ways to 

improve transduction efficiency have included the use of expression targeting ligands [55,106–111] and 

other surface modifications such as avidin [111], biotin [112], lymphatic homing peptide [113], polymer 

coating with polyethyl glycol [114–117] and polyethylenimine [118]. 

In order to achieve most optimal gene expression efficiency, the choice of suitable promoter requires 

careful selection. CMV and Chicken β-actin promoters are considered as good choices to drive 

baculovirus-mediated transgene expression in vertebrate cells [73,119]. Baculoviral vectors equipped 

with cell-type and tissue specific promoters have been successfully used to target transgene expression 

to certain tissues and cells [120–123] whereas inducible promoters [123,124] have been used to control 

the state of the expression. The incorporation of Woodchuck hepatitis virus posttranscriptional 

regulatory element into the expression cassette has been shown to lead to improved transgene expression 

in various cell lines [79]. With the aim of prolonging the transient nature of baculovirus-mediated 

expression, elements enabling long term expression from AAV [125,126], Epstein-Barr virus (EBV) [127] 

and transposon Sleeping Beauty [128] have been incorporated in the virions. 

Baculoviruses have been shown to promote cytokine production and thus stimulate host antiviral immune 

responses in mammalian cells [129–137]. The virus exposure results in the activation of tumor necrosis factor 

α, interleukin 1 α, and interleukin 1  expression along with interferon production [130,131]. The 

involvement of toll-like receptors has also been suggested since AcMNPV was shown to induce the 

secretion of tumor necrosis factor α and interleukin 6 along with increased expression of activation 

ligands in macrophages [129]. The role of toll-like receptor 9 and MyD88-dependent signaling pathway on 

activation of immune cells via baculoviral DNA has also been demonstrated [132]. However, other viral 

components and recognition pathways such as toll-like receptor 3 [135] and toll-like receptor-independent 

routes (interferon regulatory factors 3 and 7) [129,138] seem to be also involved. The induction of antiviral 

effects in mammalian cells appears to be dependent on cell type [124,136,139] and is transient [140]. 
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4. Baculoviral Entry and Trafficking 

The efficient entry of AcMNPV into mammalian cells requires multiple successful steps. The process 

begins with virus binding to the surface of the cells followed by cellular entry, vesicular transport, 

endosomal escape, cytosolic movement, nuclear entry, capsid disassembly and finally gene expression. 

The actual entry processes and the exact mechanisms leading to successful infection of insect cells or 

transduction of mammalian cells are still vaguely understood and somewhat controversial [41,69,70]. 

Though clathrin-mediated endocytosis is suggested to be involved in the virion uptake into mammalian 

cells [15,32,141–144], also the involvement of macropinocytosis, caveolae route or even apoptotic 

mimicry have been suggested [142–145]. Among all entry mechanisms, clathrin-independent 

phagocytosis-like uptake [146] seems to be the most logical since it fits baculovirus biology best. 

However, the endocytic route used by the virus can also depend on the cell type as well as culture 

conditions [147]. 

The wide tropism of the virus suggests that baculovirus utilizes non-specific electrostatic interactions 

and attaches to the surface of mammalian cells via general cell surface molecule, such as a phospholipid 

or a heparan sulfate proteoglycan (HSPG) [102,148–150]. The involvement of HSPGs is supported by 

the fact that treatment of HSPGs with heparinase leads to reduction in baculovirus binding [150].  

Also, a heparin binding motif was recently detected within gp64 [148]. In addition, it was shown that  

N- and 6-O-sulfation of HS is vital for baculovirus binding and transduction of mammalian cells. 

Furthermore Syndecan-1, a ubiquitous proteoglycan, acts as a baculovirus receptor [151]. However, 

gp64 has also been shown to interact with cell surface phospholipids, such as phosphatidic acid or 

phosphatidylinositol [102,144,149,152] suggesting that the baculovirus entry and binding are a multistep 

processes which possibly require several cell surface factors. 

The internalization of baculovirus has been shown to be mediated by lipid rafts [144,149] and take 

place within cholesterol rich areas [144,146,149]. Extensive membrane ruffling has also been associated 

with virus internalization [146]. The virus uptake has been shown to rely on actin and the trafficking 

further regulated by Ras homolog gene family member A, ADP-ribosylation factor 6 and dynamin [146]. 

Differential activation of PKC subtypes α and ε as well as the status of intermediate filament vimentin 

have all been recently shown to have an effect on baculovirus transduction [80,90]. Following the entry, 

the virus is transported within vesicles until the pH-dependent fusion of the viral envelope with the 

endosome releases the capsid to the cytoplasm [41,142,146]. The release is mediated by the major baculoviral 

type III envelope fusion protein, gp64 [42,153]. The escaped nucleocapsid is then transported in the cell 

with the aid of actin polymerization and the nucleocapsid enters the nucleus via nuclear pores [154–156]. 

When the virus is in the nucleus, the nucleocapsid disassembles and the viral DNA is released [15,65,91,156]. 

In the nucleus, baculovirus localizes into discrete foci in the nuclei and induces accumulation of 

promyelocytic leukemia nuclear bodies [65]. 

5. Animal Studies 

Baculovirus offers several advantages as a gene delivery vector compared to other viral vectors in 

terms of safety, high capacity of carrying foreign DNA, and ease of production. Although the virus does 

not suffer from pre-existing immunity in vertebrates [157], it is, however, quickly inactivated by serum 
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complement components [62]. This is a result of the classical [158,159] and the alternative [160] 

pathway activation. This delayed the first successful in vivo applications of baculoviruses into late 1990s 

when the first gene transfer attempt was performed in rats and mice [161]. Today, several different 

successful gene transfer studies performed in mouse, rat, rabbit and pig animal models have been 

reported. Logically, the best in vivo targets are the immunoprivileged tissues such as the eye [162], the 

brain [163,164], testis [99,165] or central nervous system [166–168]. Approaches to bypass the 

complement have included the use of complement inactivators, such as soluble complement receptor 

type 1 [160], cobra venom factor [169] and compstatin [159], which have all proven their usefulness in 

virus protection. Shielding the viruses with complement interfering factors, such as decay acceleration 

factor [170], factor H like protein, C4b-binding protein and membrane cofactor have also aided in the 

battle against the immune system [171]. 

The first in vivo gene transfer attempts with baculovirus were performed in the liver parenchyma of 

rats and mice but direct systemic and intraportal circulation delivery resulted in undetectable transgene 

expression [161]. The speculation of the involvement of the immune system in the unsuccessful gene 

transfer resulted in multiple studies in immune-compromised animals. A direct baculovirus-mediated 

gene transfer into the liver parenchyma of immunocompromised mice led to detectable transduction of 

hepatocytes around the injection site [77]. Within the same study, baculovirus injected into nude mice 

bearing human derived hepatocarcinomas resulted also in low gene transfer efficiency [77]. A systemically 

performed gene delivery into complement deficient tumor-bearing mice led to transgene expression 

primarily in liver, spleen, and kidney, but expression was also detected in the tumor [172]. 

Delivery methods that allow gene transfer in the absence of serum or complement have given better 

results in immune-competent animals. Direct injection of baculovirus into brain striatum of mice and 

rats [163,169] led to marker gene expression in the striatum, the corpus callosum, and the ependymal 

layer. After local delivery of baculovirus into the brain of rats, AcMNPV was found to efficiently transduce 

cuboid epithelium of the choroid plexus cells. Transgene expression was detected also in endothelial cells 

of brain microvessels throughout the forebrain [163]. AcMNPV’s tendency to transduce especially well 

choroid plexus cells has also been verified by other studies performed in rat brain [103,173,174]. 

Transgene expression could also be detected in the walls of lateral ventricles and in subarachnoid 

membranes when (VSV-GED) pseudotyped AcMNPV was used [103]. Systemic injection through tail 

vein with pegylated baculovirus led to enhanced transduction of brain in mice but the transgene 

expression was also detected in liver, spleen, lung, heart, and kidney [114]. Additionally, a tissue-specific 

hybrid promoter has been utilized to drive efficient neuron-specific gene expression in rat brain [121,175], 

as well as glial fibrillary acidic protein promoter for astrocyte-specific gene expression [122]. When 

transcriptional targeting was used, baculovirus transduction was detectable not only in neurons near the 

injection sites but also in remote target regions, probably because of axonal transport [176]. Baculovirus 

containing an expression cassette flanked with the ITRs of AAV extended transgene expression in rat 

brain [126]. 

The immunoprivileged nature of the ocular tissue makes it an attractive target for baculovirus-mediated 

gene therapy. In a direct subretinal administration of baculovirus into mouse eye, a strong expression of 

the marker gene in retinal pigment epithelial cells followed [177]. Intravitreal injection resulted in 

marker gene expression in the corneal endothelium, lens, retinal pigment epithelial cells, and retina. 

When intravitreal gene transfer was performed in rabbits, it resulted in gene expression in the inner 
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retina, photoreceptor cells and in retinal pigment epithelium cells [162]. With the aid of a Sleeping 

Beauty hybrid vector, a long term expression was achieved in mouse eye [178]. In rat retinal vasculature, 

gene expression has been targeted with human transmembrane fms-like tyrosine kinase promoter [179]. 

Though immunoprivileged areas seem to suit best for baculovirus-mediated gene delivery, direct 

injection of recombinant baculoviruses into quadriceps femoris muscle of mice resulted in a transient 

expression of the marker gene [105]. In rats, intramuscularly injected baculovirus was used to treat 

hyperammonemia [180]. In rabbits, VEGF-D gene transfer was able to efficiently induce angiogenesis 

in semimembranosus muscle [181]. Baculovirus-mediated enhanced angiogenesis has also been detected 

in a rat model of ischemic stroke [182] and acute myocardial infarction [183,184], as well as after use 

of baculovirus based biotherapeutic stent in canine femoral artery [185]. In induced mouse model of 

liver cirrhosis, intraperitoneal (i.p.) injection of AcMNPV lead to alleviated symptoms via interferon 

induction [186]. The use of avidin-displaying virus was able to demonstrate extensive expression in rat 

kidney and spleen after i.p. administration [187]. Hydrodynamic transduction via renal vein resulted in 

gene expression in kidney [188]. By using a different approach, adventitial cells of carotid arteries of 

rabbits were successfully transduced by recombinant baculoviruses by using a collar device which 

allowed minimal exposure to complement [93]. 

Towards baculoviral applications in cancer gene therapy, an astrocyte-specific baculovirus was 

successfully used to treat malignant glioma. A virus expressing A-chain of diphtheria toxin effectively 

suppressed tumor development in a rat xenograft model [189]. When glioblastoma specific promoter 

(HMGB2) was used to control Herpex simplex thymidine kinase (tk), targeted glioblastoma expression 

was detected in mouse xenograft model [190]. In the same cancer model, incorporation of miRNA 

regulation into a GFAP driven tk expression improved safety [164]. By combining sodium butyrate with p53 

tumor suppressor gene, synergistic results were detected in nude mice bearing human glioma tumors [191]. 

Several other malignancies which have also been treated with the aid of baculovirus are prostate [128,192,193], 

ovarian [128], cervical [194], epidermal [117], gastric [195], liver [196,197] and liver metastasis [198], 

lung [199], melanoma [199,200], and nasopharyngeal cancer [201]. In addition, baculovirus transduced 

stem cells have functioned ex vivo as a targeted delivery vehicles to control tumors [202]. Human 

embryonic stem cell-derived mesenchymal [203] and neural [204] stem cells as well as mouse [205] and 

human [206,207] iPS derived neural cells were able to keep cancers in control. 

AcMNPV has also demonstrated therapeutic possibilities in other indications besides cancer.  

For example, efficient transduction of rabbit intervertebral disc has been reported [167]. In another study, 

lumbar intrathecal injection into the cerebrospinal fluid was used to transduce rat dorsal root ganglia 

cells [166]. The potential of baculovirus for ex vivo cartilage and bone engineering has also been 

demonstrated in several studies [70]. Transduction of de-differentiated chondrocytes with a baculovirus 

expressing bone morphogenetic protein-2 (BMB-2) or BMB-2/transforming growth factor β 

combination was able to restore differentiation status of cells but also increase cartilage-specific 

extracellular matrix formation [208–210]. The cells were able to grow into cartilage when seeded in 

polymeric scaffold in a bioreactor [211]. In addition, osteochondral defects have been healed with 

produced cartilage implants in rabbits [212]. BMB-2 transduced and implanted BMSCs were able to 

induce bone formation in mice and promote bone repair in rats [213]. Implantation of BMB-2 and VEGF 

expressing BMSC cells into segmental bone defects in rabbits led to accelerated bone healing [214]. 

Adipocyte stem cells (ASCs) can also serve as promising cells in bone regeneration [215–218].  
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The safety of baculovirus in tissue engineering has been supported by several studies which have shown 

that baculovirus neither altered HLA-II expression nor impaired the immunosuppressive nature of 

BMSCs and induced only mild and transient immune response without disrupting the karyotype [219]. 

When Hybrid BV-AAV vectors were used to transduce rat-derived BM-MSCs, high transgene 

expression was achieved and no cytotoxicity was reported [220]. 

The unfortunate side effects of gene transfer include the risk of insertional mutagenesis and cancer 

with retroviruses [221], and humoral and cellular immune responses in the case of adenoviruses [222]. 

Compared to these viral vectors, baculoviruses are safer since they are unable to replicate and cause 

diseases outside non-vertebrate hosts [4], there is no pre-existing immunity in vertebrates [157] and the 

viruses are unable to integrate into host cell genome. In addition, the viruses have the capacity to transfer 

large genes [17] and the scalability of the production makes them an attractive tool for gene transfer. 

Although baculoviruses have been extensively studied throughout the years, no clinical data is yet 

available of their therapeutic use. However, the BV system has already been approved to be clinically 

suitable for vaccine and AAV vector production (Glybera) purposes by FDA and EMA and encouraging 

results in cancer treatment are expected to lead to the first clinical trial in the near future [223]. 

6. Baculovirus and RNAi 

Though RNA interference (RNAi) is a relatively new discovery, it has already become a potent and 

specific method for gene regulation. Gene silencing by RNA interference can be used when  

loss-of-function studies with sequence specific knock-down of gene expression are needed in different 

biological situations [224,225]. It also enables a new and promising approach to treat common diseases 

and thus provides a convenient tool for analysis of gene function, as well as gene therapy [226,227]. 

Baculoviruses are highly viable alternatives for RNAi delivery since they are very inert and  

versatile [228,229] with possibilities of high throughput preparation [173,230]. 

RNAi has been shown to have an important regulatory role in insects [231] in which various gene 

silencing studies have already been carried out [232,233]. Thus far, four Bombyx mori nucleopolyhedrosis 

virus (BmNPV)-encoded miRNAs have been identified which are evolutionarily conserved among many 

baculoviruses [234]. In S. frugiperda, differential expression of several miRNAs upon baculovirus 

infection has been detected [235]. The miRNA profile of Helicoverpa armigera larvae has also  

been shown to alter upon H. armigera single nucleopolyhedrovirus (HaSNPV) infection [236]. The 

RNAi-approach has been successfully used to prevent AcMNPV infection in vitro and in vivo [237] as 

well as in the prevention of BmNPV infection in B. mori cells and in the silkworm B. mori [238–240]. 

BmNPV has been shown to encode miRNAs which modulate the small-RNA-mediated defense as well 

as regulate the expression of DNA binding protein (P6.9) and other late genes vital for the late stage of 

viral infection in its host Bombyx mori [241,242]. 

AcMNPV encodes miRNAs that lead to a reduction of BVs and accelerated formation of ODVs [243]. 

The RNAi has been shown to persists for four to eight days in baculovirus-infected as well as uninfected 

Sf9 cells [232].The RNAi-approach has been also used to increase recombinant protein production in a 

Trichoplusia ni derived cell line (BTI-TN-5B1-4-High Five) [244]. 

The first RNAi application in mammalian cells was demonstrated in a study where baculovirus-delivered 

U6-driven short hairpin RNA (shRNA) designed against lamin A/C led to effective knockdown of the 
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corresponding mRNA and protein levels in Saos2, HepG2, Huh7, and primary human hepatic stellate 

cells [245]. In another study, a shRNA under the control of hybrid CMV enhancer-H1 promoter was 

capable of suppressing the expression of the target luciferase gene by 95% in cultured rat glioma C6 

cells, up to 80% in human NT2 neural precursor cells and 82% in rat brain in vivo [246]. In addition, 

baculovirus delivered miRNA has been shown to repress efficiently the overexpression of endogenous 

TNF-α in arthritic synoviocytes. In the same study, a hybrid baculovirus vector containing miRNA 

combined with Sleeping Beauty transposon was shown to effectively repress the transgene expression 

for prolonged periods in HEK293 cells [247]. Sleeping Beauty transposon containing baculovirus was 

also recently coupled with PTENP1 long non-coding RNA (lncRNA) which inhibited cell proliferation 

in hepatocellular carcinoma cells (HCC) in vitro and HCC tumors in mice [248]. Sleeping Beauty hybrid 

vector was also used to deliver miRNAs 122 and 155 into HCC cells in vitro and into HCC tumor in 

vivo with the result of HCC growth inhibition [197]. Silencing of miRNA-10b by baculoviral decoy 

vectors in vitro in U87-M21 glioma cell line led to reduced growth, invasion and angiogenesis of the 

cells. In vivo, the inhibition of miRNA-10b in human glioma mouse model diminished the invasiveness, 

angiogenicity, and growth of the tumor [249]. Recently, baculovirus was harnessed for miRNA-26a,  

-29b, -148b and -196a delivery and resulted in improved hASCs osteogenesis [250]. 

Several baculoviral vectors have been engineered to inhibit the replication of multiple pathogenic 

viruses. These include a baculovirus expressing shRNAs against peste des petits ruminants virus. Within 

the study, a successful inhibition of the generation of infectious progeny was observed in vitro in Vero 

cells [251]. A VSVG pseudotyped baculovirus containing U6 promoter driven shRNA targeting 

arterivirus porcine reproductive and respiratory syndrome virus (PRRSV) genome resulted in the 

inhibition of viral replication in Marc145 cells [252]. In addition, a baculovirus based shRNA against 

the highly conserved core region of the hepatitis C virus (HCV) genome was able to inhibit the 

expression of the HCV core protein and thus virus replication in NNC#2 cells [253]. Long-term 

expression of shRNA against the highly conserved core-protein region of HCV was achieved with hybrid 

baculovirus containing EBV EBNA1 and OriP sequences. Inhibition of HCV core protein lasted for at 

least 14 days [254]. When HepG2 cells were transduced with baculovirus bearing shRNA against 

hepatitis B virus (HBV), a reduction in the formation of HBV covalently closed circular DNA was 

detected [255]. Baculovirus-delivered bispecific shRNA has also markedly inhibited the production of 

influenza viruses A and B [256]. Interestingly, a VSVG pseudotyped baculovirus vector carrying a 

ribozyme-synthesizing cassette under the tRNA(i)(Met) promoter was constructed. Transduction of 

HeLa CD4(+) cells with the HIV-1 U5 gene-specific ribozyme suppressed HIV-1 expression within the 

cells [257]. 

In conclusion, this review summarizes the wide applications of baculovirus (AcMNPV) in gene 

transfer. The current knowledge of the efficacy and safety along with numerous advantages as gene 

delivery vehicles support AcMNPV use also for RNAi applications Table 1). 

  



Viruses 2015, 7 2108 

 

Table 1. Summary of baculovirus mediated preclinical RNAi studies in vertebrate cells. 

Cell/Tissue Promoter RNAi/Target In Vitro/In Vivo 
Ref., 

Year 

Saos2, HepG2, Huh7, 

primary hepatic stellate cells 
U6 shRNA; Lamin A/C In vitro 

[245], 

2005 

C6, NT2, rat brain 
CMV enhancer/H1 

promoter 
shRNA; Luciferase In vitro, in vivo 

[246], 

2005 

Marc145 U6 shRNA; PRRSV nucleoprotein In vitro 
[252], 

2006 

HeLa CD4+ tRNAi
Met Ribozyme; U5 region of HIV LTR  In vitro 

[257], 

2006 

NNC#2 U6 shRNA; HCV core protein In vitro 
[253], 

2008 

NNC#2 U6 
shRNA; HCV core protein. EBNA1 

and OriP for prolonged expression. 
In vitro 

[254], 

2009 

MDCK U6 shRNA; influenza nucleoproteins In vitro 
[256], 

2009 

HepG2 U6 shRNA; HBV genome In vitro 
[255], 

2009 

HEK293, synoviocytes CMV 
miRNA; EGFP, TNF-α. Sleeping 

Beauty for prolonged expression. 
In vitro 

[247], 

2011 

Vero U6 shRNA; nucleoprotein of PPRV. In vitro 
[251], 

2011 

U87-M21, U87-M21 tumor 

in mice 
CMV 

miRNA-10b for inhibition of growth, 

invasion and angiogenesis. 
In vitro, in vivo 

[249], 

2012 

ASC, calvarial bone defects 

in mice  
CMV 

miRNA-26a, -29b, -148b, -196a for 

promoting osteogenic differentiation. 
In vitro, in vivo 

[250], 

2014 

HCC Mahlavu, HCC tumor 

in mice 
CMV 

lncRNA; PTENP1. Sleeping Beauty 

for prolonged expression. 
In vitro, in vivo 

[248], 

2015 

HCC Mahlavu, HCC tumor 

in mice 
CMV 

miRNA-122, -151 to combat HCC 

tumorigenity/metastasis. Sleeping 

Beauty for prolonged expression. 

In vitro, in vivo 
[197], 

2015 
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