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Parkinson’s disease is the second most common neurodegenerative disorder. Although
the pathogenesis of Parkinson’s disease is not entirely clear, the aberrant aggregation
of α-synuclein has long been considered as an important risk factor. Elucidating
the mechanisms that influence the aggregation of α-synuclein is essential for
developing an effective diagnostic, preventative and therapeutic strategy to treat
this devastating disease. The aggregation of α-synuclein is influenced by several
post-translational modifications. Here, we summarized the major post-translational
modifications (phosphorylation, ubiquitination, truncation, nitration, O-GlcNAcylation) of
α-synuclein and the effect of these modifications on α-synuclein aggregation, which may
provide potential targets for future therapeutics.
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INTRODUCTION

Parkinson’s disease (PD), the second most common neurodegenerative disorder, manifests with
resting tremor, bradykinesia, rigidity, postural instability, and gait impairment (Auluck et al., 2010;
Tysnes and Storstein, 2017). PD is characterized by loss of dopaminergic neuronal cells in the
substantia nigra pars compacta (SNpc) and cytoplasmic deposition of amyloid-like aggregates
termed Lewy Bodies (LB) (Forno, 1996; Braak et al., 2003; Shulman et al., 2011).

The major component of LB is α-synuclein aggregates (Spillantini et al., 1997). Furthermore,
duplications, triplications, or point mutations in α-synuclein also contribute to some autosomal
dominant early-onset PDs and sporadic PDs (Golbe et al., 1990; Polymeropoulos et al., 1997;
Kruger et al., 1998; Singleton et al., 2003, 2004; Farrer et al., 2004; Zarranz et al., 2004; Hoffman-
Zacharska et al., 2013; Proukakis et al., 2013; Pasanen et al., 2014; Ysselstein et al., 2017). Golbe
et al. (1990) identified the α-synuclein A53T mutation in a PD patient. Several other mutations
have been identified since then, such as A30P, A18T, A29S, E46K, H50Q, G51D, and A53E.

The contribution of α-synuclein in the pathogenesis of PD has been extensively studied in a
variety of animal models, including mice, Drosophila, and Caenorhabditis elegans. Transgenic mice
or flies overexpressing WT, A30P or A53T α-synuclein show motor deficits and neuronal inclusions
(Feany and Bender, 2000; Kahle et al., 2000; Masliah et al., 2000; van der Putten et al., 2000; Maguire-
Zeiss et al., 2005; Lelan et al., 2011; Lin et al., 2012). The α-synuclein aggregates in dopaminergic
neurons are found in WT, A30P, or A53T human α-synuclein transgenic nematodes C. elegans

Frontiers in Neuroscience | www.frontiersin.org 1 April 2019 | Volume 13 | Article 381

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00381
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.00381
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00381&domain=pdf&date_stamp=2019-04-18
https://www.frontiersin.org/articles/10.3389/fnins.2019.00381/full
http://loop.frontiersin.org/people/563540/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00381 April 16, 2019 Time: 18:0 # 2

Zhang et al. Post-translational Modifications on Alpha-Synuclein

(Kuwahara et al., 2006). Overexpression of human α-synuclein
in C. elegans causes age- and dose-dependent dopaminergic
neurodegeneration (Cao et al., 2005; Hamamichi et al., 2008).

α-Synuclein also undergoes extensive post-translational
modification (PTM), which influence the aggregation and/or
cytotoxicity. PTMs may mediate the environmental factors
on the pathogenesis. In this review, we will summarize
physiological and pathological roles of α-synuclein, emphasizing
the involvement of PTMs.

STRUCTURE OF α-SYNUCLEIN

In humans, α-synuclein is a member of synuclein family, which
includes α-synuclein, β-synuclein, and γ-synuclein (Lashuel et al.,
2013). α-Synuclein, a 140-amino acid protein, is composed of
three distinct domains. The N-terminus (1–60 residues) contains
four imperfect KTKEGV motif repeats. The central hydrophobic
domain of α-synuclein (61–95 residues), also known as the
non-amyloid component (NAC), is crucial for its aggregation
(Giasson et al., 2001). The C-terminus (96–140 residues) is
enriched in acidic residues and is the major phosphorylation site
(Uversky and Eliezer, 2009).

α-Synucleins purified from bacterial or mouse tissues under
denaturing conditions are ‘natively unfolded’ monomers of
about 14 kDa (Weinreb et al., 1996). It may acquire α-helical
secondary structure upon binding to lipid vesicles (Davidson
et al., 1998; Eliezer et al., 2001). Bartels et al. (2011) found that
endogenous α-synuclein under non-denaturing conditions form
a folded tetramer and non-crosslinked monomer in all cells, plus
some putative dimers in the HeLa, HEK, and red blood cells.
They further showed that very few native human α-synuclein
tetramers form aggregation, whereas recombinantly expressed
monomers readily aggregated into amyloid-like fibrils in vitro
(Bartels et al., 2011).

FUNCTION OF α-SYNUCLEIN

α-Synuclein is mainly expressed at presynaptic terminals and has
been implicated in numerous cellular processes (Adamczyk et al.,
2005). However, the exact physiological function of α-synuclein
is still unclear. Under physiological conditions, α-synuclein may
be involved in the compartmentalization, storage, and recycling
of neurotransmitters (Allen Reish and Standaert, 2015).

Soluble N-ethylmaleimide-sensitive factor attachment
protein receptor (SNARE) proteins are crucial for release of
neurotransmitters at the neuronal synapse, vesicle recycling,
and synaptic integrity (Goda, 1997; Gerst, 1999). Burre et al.
(2010) demonstrated that α-synuclein acts as a molecular
chaperone to assist the folding and refolding of SNARE proteins.
α-Synuclein directly binds to the SNARE protein synaptobrevin-
2 and promote the formation of SNARE-complex (Burre et al.,
2010). Moreover, α-synuclein is also involved in the dynamics
of synaptic vesicles (SVs) trafficking to control the amount
of vesicles docked at the synapses during neurotransmitter
release (Burre, 2015). As a result, α-synuclein null mice exhibit

accelerated recovery of neurotransmitter release when presented
with multiple stimuli. Depletion of α-synuclein from rodent
hippocampal neurons also induces a significant loss of undocked
SVs (Cabin et al., 2002).

AGGREGATION OF α-SYNUCLEIN

Aggregates of α-synuclein are the major component of Lewy
body, the pathological marker of PD, dementia with Lewy
bodies and Lewy body variant of Alzheimer’s disease (Spillantini
et al., 1997, 1998). The aggregation of α-synuclein is formed
in three steps. The first step is the rate-limiting step, in which
the soluble unstructured monomeric species were converted
into partially soluble oligomers when nucleation-dependent
chain polymerization occurs. Then, the oligomers aggregate into
insoluble mature fibrils. At last, the amyloid fibrillar aggregates
are formed (Harper et al., 1997; Walsh et al., 1997; Lambert et al.,
1998). Miake et al. (2002) have shown that α-synuclein filaments
assembled in vitro or extracted from multiple system atrophy
(MSA) brains are insoluble to detergents and partially resistant
to proteinase K (PK) digestion. Variable amounts of neuritic
PK-resistant α-synuclein have been detected in the striatum
of all the LB disease cases. PK resistance of α-synuclein may
be useful for the development of biomarkers of LB diseases
(Neumann et al., 2004).

Both fibrils and oligomers have been shown to display toxicity.
Peelaerts et al. (2015) showed that α-synuclein fibrils can lead
to progressive motor impairment and cell death. Lots of studies
have suggested that amyloids associated with neurodegenerative
diseases spread in a prion-like fashion. Fibrillar α-synuclein
assemblies seed the aggregation of monomeric α-synuclein
in vitro and spread from one cell to another in cell cultures
and animal models (Wood et al., 1999; Desplats et al., 2009;
Hansen et al., 2011). Multiple lines of evidence have also
suggested that oligomeric species of α-synuclein are toxic. In this
review, we mainly summarized the evidence supporting the
toxicity of α-synuclein oligomers in PD and possible mechanisms
for this toxicity.

TOXICITY OF α-SYNUCLEIN

α-Synuclein aggregates may cause cytotoxicity through several
pathways, such as mitochondrial dysfunction, endoplasmic
reticulum (ER) stress, proteasome system dysfunction, phago-
cytosis and inflammatory response in microglia, membrane
damage, and synaptic dysfunction.

Mitochondrial Dysfunction
The loss of dopaminergic neurons is a major pathological feature
of PD patient. Dopaminergic neurons are particularly sensitive to
mitochondrial dysfunction due to their high energy demands and
increased oxidative stress (Ryan et al., 2015). Both the monomer
and oligomer of α-synuclein show toxicity to mitochondria. The
translocase of the outer membrane (TOM) 20 receptors are
important for the mitochondrial protein import. α-Synuclein
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can inhibit the protein import of mitochondria by binding to
TOM20 (Di Maio et al., 2016). The voltage-dependent anion
channel (VDAC) is the major channel of the mitochondrial
outer membrane, which controls most of the metabolite fluxes
in and out of the mitochondria. Rostovtseva et al. (2015) showed
that monomeric α-synuclein reversibly block VDAC in a highly
voltage-dependent manner.

α-Synuclein oligomers cause mitochondria fragmentation
in a dopaminergic cell line SH-SY5Y (Plotegher et al., 2014).
α-Synuclein oligomers decreased the retention time of exogen-
ously added calcium, promoted calcium-induced mitochondrial
swelling and depolarization. α-Synuclein oligomers also
accelerated cytochrome C release, which cause the apoptosis of
dopaminergic neurons (Luth et al., 2014).

Endoplasmic Reticulum Stress
Endoplasmic reticulum is responsible for the synthesis,
modification, and delivery of proteins to their target sites within
the secretory pathway and the extracellular space. Disruption
of any of these processes may cause ER stress (Hampton,
2000). The folding-incompetent proteins can cause ER stress
and an ER stress response, called unfolded protein response
(UPR). UPR is the biochemical basis for many ER storage
diseases (Schroder and Kaufman, 2005). Castillo-Carranza et al.
(2012) showed that α-synuclein oligomers induced ER stress
in SH-SY5Y cells. Colla et al. (2012) found that accumulation
of the toxic α-synuclein oligomers are temporally and spatially
linked to the induction of chronic ER stress in the α-synuclein
transgenic mice.

Proteasome System Dysfunction
Ubiquitin proteasome system is a highly regulated mechanism
of intracellular protein degradation and turnover (Tanaka and
Chiba, 1998). PD patients have a vulnerable proteasomal function
in the substantia nigra, which may be due to the inhibition of
α-synuclein oligomers on the proteasomal system (McNaught
and Jenner, 2001; McNaught et al., 2001, 2002, 2003). Indeed,
α-synuclein is co-localized with ubiquitin and 20S proteasomal
components in Lewy bodies. The α-synuclein oligomers may
directly bind to the 20S proteasome. Binding of α-synuclein
oligomers to the proteasome inhibits the chymotrypsin-like
proteasomal activity of the 20S proteolytic particle (Lindersson
et al., 2004). Interestingly, A53T α-synuclein oligomers impaired
the proteasomal activity in PC12 cells, which can be reversed
by Congo Red, an inhibitor of α-synuclein oligomerization
(Emmanouilidou et al., 2010).

Phagocytosis and Inflammatory
Response in Microglia
Microglia are the resident macrophage cells in the central
nervous system (CNS), involved in chemotaxis, phagocytosis,
and secretion of a variety of cytokines and proteases. Microglia
have a close relationship with the pathogenesis of PD (Sanchez-
Guajardo et al., 2015; Ferreira and Romero-Ramos, 2018).
Park et al. (2008) found that microglial phagocytosis is
enhanced by extracellular monomeric α-synuclein but inhibited

by the aggregated α-synuclein. The inflammatory response in
microglia is activated by Toll-like receptor 2 (TLR2) (Stirling
et al., 2014). Kim et al. (2013) showed that extracellular
α-synuclein released from neuronal cells is an endogenous
agonist for TLR2.

Membrane Damage
The cell membrane is an important barrier to prevent
extracellular substances from entering the cell, which ensures
the relative stability of the intracellular environment and enables
various biochemical reactions to run in an orderly manner.
Membrane integrity is essential for the basic function of all
cell types. Dysfunctional membranes can also lead to abnormal
calcium homeostasis. α-Synuclein has been shown to undergo
accelerated aggregation at membrane surfaces when incubated
with synthetic or natural phospholipid vesicles or supported lipid
bilayers, presumably because the two dimensional surface of the
membrane increases the probability of molecular interactions
needed for oligomerization (Haque et al., 2010). Danzer et al.
(2007) showed some types of α-synuclein oligomers induced
cell death via disruption of cellular calcium influx by a
presumably pore-forming mechanism. Angelova et al. (2016)
further confirmed that α-synuclein interacts with membranes
to affect Ca2+ signaling in a structure-specific manner and the
oligomeric β-sheet-rich α-synuclein species ultimately leads to
Ca2+ dysregulation.

Several approaches have been developed to alleviate the
α-synuclein-induced membrane damage. Endosulfine-α, which
can bind specifically to membrane-associated α-synuclein,
alleviates dopaminergic cell death by interfering with the
formation of neurotoxic α-synuclein oligomers at the membrane
surface (Ysselstein et al., 2017). A novel compound NPT100-18A,
which can displace α-synuclein from the membrane, can also
reduce a-synuclein toxicity (Wrasidlo et al., 2016).

Synaptic Dysfunction
Synaptic dysfunction is an early pathological feature of PD
(Schulz-Schaeffer, 2010). SNARE complex is required for SV
fusion. α-Synuclein oligomers prevent the formation of the
SNARE complex by binding to synaptobrevin (Choi et al., 2013).

Axonal transport, which relies on the microtubule (MT)
network, is fundamental for the maintenance of neuronal
homeostasis (Goldstein et al., 2008). Prots et al. (2013) showed
that α-synuclein oligomers significantly inhibited MT assembly.
3,4-Dihydroxyphenylacetaldehyde (DOPAL) is a catabolite
generated from dopamine by monoamine oxidase (Burke et al.,
2003; Goldstein et al., 2011). It has been shown that DOPAL can
cause α-synuclein oligomerization in vitro and in cell models
(Burke et al., 2008; Lima et al., 2018). Plotegher et al. (2017)
showed that this kind of α-synuclein-DOPAL oligomers can
permeabilize cholesterol-containing lipid membranes mimicking
SVs in vitro, which suggests that the synergistic effect of
α-synuclein and DOPAL accumulation in DA neurons may lead
to the formation of oligomers, negatively impacting the structure
and function of SVs.

Vesicles for synaptic release are produced by the Golgi
apparatus. The dysfunction of Golgi can lead to abnormity
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of synaptic function. Gosavi et al. (2002) showed that
over-expression of α-synuclein in COS-7 cells caused Golgi
fragmentation. As mentioned previously, pore-like oligomers
of α-synuclein could also rupture SVs, leading to decreased
neurotransmitter release, as well as permeabilization of cell
membranes, which could result in Ca2+ influx and excitotoxicity
(Danzer et al., 2007).

POST-TRANSLATIONAL
MODIFICATIONS OF α-SYNUCLEIN

α-Synuclein is subjected to extensive post-transcriptional
modifications (PTMs), including phosphorylation, ubiquiti-
nation, nitration, truncation, and O-GlcNAcylation. PTMs of
α-synuclein may influence its toxicity and aggregation.

Phosphorylation
α-Synuclein within LB can be phosphorylated at serine 129
and 87 (S129-P, S87-P) (Hasegawa et al., 2002; Anderson et al.,
2006; Paleologou et al., 2010). S129-P has emerged as a defining
hallmark of PD and related synucleinopathies. Feany and Bender
(2000) showed that α-synuclein is also phosphorylated at tyrosine
125, 133, and 136 (Y125-P, Y133-P, and Y136-P) (Ellis et al.,
2001; Nakamura et al., 2001; Ahn et al., 2002; Negro et al., 2002;
Takahashi et al., 2003). The kinases that mediate phosphorylation
at Y125 of α-synuclein are still unknown. Hejjaoui et al.
(2011) have developed a semi-synthetic strategy that enables
the site-specific introduction of single phosphorylation at Y125.
They showed that phosphorylation at Y125 does not affect the
fibrillization of α-synuclein (Burai et al., 2015). The impact of
the phosphorylation at tyrosine 133 and 135 on α-synuclein
aggregation is still unknown.

A number of kinases have been shown to phosphorylate
α-synuclein at S129 in vitro, including casein kinase I (CKI),
casein kinase II (CKII), the G protein-coupled receptor kinases
(GRK), LRRK2, and polo-like kinases (PLK) (Okochi et al., 2000;
Pronin et al., 2000; Inglis et al., 2009).

Fujiwara et al. (2002) showed that phosphorylation of S129
in α-synuclein by CKII promotes in vitro fibrillation. Smith
et al. (2005) indicated that phosphorylation at S-129 by CKII
promotes the formation of cytoplasmic inclusions in some
cell culture models.

Phosphorylation of α-synuclein at S-129 by GRK2 was
reported to be toxic. Feany and Bender (2000) have studied the
phosphorylation of α-synuclein in Drosophila. They showed that
co-expression of Drosophila GRK2 with α-synuclein enhances
the formation of α-synuclein oligomers and accelerates neuronal
loss, as compared to the Drosophila expressing α-synuclein alone
(Feany and Bender, 2000).

α-Synuclein phosphorylation at S129 is largely reduced in
PLK2-/- transgenic mice, supporting the involvement of PLK
in α-synuclein phosphorylation in vivo (Inglis et al., 2009).
PLK2-induced phosphorylation has no effect on the aggregation
of α-synuclein. Nevertheless, Oueslati et al. (2013) showed
that PLK2 binds directly to α-synuclein in an ATP-dependent
manner and regulates α-synuclein selective clearance via the

lysosome–autophagic degradation pathway, which suggests a
neuroprotective role of PLK2 against PD pathology.

Ubiquitination and Sumoylation
The core of LBs is immunoreactive for both α-synuclein and
ubiquitin proteins and is surrounded by a rim of α-synuclein
(Gomez-Tortosa et al., 2000). However, the major α-synuclein
species in LBs is mono-, di-, and tri-ubiquitinated, suggesting the
involvement of ubiquitination in the pathophysiologic properties
of α-synuclein (Hasegawa et al., 2002; Sampathu et al., 2003;
Tofaris et al., 2003; Nonaka et al., 2005). The ubiquitination
of α-synuclein is correlated with three E3 ubiquitin-protein
ligases: C-terminal U-box domain of co-chaperone Hsp70-
interacting protein (CHIP), seven in absentia homolog (SIAH)
and neuronal precursor cell-expressed, developmentally down-
regulated gene 4 (Nedd4) (Liani et al., 2004; Shin et al., 2005;
Tofaris et al., 2011).

The mammalian homologs of Drosophila seven in absentia
(SIAH-1 and SIAH-2) gene have been characterized as a
family of RING-type E3 ligases (Wheeler et al., 2002). Both
in vivo and in vitro data showed that ubiquitination of
α-synuclein by SIAH promotes the formation of inclusions.
Rott et al. (2008) showed that ubiquitination of α-synuclein
in vitro by SIAH promotes the formation of higher molecular
weight α-synuclein. They then used electron microscopy to
show that α-synuclein ubiquitinated by SIAH formed more
aggregates (Rott et al., 2008). Lee et al. (2008) also showed
that SIAH-1 or SIAH-2-mediated ubiquitination enhances the
aggregation of α-synuclein and formation of α-synuclein-positive
inclusion in PC12 cells and SH-SY5Y human neuroblastoma
(Lee et al., 2008).

CHIP is a multidomain chaperone, utilizing both a
tetratricopeptide/Hsp70 binding domain and a U-box/ubiquitin
ligase domain to recognize misfolded proteins (Demand et al.,
2001; Murata et al., 2001). CHIP is able to mono- and poly-
ubiquitinate α-synuclein (Kalia et al., 2011). Shin et al. (2005)
showed that CHIP colocalizes with α-synuclein in Lewy bodies
and also in a cell culture model of α-synuclein inclusions.
Overexpression of CHIP inhibits α-synuclein aggregation and
increases α-synuclein degradation in cell culture. Interestingly,
they also indicated that CHIP can regulate α-synuclein
degradation both via the proteasomal degradation pathway and
the lysosomal degradation pathway (Shin et al., 2005). A study
from Tetzlaff et al. (2008) showed that CHIP selectively reduced
α-synuclein oligomerization and toxicity in a tetratricopeptide
domain-dependent, U-box independent manner by specifically
degrading toxic α-synuclein oligomers.

Nedd4 is a HECT-domain E3 that functions at the plasma
membrane in the turnover of a number of membrane-
associated proteins. Tofaris et al. (2011) showed that Nedd4
can act as an E3 for α-synuclein. They demonstrated that
Nedd4 directly binds to α-synuclein in brain and cell extracts
and promotes the degradation of endogenous α-synuclein
by lysosomes (Tofaris et al., 2011). They further found
that Nedd4-mediated degradation protects against α-synuclein-
induced toxicity in the Drosophila and rodent models of
Parkinson’s disease (Davies et al., 2014). Nedd4-1-linked
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Lys-63 ubiquitination was demonstrated to specify the fate of
extrinsic and de novo synthesized α-synuclein by facilitating
their targeting to endosomes (Sugeno et al., 2014). In yeast
ubiquitin ligase, the Nedd4 ortholog Rsp5 is a key enzyme
involved in the degradation of abnormal or unfavorable proteins.
Wijayanti et al. (2015) have isolated novel hyperactive forms
of Rsp5 that alleviate α-synuclein toxicity, by enhancing the
clearance of α-synuclein, including the processes of interaction,
ubiquitination, and degradation.

The site-specific effects of ubiquitination on aggregation and
clearance have been studied using a semi-synthetic strategy
(Hejjaoui et al., 2011; Abeywardana et al., 2013). Monomeric
ubiquitination of α-synuclein at K6 was shown to resist fibril
formation when compared to unmodified protein (Hejjaoui et al.,
2011); Ubiquitination of α-synuclein at K10 and K23 readily
form fibrils; Ubiquitination of α-synuclein at K6, K12, and
K21 moderately inhibit the formation of fibrils; Ubiquitination
of α-synuclein at K32, K34, K43, and K96 displayed no
fibril formation, suggesting a strong inhibitory effect (Meier
et al., 2012). Haj-Yahya et al. (2013) have incorporated K48-
linked di- or tetra-Ub chains onto the side chain of Lys12
of α-synuclein and demonstrated that the length of the Ub
chain plays an important role in regulating α-synuclein fibril
formation and clearance.

α-Synuclein is also conjugated to small ubiquitin-like
modifier (SUMO) at lysines. Rott et al. (2017) demonstrated
that α-synuclein is SUMOylated by PIAS2, and SUMOylated
α-synuclein and PIAS2 are markedly elevated in the substantia
nigra of PD brains. Further, Lewy bodies are positive for both
SUMO1 and PIAS2. They found that SUMOylation increases
α-synuclein aggregation by two self-reinforcing mechanisms.
First, SUMOylation by PIAS2 directly promotes the aggregation
of α-synuclein. Second, SUMOylation impairs α-synuclein
ubiquitination and prevents α-synuclein degradation. Therefore,
SUMOylation blockers may provide a strategy to prevent
intracellular α-synuclein aggregation (Rott et al., 2017). However,
Krumova et al. (2011) showed that sumoylation inhibits
α-synuclein aggregation and toxicity. In vitro study demonstrated
that SUMOylation at K102 of α-synuclein results in more
pronounced inhibition of aggregation than the corresponding
modification at K96 (Abeywardana and Pratt, 2015).

Truncation
Besides full-length α-synuclein, there exist small amounts of
various truncated species with apparent molecular masses of
10–15 kDa in the LBs (Baba et al., 1998; Crowther et al., 1998;
Campbell et al., 2001). It is estimated that about 15% α-synuclein
in LBs is truncated. And the C-terminally truncated α-synuclein
may act as effective seeds to accelerate the aggregation of the
full-length protein.

The carboxyl-terminal-truncated α-synuclein produced by
aberrant proteolysis, is found in association with α-synuclein
aggregates (Tofaris et al., 2003). Tofaris et al. (2003) investigated
the effects of truncation by generating both transgenic
Drosophila and transgenic mice expressing human α-synuclein.
They found that the truncated form of α-synuclein (1–120)
increased accumulation of high molecular weight α-synuclein

species, and enhanced neurotoxicity in vivo (Periquet et al.,
2007). They showed that the striatal dopamine levels are
reduced and the transgenic mice showed a progressive reduction
in spontaneous locomotion and an increased response to
amphetamine (Tofaris et al., 2006). Hoyer et al. (2004) used
recombinant proteins and showed that the fragments (1–110;
1–119; 110–140) promoting nucleation seed the aggregation of
full-length α-synuclein. Murray et al. (2003) also showed that the
truncated α-synuclein variants, 1–89, 1–102, 1–110, 1–120, and
1–130 aggregated more rapidly than the full-length protein.

Several enzymes have been implicated in the truncation of
α-synuclein, including calpain I, Neurosin, Cathepsin D, and
Matrix metalloproteinase 3 (Iwata et al., 2003; Mishizen-Eberz
et al., 2005; Sevlever et al., 2008; Choi et al., 2011).

Since α-synuclein is predominantly localized to the pre-
synaptic terminal, it may be a substrate for soluble or membrane-
associated proteases such as the calcium-activated neutral
protease calpain I. Mishizen-Eberz et al. (2003) demonstrated
that Calpain I cleaves wild-type α-synuclein predominantly
after amino acid 57 and within the NAC region (73, 74, and
83). Calpain-mediated processing of soluble α-synuclein inhibits
fibrillization, while processing of fibrillar α-synuclein promotes
further aggregation (Mishizen-Eberz et al., 2005).

Neurosin, a serine protease predominantly expressed in the
CNS, is presumed to play an important role in the degradation
of α-synuclein (Iwata et al., 2003). Neurosin cleaves α-synuclein
after amino acid 80 and 97. Cleavage of α-synuclein after 80 by
neurosin may inhibit the polymerization; however, the fragment
cleaved after 97 has a stronger propensity to polymerize than
non-processed α-synuclein (Kasai et al., 2008).

Nitration
Oxidative injury has been implicated in the pathogenesis of
PD (Schapira and Jenner, 2011; Bose and Beal, 2016). The
action of oxygen and nitric oxide and their products, especially
peroxynitrite, leads to the nitration of tyrosine residues in
proteins. Giasson et al. (2000) first showed that a-synuclein
is nitrated when present in the major filamentous and in the
insoluble fractions of affected brain regions of synucleinopathies.
All four tyrosine residues in α-synuclein (Y39, Y125, Y133,
and Y136) are susceptible to nitration (Sevcsik et al., 2011;
Burai et al., 2015).

Danielson et al. (2009) showed that nitration of Y-39
accelerates the oligomerization of α-synuclein, and a mutation in
this residue leads to high levels of fibrilization.

Hodara et al. (2004) showed that monomeric or dimeric
forms of nitrated α-synuclein accelerate the fibril formation and
seed the fibrillation of non-modified α-synuclein. On the other
hand, nitrated α-synuclein oligomers inhibit the fibril formation
(Hodara et al., 2004).

Through site-specific incorporation of 3-nitrotyrosine at
different regions of α-synuclein, Burai et al. (2015) indicated
that different site-specifically nitrated α-synuclein species exhibit
distinct aggregation properties. They further showed that
intermolecular interactions between the N- and C-terminal
regions of α-synuclein play critical roles in mediating nitration-
induced α-synuclein oligomerization (Burai et al., 2015).
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FIGURE 1 | Major post-translational modifications (PTMs) on various amino acids of α-synuclein.

TABLE 1 | Functional consequences of the major PTMs on α-synuclein.

PTM Amino acid Enzyme Effects References

Phosphorylation S129 CKII Promote aggregation Fujiwara et al., 2002; Smith et al., 2005

S129 GRK2 Promote oligomerization Feany and Bender, 2000

S129 PLK2 Promote degradation Oueslati et al., 2013

Ubiquitination K10, 12, 21, 23, 34, 43, 96 SIAH Promote aggregation Lee et al., 2008; Rott et al., 2008

CHIP Inhibit aggregation Shin et al., 2005

Promote degradation Shin et al., 2005; Tetzlaff et al., 2008

Sumoylation K96, 102 PIAS2 Promote aggregation Rott et al., 2017

Inhibit degradation

Truncation K58, V74 Calpain I Inhibit aggregation Mishizen-Eberz et al., 2005

K80 Neurosin Inhibit polymerization Kasai et al., 2008

K97 Neurosin Promote polymerization Kasai et al., 2008

Nitration Y39, 125, 133, 136 – Promote aggregation Hodara et al., 2004

O-GlcNAcylation T72, 75, 81, S87 OGT Inhibit aggregation Lewis et al., 2017; Levine et al., 2019

O-GlcNAcylation
O-GlcNAcylation is a dynamic biochemical process, in which
N-acetylglucosamine (GlcNAc) from uridine 5′-diphospho-N-
acetylglucosamine (UDP-GlcNAc) is transferred to the serine and
threonine residues of proteins by O-GlcNAc transferase (OGT)
and removed by O-GlcNAcase (OGA) (Hart et al., 2007). More
than 1,000 proteins can be modified by O-GlcNAc, including
molecular chaperones, transcription factors, RNA polymerase II,
nucleoporin, RNA binding proteins, kinases, and cytoskeletal
proteins (Hardiville and Hart, 2014). O-GlcNAcylation has
identified threonine (T) residue 33, 34, 54, 59, 64, 72, 75,
81, and 87 of α-synuclein isolated from mouse and human

samples (Wang et al., 2009, 2010, 2017; Alfaro et al., 2012;
Morris et al., 2015).

To understand the effect of O-GlcNAcylation on the
aggregation of α-synuclein, Marotta et al. (2015) synthesized
a peptide of α-synuclein comprising residues 68–77, in which
the T72 is O-GlcNAcylated. As compared with the unmodified
peptide, the O-GlcNAcylated peptide inhibits full-length
α-synuclein fibrillization. They further synthesized a full-length
α-synuclein, with O-GlcNAcylation at T72. O-GlcNAcylation at
T72 completely blocks the formation of both fiber and oligomer
aggregates in vitro. They synthesized a full-length α-synuclein
with O-GlcNAcylation at S87, which still aggregates but with
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slower kinetics than the unmodified protein (Lewis et al.,
2017). Recently, Levine et al. (2019) showed that several of the
O-GlcNAc sites inhibit the toxicity of extracellular α-synuclein
fibers that are likely culprits in the spread of PD. They also
demonstrated that O-GlcNAcylation can inhibit the aggregation
of an aggressive mutant of α-synuclein.

To study the functional consequences of enzymatic
O-GlcNAcylation of α-synuclein, we co-expressed a shorter
form of OGT (sOGT) and α-synuclein in bacteria and got
enzymatically O-GlcNAcylated α-synuclein. The enzymatic
O-GlcNAcylation also significantly blocked α-synuclein
aggregation (Zhang et al., 2017).

CONCLUSION AND PERSPECTIVE

In this review, we have summarized the major PTMs of
α-synuclein (Figure 1). Since the presence of PTMs in
α-synuclein is able to influence its aggregation and toxicity
(Table 1), targeting PTMs may be used to develop novel
therapeutic approaches for PD. However, it should be noted
that most of the effect of PTMs on the α-synuclein aggregation
are carried out in vitro; the in vivo effect is still elusive.
Furthermore, α-synuclein may have multiple different PTMs
at the same time in vivo; however, the current researches
regarding PTMs of α-synuclein are studied individually. The
interaction of PTMs of α-synuclein has been widely studied.
Phosphorylated α-synuclein has been reported to be one of
the target proteins for ubiquitination in synucleinopathies
(Hasegawa et al., 2002). Shahpasandzadeh et al. (2014), for
the first time, demonstrated an interplay between α-synuclein
sumoylation and phosphorylation to control protein turnover.
They showed that sumoylation exhibits a protective role against
α-synuclein toxicity and inclusion formation in yeast cells
(Shahpasandzadeh et al., 2014). There is a complex and dynamic
interplay between O-GlcNAcylation and phosphorylation (Hart
et al., 2007). The interplay between α-synuclein O-GlcNAcylation
and phosphorylation is still unknown. As mentioned before,
neurosin is one enzyme that mediates the truncation of

α-synuclein. Kasai et al. (2008) showed that phosphorylated
α-synuclein was more resistant to degradation by neurosin
than non-phosphorylated α-synuclein. A reciprocal reaction
may also occur between other PTMs, which still need
further study. Third, it is interesting that, in some cases,
the same modification may have a different effect. For
instance, phosphorylation at S129 by CKII may promote
aggregation, but phosphorylation at S129 by PLK2 promotes
degradation. More studies are required to understand the
underlying mechanisms for the discrepancy. Lastly, although it
is well known that PTMs are regulated by the environmental
stimuli, few studies have attempted to use PTMs to link
environmental factors and α-synuclein toxicity. Thus, future
studies on the PTMs of α-synuclein in vivo will help
to address these concerns, and improve our understanding
surrounding the role of the gene-environment interaction in
PD pathogenesis.
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