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The relationship between serum uric acid (UA) levels and cancer risk remains controversial. 
Here, a two-sample Mendelian randomization analysis was performed to identify a causal 
effect of serum UA levels on cancer risk. Twenty-six single nucleotide polymorphisms 
strongly associated with serum UA levels were screened as genetic variants from large-
scale meta-analysis data of a genome-wide association study of 110,347 European 
individuals. Genetic associations with eight common site-specific cancers were 
subsequently explored. A total of six Mendelian randomization methods were used to 
estimate the potential effect of serum UA levels on cancer risk, including random effects 
inverse variance weighting, fix effects inverse variance weighting, MR-Egger, median 
weighting, mode weighting, and simple mode analysis. Our primary random effects inverse 
variance weighted analysis revealed that no significant associations with cancers was 
found (all p > 0.05). Sensitivity analyses and additional analyses also showed similar 
pooled results. In conclusion, no significant causality between serum UA levels and cancer 
risk was evidenced.
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INTRODUCTION

Uric acid (UA) is a byproduct of purine metabolism, with both endogenous and exogenous 
purines degraded to UA by xanthine oxidase (Benn et  al., 2018). Serum UA homeostasis is 
maintained via its production and excretion (Maiuolo et  al., 2016), the latter in humans being 
primarily renal and hepatic (Su et  al., 2020). Purine-rich diets, alcohol consumption, obesity, 
and hypertension are considered to be  risk factors that lead to elevated serum UA, in turn 
resulting in hyperuricemia and even gout (Roddy and Choi, 2014; Li et al., 2020). Hyperuricemia 
is a common chronic illness defined by a serum UA level >7.0 mg/dl among men and >5.7 mg/
dl among women. The incidence of hyperuricemia in the United  States is 20.2% in men and 
20.0% in women (Chen-Xu et  al., 2019).

Previous studies have reported UA levels to be  associated with the incidence of diabetes, 
cardiovascular disease, kidney disease, and malignancies (Weiner et  al., 2008; Battelli et  al., 
2016; Wang et  al., 2018; Borghi et  al., 2020). The precise mechanistic role UA plays in the 
occurrence of malignancies, however, remains unclear. Conventional observational studies have 
reported that higher serum UA levels are protective against cancer (Horsfall et  al., 2014; 
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Taghizadeh et  al., 2014), while other studies reported higher 
serum UA levels to increase the risk of a number of malignancies 
(Strasak et al., 2007; Wang et al., 2015). As observational studies 
are frequently subject to confounding and a variety of biases, 
it is difficult to determine whether any causality between serum 
UA levels and cancer risk exists.

The randomized controlled trial is the gold standard for 
demonstrating epidemiological causality between exposures and 
outcomes (Klungel et  al., 2004). However, the cost of such 
trials is high and their strict criteria also produce biases, thus 
limiting the robustness of results (Evans and Davey Smith, 
2015). Mendelian randomization (MR) is a relatively novel 
and effective analytical method which can reveal causality 
between exposures and outcomes by considering genetic variants 
as instrumental variables (Smith and Ebrahim, 2003). Given 
that genetic variants are randomly distributed, determined at 
conception, and not associated with other confounders, MR 
reduces confounding and, to an extent, overcomes reverse 
causality bias (Emdin et  al., 2017).

The role of UA in the pathogenesis of malignancies remains 
unclear. Here, we  designed a two-sample MR study to analyze 
summary genetic data for the purposes of investigating any 
potential causal associations of genetically-proxied UA levels 
and the incidence of eight distinct malignancies.

MATERIALS AND METHODS

Study Design
To identify the potential effect of serum UA levels on cancer 
risk, we  designed a two-sample MR study. Single nucleotide 
polymorphisms (SNPs) for serum UA levels were selected 
as instrumental variables from previously published genome-
wide association study (GWAS) analyses. Three key 
assumptions were to be  satisfied: first, the SNPs should 
have been associated with serum UA levels; second, the 
chosen SNPs should have been independent of confounders; 
and third, the SNPs should have affected cancer only via 

UA concentrations and could not have a direct correlation 
(Figure  1; Little, 2018).

Exposure Measure
We systematically extracted significant genome-wide SNPs related 
to serum UA levels from a large-scale GWAS meta-analysis 
of 110,347 European individuals (49,825 women and 60,522 
men). The average age of the participants was 52.12  years. 
The GWAS data were obtained from the Global Urate Genetics 
Consortium (GUGC; Table  1; Köttgen et  al., 2013). A total 
of 26 SNPs passed our p-value threshold of 5  ×  10−8, detailing 
a 7.0% phenotypic variance in serum UA levels. These genetic 
variants were pruned for linkage disequilibrium using LD-link 
(https://ldlink.nci.nih.gov/) with an r2 threshold of 0.01 (Junqueira 
et  al., 2017). After LD pruning, 26 SNPs remained as genetic 
instrumental variables to proxy serum UA levels. The average 
values of serum UA concentrations in these studies were 
recorded and ranged from 3.9 to 6.1 mg/dl (standard deviation 
(SD): 0.92–1.68  mg/dl). In addition, the strength of each SNP 
was evaluated by F-statistic values and the instrument with 
an F-statistic value larger than 10 was regarded as having 
strong potential to predict UA levels (Lawlor et  al., 2008).

Outcome Measure
Data from eight, large-scale meta-analyses of GWASs studying 
eight common cancers were used to explore the association 
of genetically-proxied serum UA levels with risk of malignancy 
incidence rates; namely bladder, breast, colorectal, lung, prostate, 
renal cell, skin, and thyroid cancers. The breast cancer outcome 
dataset was composed of summary genetic data obtained from 
the Breast Cancer Association Consortium (BCAC) and consisted 
of a meta-analysis of 11 GWASs (15,748 cases, 18,084 controls) 
in addition to 41 studies (46,785 cases, 42,892 controls) genotyped 
on the iCOGs custom array (Michailidou et  al., 2015). The 
prostate cancer dataset consisted of 79,148 cases and 61,106 
controls and was obtained from the Prostate Cancer Association 
Group to Investigate Cancer Associated Alterations in the 

FIGURE 1 | Diagram of two-sample Mendelian randomization analysis of serum uric acid levels and cancer risk. Three key assumptions in the Mendelian 
randomization analysis are as follows: (1) the SNPs should be related to serum UA levels, (2) the SNPs should be independent of confounders, and (3) the SNPs 
could affect cancer only by UA. SNP, single-nucleotide polymorphism; UA, uric acid.
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Genome (PRACTICAL; Schumacher et al., 2018). The colorectal 
and thyroid cancer datasets of GWAS meta-analysis data were 
obtained from the UK Biobank. The colorectal cancer dataset 
included 4,562 cases and 382,756 controls while the thyroid 
cancer dataset included 358 cases and 407,399 controls (Zhou 
et  al., 2018). The skin cancer dataset included 9,950 cases and 
290,841 controls; this GWAS meta-analysis was performed by 
the UK Biobank (Watanabe et  al., 2019). Bladder (1,367 cases, 
359,827 controls), lung (329 cases, 360,865 controls) and renal 
cell (727 cases, 360,467 controls) cancer datasets were downloaded 
from the Neale Lab. All aforementioned GWAS meta-analyses 
only evaluated participants of European descent (Table  1).

Statistical Analysis
In this study, we  used five different methods of MR analysis 
to evaluate the causal effect of serum UA levels on cancer 
risk. Here, the random-effects inverse variance weighted (IVW) 
method was used as the primary analysis. The Wald estimator 
was used to calculate the ratio of the SNP-outcome estimate 
over the SNP-exposure estimate, while the Delta method was 
employed to calculate the standard errors (Teumer, 2018). The 
overall estimate was subsequently obtained by pooling the Wald 
ratio estimates of each SNP weighted by inverse variances of 
the SNP-outcome associations (Little, 2018). As this method 
assumes that the intercept is constrained to the origin [0,0], 
the presence of horizontal pleiotropy makes this method 
susceptible to bias. To supplement calculations, we used MR-Egger 
regression, where intercept and slope represent the average 
horizontal pleiotropy and the pleiotropy-adjusted MR estimate, 
respectively. In addition, we  utilized weighted median analysis 
to estimate the effects of all MR estimates that every individual 
instrument was weighted equally to the inverse of the standard 
error. Weighted median analysis served as an important method 
of estimating the causal effect if over 50% of SNPs met the 
“no horizontal pleiotropy” assumption (Burgess et  al., 2017). 
Finally, weighted mode and simple mode analyses were used 
to estimate the causal effect (Hemani et  al., 2018a).

For the individual variants in the genetic instrumental 
variable model for serum UA levels, we  examined whether 
some SNPs had a significantly independent influence on results 
via leave-one-out sensitivity analysis. The remaining estimate 
effect was shown when one SNP was excluded (Hemani et  al., 
2018b). Cochran’s Q statistics were used to estimate the level 
of heterogeneity.

In addition, we  searched traits associated with all 26 SNPs 
on the PhenoScanner website.1 After excluding SNPs that were 
not exclusively associated with UA levels, MR analysis was 
repeated for the purposes of improving result robustness and 
deal with potential horizontal pleiotropy.

All statistical analyses in this paper were performed using 
R software (version 4.0.2; http://www.rproject.org) with the 
“TwoSampleMR” package (version 0.5.4). Results were considered 
to show strong evidence of an association between serum UA 
levels and cancer incidence if they surpassed a stringent 
Bonferroni-corrected p-value threshold of 6.25  ×  10−3 (0.05/8 
cancer outcomes).

RESULTS

Here, 26 SNPs strongly related to serum UA levels were 
extracted from a GWAS meta-analysis based on GUGC data 
(p  <  5  ×  10−8; Supplementary Table S1). No linkage 
disequilibrium (r2 < 0.01) was observed. The minimum F-statistic 
value of these 26 SNPs was 30.05, suggesting that they were 
sufficiently effective in this study. All SNPs could thus be used 
to identify the potential effect of serum UA levels on cancer 
risk. Scatter plots were shown in the supplementary materials 
(Supplementary Figures S1–S8a).

Using a genetic instrumental variable for serum UA levels 
consisting of 26 SNPs, we  estimated the association of serum 
UA levels against the incidence of eight distinct cancers via 
MR analysis. Associations with individual cancers were 
described below.

Effect of Uric Acid on Cancers
The main MR results detailing the influence of UA levels on 
cancers were obtained using random-effects IVW methodology 
(Figure  2). Our primary results did not reveal any association 
between serum UA levels and the risk of any other cancer 
type (all p  >  0.05).

The MR estimates of UA levels on cancer risk obtained using 
other sensitivity MR approaches are shown in the supplementary 
materials (Supplementary Table S2). Consistent results using 
MR-Egger, weighted median, weighted mode, and simple mode 
analyses were not obtained regarding the risk of all cancer types. 

1 http://www.phenoscanner.medschl.cam.ac.uk/phenoscanner

TABLE 1 | Characteristics of exposure dataset and outcome datasets.

Phenotype Consortium Sample size Cases Controls Ethnicity References

Serum uric acid GUGC 110,347 European Köttgen et al. (2013)
Bladder cancer UK biobank 361,194 1,367 359,827 European The Neale lab (2018)
Breast cancer BCAC 123,509 62,533 60,976 European Michailidou et al. (2015)
Colorectal cancer UK biobank 408,458 4,562 382,756 European Zhou et al. (2018)
Lung cancer UK biobank 361,194 329 360,865 European The Neale lab (2018)
Prostate cancer PRACTICAL 140,254 79,148 61,106 European Schumacher et al. (2018)
Renal cell cancer UK biobank 361,194 727 360,467 European The Neale lab (2018)
Skin cancer UK biobank 300,791 9,950 290,841 European Watanabe et al. (2019)
Thyroid cancer UK biobank 407,757 358 407,399 European Zhou et al. (2018)
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In addition, leave-one-out sensitivity analysis was performed and 
revealed that no SNP could independently drive MR analysis 
results for most of cancers (Supplementary Figures S1–S8b). 
However, it was observed that rs12498742 had a significant effect 
on the results for colorectal and skin cancers. Therefore, 
we performed analysis based on SNPs excluding the rs12498742. 
Similarly, no causal effect was observed in the results after 
Bonferroni correction (Supplementary Figure S9).

Other Analysis
The results of MR-Egger regression for the assessment of 
pleiotropy are listed in Supplementary Table S3, suggesting 
that the non-pleiotropy assumption was satisfied in all of the 
aforementioned MR methods for most cancers. However, 
we  detected significant pleiotropy when testing for a causal 
effect of UA on skin cancer risk (intercept  =  −0.01, p  =  0.03). 
In addition, some evidence of heterogeneity was also found 
using Cochran’s Q statistics for some cancers, including breast, 
colorectal and prostate cancer (Supplementary Table S4). To 
deal with heterogeneity and potential horizontal pleiotropy, all 
26 SNPs were searched on the PhenoScanner website and six 
SNPs were found to be  exclusively associated with serum UA 
levels (Supplementary Table S5). The entire analysis was 
subsequently repeated using these six SNPs as instruments. 
Similarly, no significant causal relationship was observed between 
serum UA levels and the eight site-specific cancers in question 
(Supplementary Table S6). These results strongly suggested 
that the observed associations were not biased by pleiotropic 
effects (Supplementary Table S3). Results of heterogeneity 
testing also revealed a significant decrease of heterogeneity 
after excluding SNPs associated with the phenomenon, apart 
from serum UA levels (Supplementary Table S4).

DISCUSSION

This study explored the relationship between serum UA levels 
and cancer risk via a two-sample MR analysis and did not 
identify strong evidence supporting causality between serum UA 
levels and cancer risk, including that of bladder, breast, colorectal, 
lung, prostate, renal cell, skin, and thyroid cancer. The sensitivity 
analyses and other analyses supported these findings.

Ames et  al. first reported that serum UA was an excellent 
scavenger of singlet oxygen and hydroxyl radicals, and could 
be  a protective factor against cancer in humans (Ames et  al., 
1981). Evidence for the antioxidant function of UA has continued 
to increase over the recent decades (Peden et  al., 1990; Becker, 
1993; Liu et al., 2019). Itahana et al. demonstrated that SLC2A9 
was a key downstream target of p53, already well known as 
a typical UA transporter. This pathway was found to be protective 
from ROS-induced damage and cancer pathogenesis in humans 
(Itahana et  al., 2015). In contrast, UA levels are also regarded 
to be  a risk factor for cancer due to its function in inducing 
chronic inflammation and increasing ROS production (Mi et al., 
2020). Chronic inflammation and tissue infiltration by 
neutrophils, macrophages and monocytes (Grainger et al., 2013; 
Weigt et al., 2017), in turn, promote carcinogenesis (Fini et al., 
2012; Braga et  al., 2017; Ahechu et  al., 2018). Due to the 
complex roles UA plays in cancer occurrence, associations 
remain unconfirmed in previous epidemiological literature 
(Strasak et al., 2007; Dziaman et al., 2014; Horsfall et al., 2014; 
Szkandera et  al., 2015; Battelli et  al., 2016; Mi et  al., 2020).

A recently published prospective population-based study 
demonstrated associations between serum UA levels and the 
risks of common cancers (Kuhn et  al., 2017). Consistent with 
our findings, serum UA levels were reported not to be associated 

FIGURE 2 | Primary results of the causal associations between serum uric acid levels and cancer risk by random effects inverse variance weighted method. OR, 
odds ratio; IVW, inverse variance weighted; CI, confidence interval.
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with risks of lung, prostate, and colorectal cancer. In addition, 
higher serum UA levels were associated with lower breast cancer 
risk. The implications of these results, however, were limited 
due to the number of cases in this cohort study (lung cancer, 
n  =  195; colorectal cancer, n  =  256; breast cancer, n  =  627; 
prostate cancer, n  =  554). One MR study also revealed causal 
relationships between serum UA levels and cancer risks. The 
study was based on the Copenhagen General Population Study 
and selected rs7442295 (gene: SLC2A9, position: chr4:9964756) 
as the instrument for serum UA level representation. Results 
revealed causal relationships between high serum UA levels, high 
cancer incidence and high all-cause mortality, contrary to our 
findings. Possible explanations of such a paradoxical finding were 
that this study only used rs7442295 as the instrument which 
could only explain 2% of the variation in serum UA levels, and 
SLC2A9 was expressed differently in various organs, thus there 
might some biases in that study (Kobylecki et  al., 2017). Li 
et  al. additionally reviewed the relationship between serum UA 
levels and multiple health outcomes recently. Similarly, the review 
did not identify convincing evidence supporting a clear influence 
of serum UA levels on cancer outcomes (Li et  al., 2017).

Here, we designed an MR study to investigate potential causality 
between serum UA levels and malignancy risk. To meet the first 
assumption, the genetic instrument chosen in the MR study should 
be  strongly associated with serum UA levels. A previous study 
has reported that almost 40–80% of variation of serum UA levels 
could be  explained by genetic factors (Krishnan et  al., 2012), 
while the strength of genetic instruments used in MR studies 
was still small and accounted for only 7% of serum UA variance. 
The power of genetic instruments to detect causal associations 
with serum UA levels was thereby limited. Nevertheless, all SNPs 
chosen in this study passed our p-value threshold of 5  ×  10−8 
and F-statistics values threshold of 10, indicating all instruments 
were sufficiently effective. Sensitivity analyses, including five MR 
methods and pleiotropy analyses, were subsequently carried out 
to evaluate for potential violation of the second assumption. Results 
revealed some evidence for the existence of horizontal pleiotropy 
and heterogeneity in the analysis by using 26 SNPs, indicting 
this assumption may be  violated. After exclusion of the SNPs 
not exclusively associated with serum UA levels, we  found the 
heterogeneity and pleiotropy decreased significantly and the results 
remained unchanged, which proved the robustness of the results. 
In addition, no SNP was found to be  associated directly with 
cancers. Therefore, the likelihood of biases in this paper is low.

This study has several advantages. First, almost all prior studies 
were observational and incorporated a limited quantity of patients, 
thus likely causing observation bias and increasing the risk of 
confounding. Furthermore, few studies have demonstrated potential 
causality between serum UA levels and cancer risk. Our study 
used a novel method, MR analysis, to assess any potential causal 
relationship, thereby minimizing confounding and overcoming reverse 
causality. The two-sample MR method also allowed us to integrate 
several independent GWAS datasets with large sample sizes and 
yield more precise results. To the best of our knowledge, this study 
was the largest such MR analysis focused on the relationship between 
serum UA levels and malignancy. Moreover, six different MR 
methods were employed in this study, thus increasing result robustness.

Our study, however, was not without limitations. First, the 
proportions of cases for some site-specific cancers were low, 
and it might result in a low precision of the estimates (Zhou 
et  al., 2018). Second, data for most cancers was downloaded 
from the UK Biobank. The individuals in the UK Biobank are 
healthier than the general population, and we  cannot rule out 
the “healthy volunteer” selection bias (Fry et  al., 2017). Third, 
due to a lack of detailed information in the datasets, we  were 
unable to conduct more refined analyses (e.g., stratification 
analysis). In addition, the GWAS datasets in this study only 
contained data from European individuals. Our findings may 
thus not be  applicable to other races. Future studies should 
evaluate patients from different ethnicities and in wider age ranges.

CONCLUSION

In conclusion, we  did not find any consistently strong evidence 
supporting causality between serum UA levels and cancer risk. 
However, the potential causal role of serum UA levels in the 
risk of malignancy warrants further investigation by studying a 
greater number of cancer types and employing larger MR analyses.
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