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Ginseng root-derived exosome-like nanoparticles protect skin from UV 
irradiation and oxidative stress by suppressing activator protein-1 signaling 
and limiting the generation of reactive oxygen species 
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A B S T R A C T   

Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research 
was focusing on understanding their properties and functions. In this study, the characteristics and molecular 
properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin 
protection. 
Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the 
beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0–2 × 109 particles/mL), and 
followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured 
using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with 
immunoblotting analysis. 
Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C–O, 
and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs 
downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the 
ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels 
of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence 
biomarker p21, possibly by suppressing activator protein-1 signaling. 
Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and 
oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs 
as a potential active ingredient in cosmeceuticals to promote skin health.   

1. Introduction 

Most mammalian cells secrete extracellular vesicles, and such 
intracellularly derived vesicles are found in blood, urine, saliva, and cell 
culture media [1,2]. Extracellular vesicles (EVs) are 
membrane-structured organoids with a diameter of 20 nm to 5 mm. 
They are classified into exosomes, ectosomes, microvesicles, micropar-
ticles, and apoptotic bodies, depending on the origin, size, shape, lipid 
composition, and method of secretion. Exosomes are the smallest 

phospholipid bilayer-membrane vesicles, with a size (diameter) of 
30–100 nm (< 200 nm). They are cup-shaped and originate from 
endosomes. Exosomes are rich in tetraspanins such as CD9, CD63, and 
CD81 and are often used as exosome markers. In addition, exosomes 
consist of cholesterol, sphingomyelin, ceramides, and phosphatidylser-
ine. Furthermore, DNA, histone, miRNA, non-coding RNA, mRNA, and 
intracellular proteins can be contained within exosomes. Thus, the 
exosome plays an essential role in cell-to-cell interactions by mediating 
the exchange of substances. Even in plants and bacteria, small vesicles 
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are released into the extracellular space [3,4]. Plant-derived vesicles are 
called plant-derived exosome-like nanoparticles (PDENs) or 
plant-derived extracellular vesicles (PDEVs) and bacteria-derived vesi-
cles are called bacterial extracellular vesicles (BEVs) [4–6]. The size of 
PDENs is between 30 nm and 150 nm and the components of them are 
similar with mammalian exosomes [7]. Their main functions are 
defending against pathogens or adapting abiotic environmental stress 
[3]. In addition, the size of BEVs is 20–400 nm and they contain lipo-
polysaccharide (LPS), peptidoglycan, and ompA in phospholipid bilayer 
as well as proteins, toxins, and nucleic acids in cytoplasm [4,8]. LPS and 
peptidoglycan can bind to host pattern recognition receptor to promote 
host pathology, immune tolerance, or confer protective immunity. 

Ultraviolet (UV) rays have a wavelength of 200–400 nm, causing 
skin lesions such as photoaging, erythema, pigmentation, and skin 
cancer. UV radiation is classified into UVA, UVB, and UVC according to 
wavelength, and these light classifications differ in their range of skin 
penetration and biological effects. UVC, with the shortest wavelengths 
(200–290 nm), is the most dangerous, but it is entirely absorbed by the 
ozone layer and does not reach the earth’s surface. As a result, it is 
mainly UVA and UVB that cause skin damage. UVA with a wavelength of 
320–400 nm penetrates to the dermis and causes sagging skin. In 
contrast, UVB with a wavelength of 290–320 nm affects the epidermis 
through deposition of intense energy, and repeated UVB exposure causes 
skin wrinkles [9]. 

UVB causes cell death through reactive oxygen species (ROS) gen-
eration in a range of cells [10]. Apoptosis is a form of programmed cell 
death triggered by stimuli, such as UV radiation and excessive ROS [11, 
12]. These stimuli mediate the activation of proteolytic enzyme cas-
pases, leading to apoptosis. Caspases are expressed in pro-caspase forms, 
which are inactive and converted to an activated form (cleaved form) in 
response to a stimulus. First, extrinsic and intrinsic pathways activate 
caspase-8 and -9, respectively. After that, a sequential signaling cascade 
activates the executioner caspases (caspase-3, -6, and -7), resulting in 
morphological changes associated with apoptosis [13]. Caspase-1 is well 
known as an essential component for inflammasome activation, and its 
importance in the UVB-induced apoptosis of keratinocytes has recently 
been reported [14]. BAX, a member of the Bcl-2 gene family, is a pro-
apoptotic effector and an essential regulator of the intrinsic apoptotic 
pathway [15]. 

UVB induces oxidative stress to temporarily or continuously upre-
gulate the activator protein-1 (AP-1) pathway [16–19]. AP-1 transcrip-
tion factors consist of c-jun and c-fos components, which form 
heterogeneous or homodimer complexes. The dimer complexes move 
into the nucleus and bind to DNA, regulating the expression of specific 
AP-1 target genes. AP-1 is activated by a phosphorylation cascade 
mediated by the upper signaling mitogen-activated protein kinases 
(MAPKs: ERK, JNK, p38) [20]. In the skin, activation of AP-1 increases 
the expression of matrix metalloproteinases (MMPs), endopeptidases 
with substrate specificity. MMP2 and MMP9 break down collagen type 
IV, while MMP3 degrades collagen type I [21]. Therefore, the break-
down of collagen by upregulated MMPs leads to photoaging. In addition, 
activation of AP-1 signaling in skin induces an inflammatory response 
through increased expression of inflammatory proteins such as 
cyclooxygenease-2 (COX-2) and interleukin (IL)-6 [22–24]. Inflamma-
tion is a defense response that protects the body from external stimuli, 
but an excessive inflammatory response can cause skin damage and 
accelerate skin aging [25]. 

This study evaluated the beneficial skin effects of ginseng root- 
derived exosome-like nanoparticles (GrDENs) isolated from ginseng 
root using the human keratinocytes cell line HaCaT. We demonstrated 
the skin-protective and anti-aging effects of GrDENs under UV exposure 
and ROS irritation. 

2. Materials and methods 

2.1. Materials and reagents 

HaCaT cell lines were purchased from Antibody Research Corpora-
tion (MO, USA, catalog No: 116027) and HEK293T cell lines were pur-
chased from the American Type Culture Collection (ATCC) (Rockville, 
MD, USA, catalog No: CRL-3216). Cell culture media and antibiotics 
(penicillin and streptomycin) were purchased from Hyclone (Logan, UT, 
USA). 3-(4-5-Dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide 
(MTT) and hydrogen peroxide (H2O2) were obtained from Sigma- 
Aldrich (St. Louis, MO, USA). Primers for quantitative real-time poly-
merase chain reaction (qRT-PCR) were produced by Macrogen (Seoul, 
Republic of Korea). The cDNA synthesis kit was obtained from Thermo 
Fisher Scientific (Waltham, MA, USA). Antibodies targeting cleaved- 
caspase-3, -8, -9, caspase-3, -8, -9, p-c-jun (Ser73), c-jun, p-c-fos 
(Ser32), c-fos, p-ERK (Thr202/Tyr204), ERK, p-JNK (Thr183/Tyr185), 
JNK, p-p38 (Thr180/Tyr182), p38, p-MEK1/2 (Ser217/221), MEK1/2, 
and Myc were purchased from Cell Signaling Technology (Beverly, MA, 
USA). In addition, β-actin antibody was purchased from Santa Cruz 
Biotechnology, Inc. (Dallas, TX, USA). The other chemicals used in this 
study were of American Chemical Society grade or higher. 

2.2. Extraction and purification of GrDENs 

The 4-year-old ginseng root was harvested from a farmhouse in 
Gyeonggi, Republic of Korea. After harvesting, the root was washed with 
tap water and air-dried at 45 ◦C for 24 h. Next, the ginseng root was 
finely ground using a blender and stored at 4 ◦C. Extraction and puri-
fication of EVs were performed by soaking, juicing and conducting serial 
ultra-centrifugations as previously reported [7]. 30 g of ginseng root was 
used to extract and to purify GrDENs, and 1.02 × 1010 particles of 
GrDENs were purified from the extract; the yield was 3.41 × 108 par-
ticles/g of ginseng root. 

2.3. Characteristics of GrDENs 

GrDENs which were used in this research were extracted and purified 
in the same way with previous research [7]. The shape of GrDENs was 
analyzed through cryo-electrom microscope and the surface was sur-
rounded by lipid bilayer. The size of GrDENs was between 87 nm and 
256 nm, and the mean size was 142 nm [7]. The lipid contents of 
GrDENs were analyzed with liquid chromatography-mass spectrometry 
[26]. They contained total 188 lipid species, belonging to 15 different 
classes such as triacylglycerol, phosphatidylcholine, lysophosphatidy-
lethanolamine, phosphatidylethanolamine, and diacylglycerol [26]. 
Upon small RNA sequencing, it was found that GrDENs had various 
small RNA such as miRNA, snRNA, rRNA and tRNA. 

2.4. Cell culture 

HaCaT cells and HEK293T cells were grown in Dulbecco’s Modified 
Eagle Medium supplemented with 10 % and 5 % fetal bovine serum 
(FBS, Gibco, Grand Island, UT, USA), respectively, and 1 % penicillin 
and streptomycin. The cells were incubated in a humidified incubator 
with 5 % CO2 at 37 ◦C. 

2.5. Cell viability assay 

HaCaT cells were seeded in a 96-well plate at 2 × 105 cells/mL and 
incubated for 18 h. Then the cells were treated with GrDENs at con-
centrations of 1.25 × 108, 2.5 × 108, 5 × 108, 1 × 109, and 2 × 109 

particles/mL. After 24 h, the cell viability was determined by conven-
tional MTT assay. 
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2.6. ROS generation assay 

HaCaT cells were seeded in a 6-well plate at 2 × 105 cells/mL and 
incubated for 18 h. The cells were pre-treated with GrDENs for 30 min 
and treated with UVB (30 mJ/cm2) (UVB Lamp BLX-312, Vilber Lour-
mat, France). After 24 h, the cells were stained with 10 μM 2′,7′- 
dichlorodihydrofluorescein diacetate (H2DCFDA) and incubated for 20 
min in the dark. Then, the cells were fixed in a 4 % formaldehyde so-
lution and stained with 4′,6-diamidino-2-phenylindole (DAPI). Photo-
graphs were captured using a Nikon Eclipse Ti fluorescence microscope 
(Nikon, Japan). For flow cytometry, HaCaT cells were treated with 
GrDENs and UVB in the same manner as mentioned above. After 24 h, 
cells were harvested and resuspended in 300 μL of phosphate-buffered 
saline. Diacetyldichlorofluorescein (DCFH-DA) was added to the cells 

to a concentration of 10 μM, and the cells were incubated for 20 min in 
the dark. The fluorescence was detected at 485/535 nm using a flow 
cytometer (Beckman Coulter, Brea, CA, USA). 

2.7. RNA extraction and quantitative real-time PCR 

HaCaT cells were seeded in a 6-well plate at a density of 2 × 105 

cells/mL and incubated for 18 h in an incubator. The seeded cells were 
pre-treated with GrDENs for 30 min and then treated with UVB (30 mJ/ 
cm2) or H2O2 (600 μM). After 24 h, the cells were harvested, and the 
total RNA was extracted with TRIzol reagent according to the manu-
facturer’s instructions. The complementary DNA was synthesized with a 
cDNA synthesis kit. Finally, qRT-PCR was performed with Pcrbio’s 
qPCRBIO SyGreen mix. The primers used in this study are listed in 

Fig. 1. Cell viability and intracellular ROS levels of HaCaT cells treated with GrDENs. (A and B) HaCaT cells were treated alone with GrDENs (0–2 × 109 particles/ 
mL) for 24 h in panel A. For panel B, HaCaT cells were pre-treated with GrDENs (0–2 × 109 particles/mL) for 30 min and stimulated with UVB irradiation for 24 h. 
Cell viability was examined by MTT assay. (C and D) HaCaT cells were pre-treated with GrDENs (0–2 × 109 particles/mL) for 30 h and irradiated by UVB for 24 h, 
and the cells were incubated with H2DCFDA (C) or DCFH-DA (D) for 20 min. Intracellular ROS levels were determined by fluorescent imaging (C) and flow cytometry 
(D). Fluorescent intensity was measured with ImageJ (C). Data in (A), (B), and (C) are presented as mean ± standard deviation of at least three independent ex-
periments. Results in (D) are representative images from three independent experiments. ##p < 0.01 compared to the normal group (non-treatment), and *p < 0.05, 
**p < 0.01 compared to the control group (UV irradiation). 
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Supplementary Table 1. 

2.8. Preparation of cell lysates and immunoblotting 

HaCaT cells or HEK293T cells were lysed with lysis buffer to obtain 
the whole lysates. The lysis buffer consisted of 50 mM Tri-HCl (pH 7.5), 
120 mM NaCl, 25 mM β-glycerol phosphate (pH 7.5), 20 mM NaF, 2 % 
NP-40, 2 μg/mL leupeptin, 2 μg/mL pepstatin A, 1 mM benzamide, 2 μg/ 
mL aprotinin, 1.6 mM pervanadate, 100 μM phenylmethylsulfonyl 
fluoride, and 100 μM Na3VO4. Samples containing equal amounts of 
proteins were loaded in polyacrylamide gels and separated by size with 
sodium dodecyl sulfate polyacrylamide gel electrophoresis, followed by 
transfer of proteins to polyvinylidene fluoride (PVDF) membranes. The 
primary antibody was diluted 1:2500 with tris-buffered saline contain-
ing 0.1 % Tween® 20 detergent (TBST) and 3 % FBS, and the antibody 
was incubated on the PVDF membrane at 4 ◦C for 18 h. After washing 
three times with TBST, the secondary antibodies were incubated at a 
ratio of 1:2500 for 90 min in RT. After washing three times with TBST, 
the immunoreactive bands were detected by enhanced peroxidase with 
anb ELPIS-BIOTECH in a chemidoc of ATTO. 

2.9. Statistical analysis 

All data in this study are presented as mean ± standard deviation of 
at least three independent experiments. ImageJ software was used to 
measure the band intensity of immunoblotting analysis. The Mann- 
Whitney test was used to evaluate the significance of each set of data. 

Statistical significance was defined as p-value < 0.05. 

3. Results 

3.1. Identification of ginsenosides in GrDENs 

Ginsenosides are the primary pharmacological components of 
ginseng. Therefore, we investigated ginsenoside contents inside 
GrDENs. The high-performance liquid chromatography-mass spec-
trometry (HPLC-MS) results revealed that GrDENs contained detectable 
ginsenosides Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C–O, and F2. 
Based on our previous preliminary analysis results of ginsenoside in 
GrDENs (data not shown), we prepared the GrDENs samples more 
elaborately for HPLC-MS analysis and obtained total three analyzed 
data. GrDENs for each analysis were from different sources. The content 
of each ginsenoside for these analyses is shown in Supplementary Table 
2. 

3.2. Protective effect of GrDENs against UV exposure-induced cell death 

To investigate the beneficial effects of GrDENs on the skin, we 
evaluated UV irradiated-HaCaT cells. HaCaT cells were dose- 
dependently incubated with GrDENs for 24 h, and the result showed 
that GrDENs did not influence cell viability (Fig. 1A). Importantly, UV 
irradiation caused cell death, and GrDENs protected the cells from this 
death. Notably, GrDENs at concentrations above 5 × 108 particles/mL 
showed remarkable effects, recovering cell viability to 80–90 % 

Fig. 2. Effect of GrDENs on the expression of apoptotic genes and activities of caspases. HaCaT cells were pre-treated with GrDENs for 30 min and irradiated by UVB 
for 24 h. (A–F) The mRNA levels of BAX (A), caspase-1 (B), caspase-3 (C), caspase-6 (D), caspase-7 (E), and caspase-8 (F) were determined by real-time PCR. (G–J) To 
examine the alterations of caspase activities when treated with GrDENs, cleaved caspase levels were analyzed by immunoblotting (G). Band intensity was measured 
with ImageJ, and the relative band intensities of cleaved caspase-8 (H), cleaved caspase-9 (I), and cleaved caspase-3 (J) were normalized to the corresponding total 
caspases. Data in (A), (B), (C), (D), (E), (F), (H), (I), and (J) are presented as mean ± standard deviation of three independent experiments. Results in (G) are 
representative images from three independent experiments. ##p < 0.01 compared to the normal group (non-treatment), and *p < 0.05, **p < 0.01 compared to the 
control group (UV irradiation). 
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(Fig. 1B). Excess ROS was shown to cause cell damage leading to death 
via activation of an apoptosis signal [12], and UV could promote the 
generation of ROS [27]. Thus, we tested the effect of GrDENs on ROS 
generation using fluorescent probes H2DCFDA and DCFH-DA as a sensor 
for ROS. In Fig. 1C, intracellular ROS were detected as fluorescent green, 
and GrDENs decreased the ROS levels induced by UV irradiation. 
Consistently, the proportion of DCFH-DA-positive cells was increased in 
the UV irradiation group from 42.40 % to 95.43 % compared to the 
control group. However, GrDENs limited that increase (the proportions 
of the DCFH-DA positive cells were 73.33 %, 65.29 %, and 54.87 % in 
the GrDENs groups with concentrations of 5 × 108, 1 × 109, and 2 × 109 

particles/mL, respectively, Fig. 1D). 

3.3. Inhibitory effect of GrDENs on apoptosis signaling 

To understand the molecular mechanisms related to the GrDEN- 
mediated cell protection, the effect of GrDENs on proapoptotic mole-
cules, including BAX and caspases, was examined. The mRNA expression 
of BAX and caspase-1, -3, -6, -7, and -8 was significantly increased by UV 
irradiation (Fig. 2A–F). However, GrDENs (5 × 108, 1 × 109, and 2 × 109 

particles/mL) reduced the expression of BAX, caspase-1, and caspase-6 
genes (Fig. 2A, B, and D). In addition, GrDENs decreased the expres-
sion of caspase-3, -7, and -8 at concentrations of 1 × 109 and 2 × 109 

particles/mL (Fig. 2C–E, and F). Next, we examined the changes in the 
active states of caspase -8, caspase-9, and caspase-3 under UV and 
GrDEN treatments. Cleaved caspase levels normalized to total proteins 
were all elevated by UVB, while GrDENs reduced those levels 
(Fig. 2G–J). 

3.4. The beneficial effect of GrDENs on skin aging 

Excessive oxidative stress accelerates skin aging [28], so we hy-
pothesized the anti-aging activity of GrDENs based on the observations 
that GrDENs have ROS scavenging ability. The gene expression of 
MMP-2, -3, and -9, the main contributors to skin wrinkling, was 

increased in H2O2-exposed HaCaT cells (Fig. 3A–C). Additionally, 
GrDENs reduced the mRNA expression of MMP-2 and MMP-9 but not 
that of MMP-3 (Fig. 3A–C). Because enhanced inflammatory responses 
are also considered as a pathogenesis of skin aging, we identified 
changes in the expression of proinflammatory genes, such as COX-2 and 
IL-6, under GrDEN treatment. As expected, H2O2 exposure elevated the 
COX-2 and IL-6 gene expression, and GrDENs reduced their expression at 
1 × 109 or 2 × 109 particles/mL doses (Fig. 3D and E). We further 
assessed the level of p21, a well-established cellular senescence 
biomarker [29]. The mRNA level of p21 was increased by H2O2 but 
decreased in GrDEN (1 × 109 and 2 × 109 particles/mL) groups (Fig. 3F). 

3.5. Effect of GrDENs on AP-1 signaling 

Because H2O2-induced AP-1 activation can contribute to skin aging 
by modulating the expression of MMPs, inflammatory proteins, and p21 
[30–32], we assessed the effects of GrDENs on AP-1 signaling. H2O2 
augmented the phosphorylation of c-Fos at exposure times of 5, 10, and 
15 min, and GrDENs (2 × 109 particles/mL) curbed the p-c-Fos levels at 
5 min (Fig. 4A and C), which supported our hypothesis. However, H2O2 
and GrDENs did not affect p-c-Jun level (Fig. 4A and B). Next, we 
evaluated the effect of GrDENs on the downstream molecules of c-Fos, 
such as ERK, JNK, and p38. H2O2 exposure increased p-ERK and p-p38 
levels after 15 min and that of JNK after 30 min (Fig. 4D–G). GrDENs 
inhibited H2O2-induced ERK and JNK phosphorylation at 5 and 30 min 
but did not inhibit p-p38 levels (Fig. 4D–G). For checking the possibility 
of the involvement of NF-κB pathway, we assessed the phosphorylation 
of p65 in same condition. The phosphorylation level of p65 was 
increased by H2O2 treatment but GrDENs did not affect that level 
(Fig. 4H and I). 

3.6. Suppressive effect of GrDENs on MEK1/2 

To determine the target molecule of GrDENs, we further assessed the 
fluctuations of MEK1/2, upstream molecules of MAPKs, in GrDEN- 

Fig. 3. Effect of GrDENs in expression of skin aging- and inflammation-related genes. HaCaT cells were pre-treated with GrDENs (0–2 × 109 particles/mL) for 30 min 
and exposed by H2O2 for 24 h. (A–C) The expression of the aging-related genes, such as MMP-2 (A), MMP-3 (B), and MMP-9 (C), was determined by real-time PCR. (D 
and E) The mRNA levels of the inflammation-associated genes, such as COX-2 (D) and IL-6 (E), were examined with real-time PCR. (F) The gene expression of p21, a 
cellular senescence biomarker, was determined with real-time PCR. All data are presented as mean ± standard deviation of three independent experiments. ##p <
0.01 compared to the normal group (non-treatment), and *p < 0.05, **p < 0.01 compared to the control group (H2O2 exposure group). 
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treated HaCaT cells. In Fig. 5A and B, H2O2 enhanced the phosphory-
lation of MEK1/2 5 min after exposure, and GrDENs down-regulated the 
p-MEK1/2 levels at 5 min (Fig. 5A and B). To confirm MEK2 as a target of 
GrDENs, we overexpressed Myc-MEK2 in HEK293T cells and then 
examined the effect of GrDENs. Interestingly, GrDENs (2 × 109 parti-
cles/mL) significantly suppressed the p-MEK1/2 levels, indicating that 
GrDENs target MEK2 and not other upstream proteins (Fig. 5C and D). 

3.7. The effect of each ginsenoside component upon H2O2 exposure 

To confirm that the protective effects of GrDENs upon H2O2 exposure 
came from the ginsenoside components in GrDENs or from their own 
abilities of GrDENs, we checked the mRNA expressions of MMP2 and 
MMP3 in H2O2-treated cells under ginsenoside-treated conditions 
(Fig. 6A and B). The 4 most abundant ginsenosides, Re, Rg1, Rb1, and Rc 
were selected and treatment concentration of each ginsenoside was 
decided by calculating that how much ginsenoside was determined in 2 
× 109 particles/mL. As shown in Fig. 6A and B, ginsenoside Re alone 
showed significant inhibitory effects on mRNA expression of MMP2 and 

MMP3. Mixture of ginsenosides (Re, Rg1, Rb1, and Rc) showed slightly 
increased inhibition level of MMP3 expression (Fig. 6B). However, the 
inhibitory effects of GrDENs were higher than ginsenoside individual 
groups, implying that other minor ginsenosides or components might be 
involved. Ascorbic acid was used as positive control and showed strong 
suppressive activity (Fig. 6A and B). 

4. Discussion 

Ginseng possesses a variety of pharmacological effects, such as 
improving cognitive function [33] as well as anti-cancer [34], 
anti-inflammatory [35], anti-stress [36], antifatigue [37], antioxidant 
[38], anti-aging [39], and anti-diabetic [40] effects. Therefore, ginseng 
is consumed in an array of forms as a functional component of health 
supplements and cosmetics. The different pharmacological efficacies of 
ginseng are derived from physiologically active substances, including 
ginsenoside, phenolic compounds, and acidic polysaccharides, that are 
in ginseng. Many studies have been conducted on the active effects of 
ginsenosides, which are ginseng saponins. Interestingly, it has recently 

Fig. 4. Effect of GrDENs in AP-1 signaling. HaCaT cells were pre-treated with GrDENs (2 × 109 particles/mL) for 30 min, and the cells were then exposed to H2O2 for 
the indicated time in the figures. (A–C) Phosphorescence and total levels of AP-1 subunits, including c-jun (A and B) and c-fos (A and C), were determined by 
immunoblotting. (D–G) Phosphorescence and total levels of AP-1 pathway-related molecules such as ERK (D and E), JNK (D and F), and p38 (D and G) were detected 
with immunoblotting analysis. (H and I) Phosphorescence and total levels of NF-kB pathway-related molecule, p65 were detected with immunoblotting analysis. 
ImageJ was used to measure the band intensity, and the relative band intensity of phospho-proteins was normalized to the corresponding total proteins. Data in (B), 
(C), (E), (F), (G), and (I) are shown as mean ± standard deviation of three independent experiments, and representative images are presented in (A), (D), and (H). 
##p < 0.01, #p < 0.05 compared to the normal group (non-treatment), and *p < 0.05, **p < 0.01 compared to the control group (H2O2 exposure group). 
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been reported that PDENs have health-beneficial functions. For 
example, blueberry-derived EVs increase cell viability based on their 
anti-inflammatory and antioxidant properties [41]. Similarly, 

strawberry-derived EVs have been reported to prevent oxidative stress 
[42]. In addition, it has been confirmed that PDENs derived from grapes, 
grapefruit, ginger, and carrot contribute to intestinal homeostasis 

Fig. 5. Effect of GrDENs on MEK1/2. (A and B) HaCaT cells were pre-treated with GrDENs (2 × 109 particles/mL) for 30 min, and the cells were exposed to H2O2 for 
5, 15, or 30 min. (C and D) The HaCaT cells were transfected with Myc-MEK2 for 24 h, and the cells were treated with GrDENs (0–2 × 109 particles/mL) for an 
additional 24 h. Phosphorescence and total MEK1/2 levels were determined with immunoblotting, and β-actin was used as a loading control. ImageJ was used to 
measure the band intensity, and the relative band intensity of phospho-proteins was normalized to the corresponding total proteins. Data in (B) and (D) are presented 
as mean ± standard deviation of three independent experiments, and representative images are presented in (A) and (C). ##p < 0.01 compared to the normal group 
(non-treatment), and *p < 0.05, **p < 0.01 compared to the control group (H2O2 exposure or Myc-MEK2 overexpression group). 

Fig. 6. The effect of each ginsenoside component upon H2O2 exposure. (A and B) HaCaT cells were pre-treated with ginsenoside Re (3.8 μg/mL), Rg1 (3.5 μg/mL), 
Rb1 (1.1 μg/mL), Rc (0.7 μg/mL), GrDENs (2 × 109 particles/mL), or Ascorbic acid (500 μM) for 30 min and exposed by H2O2 for 24 h. The expression of the aging- 
related genes, such as MMP-2 (A), MMP-3 (B) was determined by real-time PCR. All data are presented as mean ± standard deviation of three independent ex-
periments. ##p < 0.01 compared to the normal group (non-treatment), and *p < 0.05, **p < 0.01 compared to the control group (H2O2 exposure group). 
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through anti-inflammatory action [43]. These reports motivated us to 
explore the possibility of pharmacological effects of ginseng-derived 
EVs. In this study, we demonstrated the biological activity of GrDENs 
in improving skin health. 

We analyzed the gene expression of factors associated with 
apoptosis, aging, and inflammation in skin cells. In addition, we exam-
ined the activity of signaling proteins to understand the molecular 
mechanisms underlying the effect of GrDENs. We observed that GrDENs 
protect cells through antioxidant efficacy when irradiated with UVB 
light and exhibit anti-inflammatory and anti-aging activity through the 
suppression of AP-1 signaling under the oxidative stress caused by H2O2 
exposure. 

The efficacy of exosomes has been reported to vary depending on 
plant origin. Therefore, the composition of exosomes is expected to 
differ from plant species. Moreover, strawberry-derived EVs contain 
vitamin C as the active ingredient [42]. Interestingly, the components of 
GrDENs contain ginsenosides, such as Re, Rg1, Rb1, Rf, Rg2, Gyp17, Rd, 
C-Mc1, C–O, and F2. The antioxidant potency of ginsenosides is 
well-documented in vitro, in vivo, and in clinical studies [38]. For 
example, ginsenoside Rg1 enhances the antioxidant system in muscles 
and the liver [44,45]. In addition, ginsenosides Re and Rg1 have been 
reported to reduce p-ERK level increased by lipopolysaccharides in N9 
microglia [46], and ginsenoside Re reduces intimal hyperplasia through 
MEK1/2 inhibition [47]. Furthermore, ginsenosides Re, Rg1, and Rb1 
showed ROS scavenging activity in rat liver and brain by direct anti-
oxidative [48,49] and indirect MAPK/AP-1 pathway-inhibitory activ-
ities [50,51]. Moreover, it showed that the mixture of ginsenosides in 
GrDENs had slightly higher reducing effects on MMP3 expression upon 
H2O2 exposure than that on Re activity (Fig. 6B), implying that Re might 
be a major component to contribute to antioxidative activity of GrDENs. 
Nonetheless, the antioxidative activity level was largely found in 
GrDENs-treated group (Fig. 6A and B). The previous reports mentioned 
that EVs can augment the uptake of their own internal components into 
cells. [52]. So, GrDENs seem to facilitate the uptake of ginsenoside or 
other chemical components such as syringaresinol into cells than only 
ginsenosides treatment, leading to increased pharmacological activities 
of GrDEN (Fig. 6). Based on our results, therefore, it is expected that 
GrDENs do strongly give pharmacologically beneficial activity not only 

to ginsenosides, but also to other minor compounds. Although GrDENs 
showed promising pharmacological activity, the procedure of extracting 
and purifying EV is more difficult and unusual in comparison to prep-
aration of individual or mixture of ginsenosides. Meanwhile, as GrDENs 
may include genetic and epigenetic materials found in other plants [53], 
further research on the possible mode of actions affecting AP-1 signaling 
are needed on this hypothesis. Previous works suggest that PDEVs 
contain DNA, mRNA, miRNA, or plant immune-associated molecules for 
reducing the power of pathogens by silencing virulence-related genes 
[54–56]. 

PDENs are expected to have cross-kingdom activity because they 
have a similar composition and structure to mammalian-derived exo-
somes. As expected, several PDENs, including lemon- or blueberry- 
derived EVs, exert interspecies regulation on human cells [41,57]. 
Similarly, GrDENs have shown biological effects in human keratino-
cytes, suggesting them as a novel resource with the potential to improve 
health. In particular, this study demonstrates that GrDENs can be used as 
active ingredients in cosmetics to improve skin health. However, further 
study is necessary on the conditions for maintaining PDENs stability or 
mass production methods for industrial applications. 

Conclusively, this study can prove the protective effects of GrDENs 
against skin damage caused by UV and oxidative stress as summarized in 
Fig. 7, implicating new insights into beneficial uses of ginseng. In 
particular, our results suggest GrDENs as a potential active ingredient in 
cosmeceuticals to promote skin health. 

Declaration of competing interest 

The authors have declared that no competing interest exists. 

Acknowledgements 

This research was funded by the Basic Science Research Program 
through the National Research Foundation of Korea (NRF), the Ministry 
of Science and ICT, Republic of Korea (2017R1A6A1A03015642) and by 
AmorePacific Co., Republic of Korea (2022). 

Fig. 7. Summary of protective effect of GrDENs against UV irradiation and oxidative stress.  
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