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Evidence for Triplet Sensitization in the Visible-Light-Induced
[2++2] Photocycloaddition of Eniminium Ions
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Abstract: Eniminium ions were prepared from the corre-
sponding a,b-unsaturated carbonyl compounds (enones and
enals), and were found to be promoted to their respective triplet
states by energy transfer. The photoexcited intermediates
underwent intra- or intermolecular [2++2] photocycloaddition
in good yields (50–78%) upon irradiation at l = 433 nm or l =

457 nm. Iridium or ruthenium complexes with a sufficiently
high triplet energy were identified as efficient catalysts
(2.5 mol% catalyst loading) for the reaction. The intermolec-
ular [2++2] photocycloaddition of an eniminium ion derived
from a chiral secondary amine proceeded with high enantio-
selectivity (88% ee).

Whereas the [2++2] photocycloaddition chemistry of a,b-
unsaturated carbonyl compounds (enones and enals) has been
extensively explored,[1] the related a,b-unsaturated iminium
ions (eniminium ions) have received little attention. Notable
studies originate only from the group of Mariano, who
investigated the intramolecular [2++2] photocycloaddition of
eniminium ions[2] in the context of their pioneering work on
the photochemistry of iminium ions.[3] They found that
eniminium ions, upon direct excitation at l> 250 nm, undergo
a stereospecific [2++2] photocycloaddition that results from
excitation of the respective pp* transition. Attempts to
generate enantioenriched cyclobutanes by using an enimi-
nium ion derived from a chiral secondary amine led to
a maximum enantiomeric excess (ee) of 82% at 40%
conversion.[2b]

Scheme 1 illustrates the major difference in the photo-
chemical behavior of enones I and eniminium ions II. The
lowest-lying singlet state (S1) of enones is of np* character
and opens, despite its low absorption coefficient, a convenient
entry to populate the reactive triplet state T1 by direct
excitation at long wavelengths (l = 300–350 nm) followed by

a symmetry-allowed[4] intersystem crossing (ISC). The S1 state
of eniminium ions is of pp* character, and the absorption is
shifted hypsochromically relative to the np* transition of the
enone. As ISC to T1 is notoriously slow[4] for the eniminium
ion, subsequent reactions occur exclusively from the S1 state.
While it has been known for some time[5] that E/Z isomer-
ization reactions occur from S1 in photoexcited eniminium
ions, it has only recently been disclosed by the Melchiorre
group that this state can be quenched with appropriate
electron donors to achieve enantioselective alkylation reac-
tions.[6]

Considering recent interest in the catalysis of photo-
chemical processes by visible-light-induced triplet sensitiza-
tion,[7] we have explored the nature of the triplet state T1 of
eniminium ions in the present study. We speculated that this
state would be accessible by carefully choosing a suitable
triplet sensitizer, and we expected it to be an efficient
intermediate in [2++2] photocycloaddition reactions. Our
preliminary results are described in this Communication.

To investigate our hypothesis, we synthesized 3-(4-pen-
tenyl)-cyclohex-2-enone (1),[8] which was readily converted
into the eniminium salt 2 by treatment with pyrrolidine and
azeotropic removal of water[9] (Scheme 2). The respective
hexafluorophosphate salt precipitated and was recrystallized
from ethanol. Enone 1 absorbs at l = 233 nm (e =

15650m@1 cm@1) and l = 320 nm (e = 70m@1 cm@1). The latter
absorption was assigned to the forbidden np* transition, and
the former absorption to the allowed pp* transition. The
eniminium salt 2 showed an absorption maximum at l =

270 nm (e = 21320m@1 cm@1). For the reasons mentioned
above, the triplet energy of eniminium ion 2 could not be
directly measured but its redox potential E1/2 (2+/2·) was
determined as @1.39 V vs. SCE.[10, 11] As expected from their
absorption spectra, neither enone 1 nor the eniminium ion 2
showed any conversion when excited at an irradiation wave-
length of l = 420 nm.[12] We subsequently attempted to
initiate the [2++2] photocycloaddition of eniminium ion 2 by
addition of 2.5 mol% of an iridium or ruthenium catalyst
(Table 1). The reactions were performed in MeCN solution,

Scheme 1. Schematic energy diagram for the singlet (S) and triplet (T)
states of a,b-unsaturated carbonyl compounds I and the respective
eniminium ions II.
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and the intermediate iminium ion rac-3 was hydrolyzed by
treatment with aqueous 1m NaOH solution.

The literature-reported cyclobutane rac-4[8b] was isolated
as a single diastereoisomer from the reactions that were
catalyzed by iridium complexes 5 and 6 (entries 1 and 2). The
other catalysts, 7, Ir(ppy)3 (ppy = 2-phenylpyridine), and
Ru(bpy)3(PF6)2 (bpy = 2,2’-bipyridine), failed to induce the
desired transformation (entries 3–5), and the starting material
was recovered unchanged. The direct reaction of enone 1 to
product rac-4 was not catalyzed by complex 5 or 6. In
combination with the fact that iminium salt rac-3 could be
isolated from the reaction mixture in 75 % yield (entry 6), it is
clear that the reaction proceeds via the eniminium ion and not
via the enone. Further optimization experiments revealed
that ketone rac-4 was obtained in higher yields upon

irradiation at l = 433 nm[13] and upon work-up with 3m
NaOH solution (entries 7 and 8). Under the conditions of
entry 7, other eniminium ions 8 reacted equally well, and
products rac-9 were obtained in good yields (Scheme 3).

Most of the redox potentials and triplet energies of the
photoexcited catalysts shown in Table 1 have been
reported.[14] The triplet energy of compound 5 was deter-
mined from its luminescence emission[15] in MeCN solution
(see the Supporting Information). We found no correlation
between the excited-state redox potential of the catalysts and
their viability in affording the cyclobutane product rac-4. The
strongly reducing iridium complexes 7 and Ir(ppy)3

[16] failed
to catalyze the [2++2] photocycloaddition while the much
weaker reductant 6 [E1/2(IrIV/IrIII*)[14c] =@0.55 V] was a very
efficient catalyst. When comparing the tabulated triplet
energies for the individual complexes (Table 1), there is,
however, a very clear correlation. The [2++2] photocycloaddi-
tion ceases if the triplet energy ET of the catalyst is below
250 kJmol@1. Vice versa, this figure provides an estimate for
the triplet energy of the elusive T1 state of eniminium ion 2.
The observation that enone 1 did not undergo an Ir-catalyzed
[2++2] photocycloaddition (see above) is readily explained by
its higher triplet energy compared to that of the eniminium
ion.[17]

To gain more insight into the interaction between the
photoexcited catalyst and eniminium salt 2, quenching studies
were performed in MeCN solution at a concentration of c =

10 mm. Luminescence quenching was observed for catalyst 5
(Figure 1a), and the Stern–Volmer constant (KSV) extracted

Scheme 2. Preparation of eniminium ion 2, its sensitized [2++2] photo-
cycloaddition reaction to products rac-3 and rac-4, and structure of
iridium complexes 5–7.

Table 1: [2++2] Photocycloaddition of eniminium salt 2 in the presence of
various catalysts (see Scheme 2).

Entry[a] l[a]

[nm]
Catalyst ET

[b]

[kJmol@1]
t[a]

[h]
Product Yield[c]

[%]

1 420 5 256 20 rac-4 57
2 420 6 253 20 rac-4 44
3 420 7 245 20 –[d] –
4 420 Ir(ppy)3 231 20 –[d] –
5 420 Ru(bpy)3(PF6)2 193 20 –[d] –
6[e] 420 6 253 2 rac-3 75
7[f ] 433 5 256 2 rac-4 73
8[f ] 433 6 253 2 rac-4 68

[a] The reactions were performed at room temperature with a substrate
concentration of c =20 mm in MeCN at the indicated wavelength (l) and
for the indicated period of time (t). An 1m aqueous NaOH solution was
used for hydrolysis unless otherwise indicated. [b] Tabulated or mea-
sured triplet energies for the respective iridium or ruthenium catalyst
(see the main text). [c] Yield of isolated product. [d] No conversion was
observed, and the starting material was re-isolated. [e] No aqueous work-
up was performed. [f ] A 3m aqueous NaOH solution was employed for
hydrolysis.

Scheme 3. Intramolecular iridium-catalyzed [2++2] photocycloaddition
of eniminium ions 8.

Figure 1. Quenching experiments of photoexcited iridium catalysts 5,
6, and Ir(ppy)3 with eniminium ion 2 in MeCN solution. a) Decrease in
the luminescence intensity of compound 5 upon addition of iminium
salt 2. Stern–Volmer plots (KSV = Stern–Volmer constant) of the lumi-
nescence quenching for b) catalyst 5, c) catalyst 6, and d) Ir(ppy)3.
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from a plot of I0/I versus the eniminium concentration was
7.49m@1 (Figure 1b). The lifetime t0 of the excited state of
catalyst 5[15] was determined to be 970 ns, and it was shown
that a dynamic quenching mechanism applies (see the
Supporting Information). The quenching rate constant was
calculated from KSV and t0 as kq = 7.7 X 106m@1 s@1. The
luminescence intensity of catalyst 6 was similarly quenched
by increasing concentrations of eniminium ion 2 (Figure 1c).
The Stern–Volmer constant was calculated to be 7.69m@1 in
the case of catalyst 6. The luminescence of the inactive
iridium catalyst Ir(ppy)3 (Table 1, entry 4) was not quenched
by addition of eniminium ion 2 (Figure 1d). These results
suggest that the photochemical reaction of eniminium ion 2 is
initiated upon energy transfer from compounds 5 and 6 while
energy transfer from Ir(ppy)3 is not feasible based on the data
from Table 1.

In a second set of experiments, we studied the intermo-
lecular [2++2] photocycloaddition of eniminium ions derived
from cinnamaldehyde (10). Eniminium ion 11 was readily
prepared by treatment of aldehyde 10 with trimethylsilyl
(TMS) triflate and N-trimethylsilyl pyrrolidine in diethyl
ether (Scheme 4).[18] The absorption spectrum of compound

11 shows a maximum at l = 330 nm (e = 36 840m@1 cm@1) but
its triplet energy could not be determined. The redox
potential E1/2 (11+/11C) was found to be @0.83 V.[10] Neither
aldehyde 10 nor eniminium ion 11 showed any conversion
when their solutions in MeCN were irradiated at l =

457 nm[13] in the presence of 2,3-dimethylbutadiene. To our
delight, we found that the desired [2++2] photocycloaddition
of eniminium ion 11 could be triggered by the addition of
2.5 mol% of Ru(bpy)3(PF6)2. The reaction was complete after
four hours, and product rac-12 was obtained upon hydrolysis
in 69 % as a mixture of two diastereomers. The relative
configuration at C3 was different in the two diastereomers,
and NOESY studies revealed that the major isomer rac-12 a
places the methyl group in cis orientation relative to the
phenyl group. Under the same irradiation conditions, alde-
hyde 10 underwent hardly any conversion (, 10 %) to product
rac-12.

The following observations (see the Supporting Informa-
tion) provide evidence for the fact that the ruthenium-
catalyzed reaction proceeds via triplet energy transfer and not
via electron transfer: a) The ruthenium complex Ru(bpz)3-
(PF6)2 (bpz = 2,2’-bipyrazine), which is known to be a weak
reductant in its excited state [E1/2(RuIII/RuII*)[19] =@0.26 V],
promoted the [2++2] photocycloaddition as efficiently as
Ru(bpy)3(PF6)2. b) Eosin Y (EY), with a triplet energy[20] of
ET = 182 kJmol@1 and an excited-state reduction potential of

E1/2(EYC++/EY*)[20] =@1.11 V, did not catalyze the reaction at
l = 512 nm. c) The reaction was catalyzed by typical triplet
sensitizers such as benzil and thioxanthone,[21] albeit upon
irradiation at short wavelengths. d) The regioselectivity of the
[2++2] photocycloaddition can only be explained by a triplet
pathway that proceeds via a 1,4-diradical. Addition of an
intermediate radical 11C to 2,3-dimethylbutadiene would lead
to the opposite regioisomer.

In a preliminary study of the substrate scope, other olefins
were shown to react with eniminium ion 11 (Figure 2).
Isoprene gave rac-13 in a yield that was comparable to the

yield recorded for rac-12. The lower diastereomeric ratio
reflects the smaller size of the ethenyl group as compared to
the 2-propenyl group. Likewise, 1,3-butadiene gave rac-14
with a low diastereoselectivity at carbon atom C3. Alkynyl-
substituted olefins, such as 2-methylhex-1-en-3-yne and
(3-methylbut-3-en-1-ynyl)trimethylsilane, reacted smoothly
to give products rac-15 and rac-16.

Additionally, we evaluated the potential of the triplet-
sensitized [2++2] photocycloaddition of eniminium ions for
enantioselective synthesis.[22] To meet this end, the known
eniminium ion 17[6] was prepared and subjected to a ruthe-
nium-catalyzed reaction with 2,3-dimethylbutadiene
(Scheme 5). The reaction was performed at @40 88C with

2.5 mol% of Ru(bpy)3(PF6)2 as the catalyst. Complete con-
version was observed after 3.5 h, and product 12a was
obtained essentially as a single diastereoisomer (d.r. = 94:6)
and with 88% ee.

In conclusion, we have collected evidence that eniminium
ions can be promoted to their triplet states by sensitization
with suitable iridium or ruthenium complexes upon irradi-
ation with visible light (l = 433 or 457 nm). This indirect
activation mode allows for enantioselective [2++2] photo-
cycloadditions of eniminium ions derived from chiral secon-
dary amines. Transformations of this type could previously be

Scheme 4. Formation of eniminium ion 11 and its ruthenium-catalyzed
[2++2] photocycloaddition to 2,3-dimethylbutadiene (d.r. = diastereo-
meric ratio).

Figure 2. [2++2] Photocycloaddition products obtained by the reaction
of eniminium ion 11 with different olefins (l =457 nm, catalyst:
2.5 mol% Ru(bpy)3(PF6)2 in MeCN).

Scheme 5. Enantioselective ruthenium-catalyzed [2++2] photocycloaddi-
tion of eniminium ion 17 (Ar =3,5-bis(trifluoromethyl)phenyl;
TDS = tert-hexyldimethylsilyl) to cyclobutane 12 a.
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conducted only via the respective singlet intermediate by
short-wavelength irradiation (l = 250–300 nm). More impor-
tantly, the hypothesis that the triplet state of an eniminium ion
is lower in energy than the triplet state of the respective a,b-
unsaturated carbonyl compound has been substantiated.
Under conditions that allowed for sensitized [2++2] photo-
cycloaddition reactions of the eniminium ions 2 and 11, there
was no or little conversion of the corresponding carbonyl
compounds 1 and 10. Along with thermal iminium ion
catalysis[23] and photoinduced electron transfer (PET) to
iminium ions,[6, 24, 25] triplet sensitization seems to offer another
promising avenue for the in situ activation of carbonyl groups
to explore new reactivity patterns.
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