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Abstract

Immune-based therapies have now been credentialed for pediatric cancers with the robust efficacy 

of chimeric antigen receptor (CAR) T cells for pediatric B cell acute lymphocytic leukemia 

(ALL), offering a chance of a cure for children with previously lethal disease and a potentially 

more targeted therapy to limit treatment-related morbidities. The developmental origins of most 

pediatric cancers make them ideal targets for immune-based therapies that capitalize on the 

differential expression of lineage-specific cell surface molecules such as antibodies, antibody-drug 

conjugates, or CAR T cells, while the efficacy of other therapies that depend on tumor 

immunogenicity such as immune checkpoint inhibitors has been limited to date. Here we review 

the current status of immune-based therapies for childhood cancers, discuss challenges to 

developing immunotherapeutics for these diseases, and outline future directions of pediatric 

immunotherapy discovery and development.
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INTRODUCTION

Pediatric cancers are fundamentally different than adult tumors in that they arise from a 

misappropriation of normal developmental processes rather than developing in response to 

decades of environmentally mediated DNA damage, as is typical in adult malignancies 

(Chun et al. 2016, Mosse et al. 2008). As a result of these developmental origins, tumors in 

children have a significantly lower mutation burden than in adults (Chalmers et al. 2017), 

typically containing only a limited number of driver genetic alterations such as biallelic INI1 
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loss in malignant rhabdoid tumors (Chun et al. 2016), RB1 mutations in retinoblastoma 

(Friend et al. 1986), MYCN amplification and ALK (anaplastic lymphoma kinase) 

mutations in neuroblastoma (Mosse et al. 2008, Schwab et al. 1983), H3K27M mutations in 

diffuse intrinsic pontine gliomas (Wu et al. 2012), or EWSR1-FLI1 or PAX3-FOXO1 
translocations in Ewing sarcoma (Ohno et al. 1994) and rhabdomyosarcoma (Galili et al. 

1993), respectively. Consequently, childhood tumors do not contain an abundance of 

recurrent and clinically targetable mutated oncogenes, despite sharing many of the same 

driver mutations, albeit at much lower frequencies (Chalmers et al. 2017, Grobner et al. 

2018, Ma et al. 2018). Thus, to date pediatric cancer treatment approaches have been limited 

to empiric cytotoxic chemoradiotherapies that come with a myriad of immediate and late 

life-threatening treatment-related comorbidities. While decades of clinical research focused 

on safely and effectively combining these therapies have resulted in improved clinical 

outcomes, still today many children ultimately have refractory disease or are afflicted with 

lifelong morbidities from their treatments (Oeffinger et al. 2006). Furthermore, most 

children with relapsed cancers remain incurable with our current treatment regimens.

Over the last decade, the ability to capitalize on the antitumor capabilities of the host 

immune system has revolutionized cancer treatment approaches, with major breakthroughs 

in childhood leukemias (Majzner et al. 2017). Furthermore, because resistance to standard 

cytotoxic agents does not imply resistance to immunotherapeutics and since toxicities of 

immunotherapy are noncumulative and nonoverlapping with those of cytotoxic agents, 

immunotherapies for pediatric cancers have the potential to offer the hope of cure to children 

with relapsed cancers and to reduce the acute and long-term toxicities from cancer treatment 

(Maude et al. 2018). While the broad class of cancer immunotherapies includes the basic 

tenets of targeting or utilizing the host immune system to effect an antitumor response, there 

is a wide variability to what is considered in this class. Here we divide immunotherapies into 

(a) therapies that amplify the endogenous host antitumor response, such as immune 

checkpoint inhibitors; (b) protein therapeutics that facilitate host immune responses toward 

tumor-specific cell surface molecules, such as monoclonal antibodies and bispecific 

antibodies; (c) protein therapies that capitalize on the specificity of antibodies to deliver 

potent drugs or radiation selectivity to tumors, such as antibody-drug conjugates (ADCs); 

and (d) cellular therapies that facilitate host immune responses toward tumor-specific cell 

surface molecules, such as chimeric antigen receptor (CAR) T cells. While the 

developmental origins and limited mutation burden of childhood tumors may limit the 

clinical effectiveness of some classes of immunotherapies such as checkpoint inhibitors, 

others such as CAR T cells have proven to be especially effective given the persistence of 

differentially expressed, lineage-specific cell surface molecules. Here we discuss the current 

and future use of these classes of immunotherapies in childhood cancers, the current 

challenges of their utilization, and future directions of pediatric immunotherapeutic 

discovery and development.

ENGAGING THE ADAPTIVE IMMUNE SYSTEM

T cells provide a major mechanism for immune surveillance and tumor eradication; 

however, T cells can become tumor tolerant or exhausted, limiting their cytotoxic effects 

(Pauken & Wherry 2015). In 2018, the Nobel prize in Physiology or Medicine was awarded 
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for the discovery that certain proteins on T cells such as cytotoxic T lymphocyte antigen 4 

(CTLA-4) and programmed death receptor 1 (PD-1) can inhibit the antitumor effects of the 

host adaptive immune response following engagement of ligands on tumor cells such as 

programmed death receptor ligand 1 (PD-L1) (Topalian et al. 2015). Collectively, these 

studies led to the clinical development of several antibodies that block these host-tumor 

immune checkpoints and that have revolutionized the treatment of several adult cancers such 

as renal cell carcinoma, lung cancers, and melanoma (Garon et al. 2015,Motzer et al. 2015, 

Snyder et al. 2014). In contrast, immune checkpoint inhibition, which to date has been 

studied in a much more limited manner (Ansell et al. 2015, Bekoz et al. 2017, Blumenthal et 

al. 2016, Foran et al. 2017, Merchant et al. 2016), but with several ongoing trials (Kabir et 

al. 2018), has not yet demonstrated clinical success in common sporadic pediatric solid 

tumors. The most comprehensive pediatric clinical example to date is a recent phase I trial of 

the CTLA-4-blocking antibody ipilimumab, where no objective responses were observed in 

33 patients, including 12 patients with pediatric melanoma and 17 patients with sarcoma, 

despite a pharmacokinetic and toxicity profile of the drug that was comparable to adult 

patients (Merchant et al. 2016). This lack of response to immune checkpoint inhibitors for 

most childhood cancers is likely a result of their overall lower immunogenicity compared to 

most adult tumors, which is in large part most likely derived from their lower mutational 

burden and limited neoantigen presentation (Chalmers et al. 2017).

Significant clinical responses to immune checkpoint inhibition have occurred in a small 

well-defined subset of childhood cancers including classical Hodgkin lymphomas (cHLs) 

(Ansell et al. 2015, Bekoz et al. 2017, Foran et al. 2017, Green et al. 2010, Haverkos et al. 

2017) and tumors arising from children with germline biallelic mismatch repair deficiency 

(bMMRD) (Bouffet et al. 2016, Campbell et al. 2017). In both of these tumor histotypes, 

response to these agents can be best understood by considering aspects of their underlying 

tumor biology. cHLs are a B cell malignancy of adolescents and young adults that are 

histologically defined by a limited number of pathognomonic Reed-Sternberg cells that 

amass a large immune infiltrate with little evidence of antitumor activities (Kuppers 2009). 

Over one third of cHLs have been found to harbor a somatic gain of the PD-L1 and PD-L2 
gene locus at chromosome 9q24.1 with resulting overexpression of the PD-L1 and PD-L2 

checkpoint proteins (Green et al. 2010). Furthermore, the Epstein-Barr Virus, which is a key 

driver of cHL tumorigenesis, has been found to increase PD-L1 expression (Green et al. 

2012). Taken together, these complementary mechanisms of PD-L1 overexpression in cHL 

lend a plausible biological mechanism to both the inactive inflammatory infiltrate commonly 

seen in these tumors and the impressive clinical response of these tumors to immune 

checkpoint blockade (Ansell et al. 2015, Bekoz et al. 2017, Foran et al. 2017, Green et al. 

2010, Haverkos et al. 2017). In fact, pembrolizumab has recently been approved by the FDA 

(US Food and Drug Administration) for the treatment of cHL in pediatric patients. However, 

this approval was based on a trial that did not include pediatric patients (KEYNOTE-087; 

https://www.clinicaltrials.gov/ identifier NCT02453594) (Chen et al. 2017) and thus was 

based on an extrapolation of the 69% response rate from the 210 adult patients on this trial.

bMMRD is a rare but highly penetrant cancer predisposition syndrome that arises from 

homozygous germline mutations in one of the mismatch repair genes PMS2, MLH1, MSH2, 
or MSH6 (Wimmer & Kratz 2010). Individuals with the bMMRD syndrome all develop 
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cancer, typically within the first two decades of life, most commonly arising in the 

gastrointestinal tract, brain, or bone marrow. Tumors arising in individuals with germline 

bMMRD harbor by far the highest mutational burden among all human cancers (Campbell et 

al. 2017, Shlien et al. 2015). Thus, not surprisingly, these tumors have proven to be 

exquisitely responsive to checkpoint blockade in early clinical testing (Bouffet et al. 2016), 

and an ongoing clinical trial is evaluating the use of these therapies for children with 

bMMRD syndrome who develop cancer (NCT02992964).

Checkpoint inhibitors may also offer some utility in pediatric cancer clinical care in 

combination with both chemotherapy and radiotherapy (Herter-Sprie et al. 2016), as well as 

other targeted therapies (Goel et al. 2017, Hu-Lieskovan et al. 2015), including 

immunotherapies that capitalize on the differential expression of cell surface molecules such 

as ADCs and CAR T cells (Muller et al. 2015, Rios-Doria et al. 2017, Yoon et al. 2018). 

Additional utility from immune checkpoint therapies may also be realized in children with 

relapsed cancers, which often have a significantly higher mutation burden (Padovan-Merhar 

et al. 2016), and future clinical trials of immune checkpoint inhibitors will seek to determine 

whether such patients will experience a response to a single agent or combination immune 

checkpoint inhibition. Innovative technologies like profiling of circulating tumor DNA may 

also help predict which children with relapsed cancers may benefit from these therapies in 

real time (Weiss et al. 2017).

TUMOR-TARGETING ANTIBODIES OR TUMOR-REDIRECTED T CELLS

Advances in phage display and in the engineering of specific protein binders has enabled an 

increasing number of lineage-specific differentially expressed cell surface molecules on 

pediatric tumors to be targeted with an array of immunotherapeutics (Figure 1). These 

proteins can be used to recruit host immune cells to tumors, selectively deliver potent 

cytotoxic drugs or radiotherapeutics, or specifically target tumor-specific antigens with 

therapies such as CAR T cells engineered onto host immune cells, all of which are 

potentially applicable to a diverse set of childhood cancers.

TARGET SELECTION: THE TUMOR-NORMAL TISSUE CONUNDRUM

New Approaches to Antigen Discovery in Pediatric Cancer Immunotherapy

Until recently, a large majority of cell surface molecules that have been targeted with 

immune-based therapies across pediatric malignancies were either molecules that have been 

known for decades to be highly expressed on tumors, such as the disialoganglioside GD2 on 

neuroblastomas (Katano et al. 1983, Schulz et al. 1984) or CD19 on B cell leukemias, or 

molecules that have trickled down from adult oncology clinical trials, such as ERBB2 and 

CD20 (Sliwkowski & Mellman 2013). However, recently we and others have capitalized on 

the availability of large genomic, transcriptomic, and proteomic profiling data sets from 

tumors and normal tissues to discover and develop new immunotherapeutic cell surface 

targets specifically aimed at pediatric tumors (Bosse et al. 2017; Heitzeneder et al. 2019; 

Orentas et al. 2012, 2014).
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Some important questions have arisen alongside these ongoing efforts to translate new cell 

surface molecules into safe and efficacious immune-based therapies. First, what is a safe 

tumor-normal tissue expression differential and does this threshold differ depending on the 

type of immunotherapy being utilized? Several relevant on-target, off-tumor side effects 

have recently been appreciated in the field of pediatric cancer immunotherapy. The GD2 

disialoganglioside is abundantly expressed on most neuroblastomas (Schulz et al. 1984) and 

other pediatric and adult cancers (Chang et al. 1992, Cheresh et al. 1986), but it is also found 

on peripheral nerve fibers and in the central nervous system (CNS). GD2 expression on the 

former leads to significant levels of pain usually requiring on-demand opiates in children 

who receive the GD2-targeting chimeric monoclonal antibody dinutuximab (Suzuki & 

Cheung 2015, Yu et al. 2010). Interestingly, initial targeting of GD2 with CAR T cells has 

not resulted in comparable pain morbidity or any other CNS toxicity, but there has also been 

a paucity of antitumor activity (Heczey et al. 2017, Louis et al. 2011, Pule et al. 2008). 

However, more potent GD2-redirected CAR T cells that have been recently developed may 

be associated with neurotoxicity in preclinical animal models, but it remains unclear if these 

toxicities are the result of CNS GD2 targeting, an off-target effect against a different 

ganglioside, cytokine release syndrome (CRS), or nonspecific T cell killing in these murine 

models (Majzner et al. 2018, Mount et al. 2018, Richman & Milone 2018, Richman et al. 

2018).

Targeting of L1CAM(CD171) with CART cells in neuroblastoma has also provided 

important lessons on the tumor-normal tissue expression threshold. L1CAM is 

overexpressed on neuroblastomas and many other pediatric and adult solid tumors with 

limited normal tissue expression, and a relatively tumor-restricted CE7 epitope of L1CAM 

has been the recent focus of targeting with CAR T cells (Hong et al. 2014). Robust 

preclinical safety testing in nonhuman primates expressing the identical CE7 L1CAM 

epitope in a similar normal tissue distribution to humans did not reveal any evidence for on-

target, off-tumor toxicities at doses 100 times those given to humans (Kunkele et al. 2017). 

However, an initial phase I clinical trial in humans for recurrent/refractory neuroblastoma 

(NCT02311621) revealed the development of clinically relevant, albeit transient, skin rash 

and hyponatremia, potentially resulting from on-target, off-tumor CAR T cell L1CAM 

targeting in the skin, kidney, or pituitary gland (Pinto et al. 2018).

A final important example comes from the experience in targeting HER2 (human epidermal 

growth factor receptor 2) with CAR T cells. The first human CAR T cell trial targeting 

HER2 at the National Cancer Institute (NCI) resulted in respiratory collapse and death in a 

single patient treated with a trastuzumab-based CAR (Morgan et al. 2010). This was initially 

deemed by the researchers to be due to on-target, off-tumor CAR T cell activity against 

HER2 on normal lung epithelium. However, this patient was administered a CAR T cell 

dose that was much higher than what has been deemed the safe dose of CD19 CAR T cells 

and was also administered with exogenous IL-2. In retrospect, the clinical syndrome appears 

more consistent with CRS (Lee et al. 2019), which at the time was poorly understood. 

Recently, researchers at the Baylor College of Medicine have tested HER2 CAR T cells in a 

carefully designed dose escalation study using an alternative anti-HER2 binder in patients 

with both sarcomas and gliomas and have demonstrated both the efficacy and safety of this 

approach, with no signs of any off-tumor, on-target toxicities (N. Ahmed et al. 2015, 2017).
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These recent preclinical and clinical experiences with CARs in pediatric solid tumors are a 

stark reminder of the importance of and difficulties in finding truly tumor-specific antigens 

for immunotherapeutic targeting. Despite rigorous preclinical toxicity screening in relevant 

animal models, trials should be carried out with the utmost safety considerations for these 

potent new cancer therapies.

Related questions have also arisen concerning how many absolute cell surface molecules are 

required to dictate robust efficacy for different types of immunotherapeutics and how 

homogeneous antigen expression needs to be to avoid the development of immune escape. 

Some recent studies have shown that homogeneous cell surface molecule expression needs 

to be high for robust CART cell activity (Fry et al. 2018, Walker et al. 2017); however, how 

this compares to other immune-based therapies is unclear. ADC-and radioconjugate-based 

therapies in particular may be more tolerant of the common solid tumor cell antigen 

heterogeneity due to bystander cytotoxic effects induced by intratumoral diffusion of 

payload (Golfier et al. 2014, Ogitani et al. 2016).

Finally, research into the role of gene splicing and posttranslational modifications in 

generating cancer-specific cell surface molecules that are safe to target remains in early 

stages for pediatric cancers. One important example is the CD44v6 isoform that is expressed 

in an array of adult epithelial cancers and pediatric and adult hematologic cancers 

(Amirghofran et al. 2016, Casucci et al. 2013, Magyarosy et al. 2001). While CD44 is 

widely expressed in human tissues, expression of the CD44v6 isoform is much more tumor 

restricted, creating the opportunity to safely target this molecule with several classes of 

immune-based therapies (Casucci et al. 2013, Haylock et al. 2017, Heider et al. 2004, 

Mortensen et al. 2018). A comprehensive survey of the pediatric cancer RNA splicing 

landscape and careful comparison with normal pediatric tissue isoform expression may 

reveal several new tumor-specific cell surface molecules to target with these potent therapies 

(Kahles et al. 2018).

Monoclonal Antibodies and Antibody-Dependent Cellular Cytotoxicity

Monoclonal antibodies were the first type of immune-based therapy to show robust clinical 

efficacy in human trials (Figure 1a). The CD20-targeting monoclonal antibody rituximab has 

proven efficacy in pediatric non-Hodgkin lymphoma (Meinhardt et al. 2010). Perhaps more 

significant for the field of pediatric oncology, anti-GD2 antibodies such as dinutuximab 

(ch14.18) and naxitamab (hu3F8) have proven effective in the treatment of neuroblastoma, a 

solid tumor that occurs almost exclusively in children (Kushner et al. 2018, Yu et al. 2010). 

Dinutuximab is the first FDA-approved anticancer monoclonal antibody with an exclusive 

pediatric indication, and given concurrently with cytokines in the maintenance phase of 

therapy, it has become part of the standard of care for newly diagnosed neuroblastoma (Yu et 

al. 2010). Further, dinutuximab administered with irinotecan and temozolomide has become 

a first-line salvage therapy at the time of neuroblastoma relapse, achieving objective 

response rates of approximately 50% (Mody et al. 2017). Efforts are now focused on 

studying dinutuximab in combination with induction chemotherapy for newly diagnosed 

neuroblastoma. GD2 is also robustly expressed on other pediatric and adult cancers such as 

sarcomas (Chang et al. 1992), melanomas (Tsuchida et al. 1987), and small-cell lung cancers 
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(Cheresh et al. 1986); thus, there are also efforts to extend the utility of anti-GD2 antibodies 

to these other cancers.

Some monoclonal antibodies such as rituximab and dinutuximab exert their tumor-cytotoxic 

effects via antibody-dependent cellular cytotoxicity, whereby the dual engagement of the 

antibody with a tumor-specific cell surface molecule and immune effector cells (typically 

natural killer cells and macrophages) via Fc receptor binding activates the immune effector 

cell, which then kills the tumor cell. Several antibodies aimed at inhibiting key pediatric 

cancer-associated signaling pathways have also been studied in an array of pediatric tumors 

but have not been nearly as effective as rituximab and dinutuximab; these include the IGF1R 

(insulin-like growth factor 1 receptor)-targeting antibodies cixutumumab and teprotumumab 

(R1507) (Malempati et al. 2019; Pappo et al. 2011, 2014; Wagner et al. 2015; Weigel et al. 

2014) and the HER2-targeting antibody trastuzumab in osteosarcoma (Ebb et al. 2012). 

Trastuzumab has not been as effective as rituximab and dinutuximab despite being very 

effective in adult malignancies with ERBB2 amplification (Slamon et al. 2001). B7-H3 

(CD276), an important immune checkpoint family member, is also robustly differentially 

overexpressed on several pediatric (and adult) solid tumors, and several B7-H3 antibodies 

are currently being evaluated in the clinic (M. Ahmed et al. 2015, Loo et al. 2012, Picarda et 

al. 2016).

Antibody-Drug Conjugates and Radioconjugates

Antibodies conjugated to drugs or radioactive molecules offer a potentially more potent 

mechanism to capitalize on the tumor cell specificity of antibodies to effect targeted and 

robust cytotoxicity in both liquid and solid pediatric malignancies (Figure 1b). Several 

ADCs have been clinically efficacious in pediatric leukemias and lymphomas, largely due to 

the translation of effective adult ADCs to pediatric-equivalent histotypes (Connors et al. 

2018, Hills et al. 2014, Kantarjian et al. 2016, Younes et al. 2010). Most impressively, 

brentuximab vedotin, which consists of a CD30-targeting antibody conjugated to the tubulin 

binder monomethyl auristatin E, was shown to be safe and effective for children with 

relapsed/refractory CD30+ Hodgkin lymphoma or systemic anaplastic lymphoma (Locatelli 

et al. 2018). Similarly, gemtuzumab ozogamicin and inotuzumab ozogamicin, antibodies 

respectively targeting CD33 and CD22 that are each conjugated to the payload ozogamicin 

(an antitumor, antibiotic calicheamicin derivative), have shown efficacy in pediatric acute 

myeloid leukemia (AML) and acute lymphocytic leukemia (ALL), respectively (Aplenc et 

al. 2008, Bhojwani et al. 2018, de Vries et al. 2012, Gamis et al. 2014, Guest et al. 2017 

Rytting et al. 2014, Tarlock et al. 2016). B7-H3 (CD276) antibodies may also be well suited 

for ADCs or immunoradioconjugates, with promising initial preclinical and clinical studies 

across several pediatric solid tumors, including those occurring in the CNS (Kramer et al. 

2010, Modak et al. 2005, Onda et al. 2004, Seaman et al. 2017, Souweidane et al. 2018). 

Finally, preclinical models have proven the robust efficacy of using ADCs to target the 

tumor-specific molecules CD56, GPC2, and ALK recently discovered on neuroblastomas 

and other pediatric solid tumors (Bosse et al. 2017, Feng et al. 2016, Sano et al. 2019, Wood 

et al. 2013). Given the potency of ADCs and their potential tolerance of more heterogeneous 

antigen expression (Golfier et al. 2014, Li et al. 2016, Ogitani et al. 2016), these therapeutics 

maybe ideally suited for pediatric solid tumors. Clearly more research on tumor-specific 
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antibodies as carriers of potent drug and radiotherapeutic payloads is imperative in pediatric 

immuno-oncology. Understanding how the internalization kinetics of antibodies differs in 

tumors versus normal tissues also remains a critical knowledge gap for this class of 

immunotherapeutics.

Bispecific T Cell-Engaging Antibodies

Much recent effort has also been focused on capitalizing on the specificity of monoclonal 

antibodies to engineer bispecific protein therapeutics that can induce a robust tumor-immune 

synapse by recruiting host T cells to tumors. These so-called bispecific antibodies that 

simultaneously bind tumor-specific antigens and T cells via their CD3 receptor (Figure 1c) 

can induce robust T cell activation and tumor killing. Several bispecific antibodies have been 

developed and are clinically efficacious in pediatric cancers, most impressively in leukemias 

with the anti-CD19/anti-CD3-targeting bispecific antibody blinatumomab (Gore et al. 2018, 

von Stackelberg et al. 2016). Development of this class of immunotherapies has also been 

limited to date in pediatric oncology and it will be imperative to understand if other pediatric 

tumor–specific antibodies can provide adequate tumor targeting and T cell recruitment when 

engineered into bispecific constructs (Heitzeneder et al. 2019; Loo et al. 2012; Pappo et al. 

2011, 2014; Yu et al. 2010). One additional major challenge facing the pediatric cancer 

immunotherapy field that is especially relevant to this class of therapies is the development 

of suitable humanized animal models to enable robust preclinical efficacy testing.

Chimeric Antigen Receptor T Cell-Based Immunotherapies

CAR T cells have been developed to combine the cytolytic capacity of host T cells with the 

specificity of monoclonal antibodies in an MHC-independent manner. Similar to other 

antibody-based therapies, CARs can target any molecule expressed on the surface of tumor 

cells, as the receptor consists of an antigen-binding domain, most often the single-chain 

variable fragment of a monoclonal antibody, fused to a transmembrane domain and 

intracellular signaling endodomains, including CD3ζ and a costimulatory domain such as 

CD28 or 4-1BB (Figure 1d) (Labanieh et al. 2018). To date, the most well-developed clinical 

CAR T cell programs have been in the B cell malignancies, as lineage-restricted targets such 

as CD19 and CD22 are found exclusively within the B cell compartment and B cell aplasia 

is manageable in the clinic with regular intravenous immunoglobulin administration.

CD19 CAR T cells have induced deep and durable remissions in a large proportion of B cell 

malignancies in patients of all ages, with the highest response rates thus far in trials of 

children and young adults with B cell ALL (B-ALL). Across several clinical trials with 

different CAR constructs, CD19 CAR T cells have induced remissions in 70–90% of 

children with relapsed and refractory B-ALL (Jacoby et al. 2018; Lee et al. 2015; Maude et 

al. 2014, 2018). These results are unparalleled for a phase I clinical trial in this disease (or in 

cancer in general), and they rapidly led to the first FDA approval of CD19-directed CAR T 

cells for B-ALL. Importantly, the first two published pediatric clinical trials of CD19 CARs 

in B-ALL illustrate both the impressive clinical efficacy of these therapeutics and the fact 

that not every CAR molecule is created equally, with a major divergence in long-term 

persistence seen between different CAR architectures (Lee et al. 2015, Maude et al. 2014). 

At the Children’s Hospital of Philadelphia, researchers studied the safety and activity of a 
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CD19 CAR containing the 4-1BB costimulatory endodomain, achieving a complete 

response rate of 90% of infused patients after a single dose of CAR T cells, with a 

persistence of T cells in 68% of patients at six months after T cell infusion (Maude et al. 

2014). Concurrently, researchers at the NCI conducted a phase I clinical trial of CD19 

CART cells containing a CD28 costimulatory endodomain in pediatric and young adult 

patients with a reported response rate for B-ALL of 70%, but T cell persistence was not seen 

(Lee et al. 2015). Thus, this CD19-focused work has taught us important intricacies to CAR 

engineering: While CD19 CAR constructs containing either 4-1BB or CD28 costimulatory 

domains are capable of inducing clinical remissions in a majority of B-ALL patients, only 

those CARs containing 4-1BB signaling domains appear to induce the long-term persistence 

essential for durable remissions.

Although very strong preclinical activity portended the clinical successes of CD19 CART 

cells (Brentjens et al. 2007, Kochenderfer et al. 2010, Milone et al. 2009), the laboratory 

models did not predict the clinical toxicity observed in human trials. CD19 CAR T cell 

administration has been associated with CRS, in which patients develop a sepsis-like 

condition driven by abnormally high levels of circulating cytokines (Lee et al. 2019). 

Patients with severe CRS have extraordinarily high levels of serum IL-6, and thus the IL-6 

receptor-blocking antibody tocilizumab can enact drastic clinical improvement (Maude et al. 

2014). While tocilizumab has now been widely adopted to treat CRS, it has not been 

effective in preventing immune effector cell-associated neurotoxicity syndrome, a typically 

self-limited syndrome in which patients develop encephalopathy, delirium, aphasia, seizures, 

and other CNS toxicities (Lee et al. 2019).

Although CAR T cells have revolutionized the treatment of relapsed and refractory B-ALL, 

for pediatric solid tumors these therapies have thus far shown only limited benefit to a small 

number of patients. The first CAR T cells infused into a pediatric patient contained a GD2 

CAR (with the same antigen-binding moiety as dinutuximab) (Louis et al. 2011, Pule et al. 

2008). This construct, a first-generation CAR containing only the CD3ζ endodomain but no 

costimulatory molecule (Figure 1d), was tested in a phase I clinical trial of patients with 

relapsed and refractory neuroblastoma. In all, 3 of 11 (27%) treated patients achieved 

complete remission, but CAR T cell persistence was infrequent and all patients eventually 

suffered disease relapse. Furthermore, clinical trials using a GD2 CAR engineered to contain 

costimulatory domains to enhance persistence showed no objective responses, even when 

CAR T cells were given in combination with PD-1 checkpoint blockade (Heczey et al. 

2017). Pediatric patients have also been treated with CAR T cells targeting HER2 (sarcomas 

and glioblastoma) and L1CAM (neuroblastoma), and definite signs of clinical activity have 

been observed in recent studies (N. Ahmed et al. 2015, Pinto et al. 2018). However, it is 

likely that with improved T cell engineering (Labanieh et al. 2018) CAR T cells will 

ultimately prove effective in some settings for children with solid and brain tumors. In fact, 

definitive evidence of the potential for engineered T cells to mediate antitumor responses in 

patients with solid tumors has recently come from a clinical trial of an engineered T cell 

receptor (TCR) targeting NY-ESO-1 (D’Angelo et al. 2018). Patients with synovial sarcoma 

were infused with autologous T cells transduced with the NY-ESO-1c259 TCR, resulting in a 

50% objective response rate, including a complete response that lasted nine months in a 

patient with diffuse pulmonary metastases (D’Angelo et al. 2018).
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Overall, CAR T cells have now been robustly established as an important modality in 

pediatric cancer treatment, highlighted by the significant and durable clinical responses in B-

ALL. In the short term, CAR T cells will likely move into earlier phases of treatment for B-

ALL to prevent the toxicities associated with standard high-dose chemotherapy and stem 

cell transplant and will likely be translated to other hematologic malignancies such as AML 

where relapsed disease remains fatal. Finally, as T cells clearly can traffic to and eradicate 

solid tumors, a major focus in the coming years will be to develop clinically effective CARs 

for pediatric solid and brain tumors.

Acquired Resistance to Immunotherapies

Despite the immunotherapy revolution that has occurred in pediatric oncology over the last 

decade, resistance to even the most potent of these therapies has become an emerging 

clinical problem (Figure 2). As discussed above, CD19-redirected CAR T cell products have 

shown remarkable potency in pediatric hematologic malignancies. However, despite these 

clinical successes, as more patients have been treated with these therapies and their follow-

ups extended, relapses have become common due to diverse mechanisms of antigen escape, 

all of which render the tumor cells undetectable to CAR T cells (Bagashev et al. 2018, 

Balducci et al. 2017, Braig et al. 2017, Jacoby et al. 2016, Rayes et al. 2016, Sotillo et al. 

2015, Zoghbi et al. 2017). In the global registration trial for the CD19-targeting CAR T 

therapy tisagenlecleucel in B-ALL, 15 of the 16 relapses (94%) analyzed were CD19 

negative (Maude et al. 2018). Additionally, a recent survey across several pediatric phase I/II 

clinical trials utilizing multiple CD19-redirected CAR constructs showed that up to 25% of 

children with B-ALL treated with a CD19 CAR T cell product ultimately suffered a CD19-

negative relapse, accounting for a majority of the recorded relapses (Majzner & Mackall 

2018). Similar rates of relapse with CD19 targeting in pediatric leukemias have been seen 

with the T cell-engaging bispecific antibody blinatumomab (Aldoss et al. 2017, Topp et al. 

2014). The diverse mechanisms of CD19 downregulation under CD19 immunotherapeutic 

pressure are impressive, including deletion of the entire CD19 genomic locus, acquisition of 

CD19 frameshift mutations, alternative CD19 mRNA splicing to remove the targeted 

epitopes or transmembrane domain, and disruption of CD19 trafficking to the cell 

membrane, as well as leukemia lineage switch to a myeloid phenotype with concurrent loss 

of CD19 expression (Figure 2) (Bagashev et al. 2018, Balducci et al. 2017, Braig et al. 2017, 

Jacoby et al. 2016, Rayes et al. 2016, Sotillo et al. 2015, Zoghbi et al. 2017). 

Immunotherapy-resistant CD19 splice variants appear to be present at low levels in 

diagnostic samples, suggesting that CD19-targeting immunotherapies may simply select for 

these alternatively spliced CD19 isoforms lacking the targeted CD19 epitope rather than 

actively inducing the splice alterations themselves (Fischer et al. 2017).

Similar to CD19, CD22-directed immunotherapies for acute leukemias are also susceptible 

to low antigen density as a mechanism of therapy resistance, as observed under the selective 

pressures of both the CD22-targeting ADC inotuzumab ozogamicin (Paul et al. 2019, Shah 

et al. 2015) and CD22-directed CAR T cells (Fry et al. 2018). However, unlike CD19, the 

development of resistance to CD22-directed therapies has been associated with the selection 

of tumor subclones with low (but detectable) CD22 protein expression rather than the 

acquisition of CD22 coding mutations or modulation of CD22 mRNA expression or splicing 
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(Figure 2) (Fry et al. 2018). The more robust homogeneous expression of CD19 compared to 

CD22 in pediatric acute leukemias (Shah et al. 2015) may be a cause of these differences in 

resistance mechanisms.

Given these recent findings, with the development of more efficacious CAR T cell products 

specifically targeting pediatric solid tumor cell surface molecules, it is imperative that we 

design trials with associated correlative biology studies to understand if the often 

heterogeneous cell surface expression in these tumors makes relapse more likely with low-

antigen-expressing tumor clones. However, it remains unknown whether targeting different 

molecules will be as susceptible to antigen loss mechanisms as CD19-or CD22-directed 

therapies. Limited data for GD2 suggest that antigen loss may also occur in neuroblastoma 

relapses after treatment with the GD2-targeting antibody dinutuximab, but this has not been 

widely studied (Schumacher-Kuckelkorn et al. 2005, 2017). Targeting dual antigens on 

cancer cells may provide a solution to antigen loss. Several groups have recently initiated 

clinical trials of CD19/CD22 bispecific CART cell products in children with B-ALL (https://

clinicaltrials.gov/ identifiers NCT03330691, NCT03241940, NCT03448393, and 

NCT03289455), which hold the promise of reducing the frequency of relapse driven by 

antigen loss.

It is also essential to understand if other classes of immunotherapies are as susceptible to 

antigen escape as CAR T cells, which again requires well-designed correlative biology 

studies in early-phase clinical trials. While ADCs appear to be reliant on homogeneous high 

antigen densities in the hematologic malignancies (Lamba et al. 2017, Olombel et al. 2016, 

Pollard et al. 2016), pediatric solid tumors may be less susceptible to the development of 

relapses of antigen-low variants after treatment with some ADCs, given the prevalence of 

bystander cell killing via intratumoral payload diffusion (Golfier et al. 2014, Ogitani et al. 

2016). However, the development of ADC resistance is also a real possibility given their 

complex mechanism of action, which requires not only target binding on the cell surface but 

also internalization of the ADC, proper trafficking to the lysosome, lysosomal-mediated 

release of the payload, and sensitivity to the payload without the presence of drug efflux 

pumps (Garcia-Alonso et al. 2018, Walter et al. 2007).

Finally, with the large-scale genomic characterization of pediatric tumors coupled with the 

advent ofhigh-throughput technologies to identify unique binders directed at cell surface 

proteins, it has become feasible to target newly discovered cell surface molecules with 

relative ease, enabling the targeting of cell surface oncogenes. Whether targeting tumor-

dependent molecules will help circumvent antigen-loss immune escape will also need to be 

studied in well-designed correlative biology studies as therapies targeting these molecules 

are translated to pediatric clinical care.

CONCLUSIONS

Pediatric cancer immunotherapy has been revolutionized in the last decade, opening the door 

to cures for children with previously lethal diseases. Advances in the engineering of 

immune-based therapies have now created an effective pipeline and clinical framework to 

develop and study these therapies widely across pediatric tumor histotypes. Immunotherapy 
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is clearly credentialed for childhood cancer, and the challenge now is the rapid discovery 

and development of optimal immunotherapeutic strategies, particularly for solid tumor and 

CNS malignancies.
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Figure 1. 
The diversity of immune-based therapies utilized to target pediatric cancers. Multiple 

immunotherapies have proven to be effective in pediatric cancers, including (a) monoclonal 

antibodies, (b) antibody-drug conjugates, (c) bispecific T cell-engaging antibodies with 

tumor-specific (top) and CD3-specific (bottom) single-chain variable fragments, and (d) 

CAR T cells, which have progressed from first-generation constructs (bottom) to second- 

(middle) and third-generation (top) molecules. Abbreviations: CAR, chimeric antigen 

receptor; TM, transmembrane region; VH, variable heavy chain; VL, variable light chain.
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Figure 2. 
The diverse mechanisms of acquired resistance to CD19-targeted (top) and CD22-targeted 

(bottom) immunotherapies in pediatric B cell acute lymphoblastic leukemia. (❶) Selection 

for clones with lower CD19/CD22 expression. (❷) CD19 frameshift mutations with or 

without deletion of the other CD19 allele, leading to absent expression of the CD19 CAR-

binding epitope. (❸, ❷) mRNA splicing removing the (❸) CD19-targeted epitopes or (❹) 

transmembrane domain epitopes. (❺) CD19 protein misfolding and endoplasmic reticulum 

(ER) retention due to altered mRNA splicing or in-frame insertions such that misfolded 

CD19 binds to ER chaperone proteins [i.e., CANX (calnexin)] instead of membrane-

targeting CD81 molecules. (❻) Lineage switch to a myeloid phenotype with loss of CD19 

expression.
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