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ABSTRACT We report here the complete genome sequences of three Listeria phages
(PSU-VKH-LP019, PSU-VKH-LP040, and PSU-VKH-LP041), which were newly induced from
lysogenic isolates of Listeria monocytogenes from seafood and a seafood processing envi-
ronment in Thailand. The three phages show circularly permuted double-stranded DNA
genomes with sizes of 38.6, 39.6, and 48.3 kb.

Prophage diversity is of interest since prophages are commonly present in the
genomes of Listeria monocytogenes strains (1, 2). They play an important role in the

evolution (3), survival, and persistence (4, 5) of L. monocytogenes. We have an ongoing
project for screening lysogenic isolates of Listeria from various sources, including
seafood and a seafood processing environment. Of these lysogenic isolates, an induced
form of prophage(s) from selected isolates of L. monocytogenes was examined to
understand the prophage diversity. We report here the complete genome sequences of
three induced phages, PSU-VKH-LP019, PSU-VKH-LP040, and PSU-VKH-LP041 (hereafter
referred to as LP019, LP040, and LP041, respectively).

Phage DNA was extracted by the phenol-chloroform method, as previously de-
scribed (6). Fragmentation of DNA was performed, and high-quality sequencing librar-
ies were sequenced using the Illumina HiSeq 2500 platform with 100-bp paired-end
reads at Macrogen, Inc. (Seoul, South Korea). Then, low-quality reads were filtered by
Trimmomatic (7). SOAPdenovo2 was utilized for de novo assembly (8) before a predic-
tion of open reading frames (ORFs) using Glimmer 2 (9) was made. An automatic
genome annotation was performed by RAST (10) and Phaster (11) and then verified by
BLAST (12), InterPro (http://www.ebi.ac.uk/interpro) (13), and Artemis (14). tRNA was
detected using the tRNAscan-SE search server (15).

Sequencing of the induced phages by the Illumina HiSeq 2500 platform yielded 7 to
11 million reads, with an average sequencing coverage of 15,000�. De novo assembly
resulted in a single contig for each phage, suggesting a complete genome. These
genomes were circularly permuted terminally redundant double-stranded DNA ge-
nomes. The genome sizes of these phages ranged from 38 to 48 kb, which is consistent
with the size range of previously reported temperate Listeria phages (16–19). A lysog-
eny module, including integrase and transcriptional regulator/repressor genes, was
observed, thus confirming the temperate characteristic of these sequenced phages. No
tRNAs were found in the genomes of these phages.

Phage LP019 was induced from a lysogenic L. monocytogenes isolate, PSU-KV-
134LM, obtained from a seafood product (fish stick) using L. monocytogenes FSL J1-208
as a propagating host (20). This phage is 38,601 bp in length, with a GC content of
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35.7%. A total of 66 ORFs were detected, of which 28 ORFs were assigned functions.
Genome comparison by BLASTN of phage LP019 with the NCBI database showed 93%
similarity with 62% sequence coverage to Listeria phage vB_LmoS_188, which was
previously isolated from wild mushroom (21).

Two phages, LP040 and LP041, were induced from lysogenic L. monocytogenes
isolate PSU-KV-036LM (from a seafood processing environment) using F2365 and
FSL F2-695 as propagating hosts, respectively (H. T. K. Vu, S. Benjakula, and K. Vong-
kamjan, submitted for publication). Phage LP040 presents a genome size of 39,585 bp,
with a GC content of 37.1%, whereas phage LP041 is 48,286 bp in length, with a GC
content of 35.8%. For phage LP040, a total of 67 ORFs were detected, of which 32 ORFs
were assigned functions. For phage LP041, a total of 81 ORFs were detected, but only
24 were assigned functions. Nucleotide sequence comparison by BLASTN revealed that
LP040 showed a 91% similarity with 77% sequence coverage to Listeria phage
vB_LmoS_293, isolated from mushroom compost (20). The genome of phage LP041
showed 96% similarity with 82% sequence coverage to phage B054 (16) previously
induced from Listeria innocua WSLC 2054 (21).

Accession number(s). The genome sequences of these three induced Listeria
phages, LP019, LP040, and LP041, have been deposited in GenBank under the accession
no. MH341451, MH341452, and MH341453, respectively.
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