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Genomic approaches in the management and treatment of breast
cancer

JC Chang*,1, SG Hilsenbeck1 and SAW Fuqua1

1Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

Breast cancer is the most common malignancy afflicting women from Western cultures. It has been estimated that approximately
211 000 women will be diagnosed with breast cancer in 2003 in the United States alone, and each year over 40 000 women will die
of this disease. Developments in breast cancer molecular and cellular biology research have brought us closer to understanding the
genetic basis of this disease. Unfortunately, this information has not yet been incorporated into the routine diagnosis and treatment of
breast cancer in the clinic. Recent advancements in microarray technology hold the promise of further increasing our understanding
of the complexity and heterogeneity of this disease, and providing new avenues for the prognostication and prediction of breast
cancer outcomes. The most recent application of microarray genomic technologies to studying breast cancer will be the focus of this
review.
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Mortality from breast cancer results from the ability of some
tumours to metastasise to distant sites. Selecting patients with
micrometastases at diagnosis is crucial for clinicians in deciding
who should and who should not receive toxic and expensive
adjuvant chemotherapy to eradicate these metastatic cells. Axillary
nodal status, the best marker now available, is still an imperfect
indicator, since about 25% of node-negative patients do harbour
micrometastases and are destined to recur, while up to 25% of
node-positive patients will not recur even without adjuvant
treatment after many years of follow-up. In spite of extensive
studies, expression of most individual genes has not proven
powerful enough for routine clinical use to predict accurately
distant metastases over the lifetime of an individual patient.
However, recent developments in applying microarray technolo-
gies to breast tumour samples suggest that these new techniques
may provide for the transition of molecular biological discoveries
to clinical application, and will generate clinically useful genomic
profiles that more accurately predict long-term outcome of
individual breast cancer patients.

NATURAL HISTORY OF BREAST CANCER

Breast cancer is characterised by a very heterogeneous clinical
course. A major goal of recent studies is to determine whether
RNA microarray expression profiling, or DNA array gene
amplification/gene loss patterns, can accurately predict an
individual’s long-term potential for recurrence from breast cancer,
so that appropriate treatment decisions can be made. It is well
established that some aspects of breast cancer heterogeneity is

related to the different risk factors for diagnosis of this disease,
such as race, diet, age, environmental factors, and cumulative
exposure to the sex hormone oestrogen. The diversity in clinical
course of breast cancer is undoubtedly related to differences in
tumour growth rates, tumour invasiveness, metastatic potential,
and other complex cellular growth signalling and survival path-
ways. It has long been held that knowledge of these various
biological factors would help individualise patient treatment, so
that patients could be classified into subsets with varying risks of
recurrence. The reality, however, is that after 20 years of searching
for new single factors, we still have very few biomarkers that
accurately prognosticate breast cancer disease-free or overall
survival in the absence of treatment (prognostic factors), or that
predict response to particular therapies (predictive factors). The
standard prognostic factors currently used for primary breast
cancer decision making in the United States (reviewed in Clark,
2001) are: involved axillary node status (Fisher et al, 1978),
histologic subtype, tumour size (Carter et al, 1989), nuclear grade
(Fisher et al, 1980), oestrogen and progesterone receptor (ER and
PR) status (McGuire, 1980), and measures of cellular proliferation
(Clark et al, 1989). A number of factors useful for prediction of
treatment outcomes have also been put into routine clinical
practice. These include: ER, PR, and HER-2/c-Erb-B2. Although
many genes were originally attractive biomarkers with appropriate
biologic rationale, they have failed to improve independently our
prediction of outcome when compared to these standard factors.
In addition, while combinations of standard prognostic factors can
identify subsets of patients with highly significantly different
disease survival curves, they still predict individual outcomes
poorly. Thus, few molecular markers discovered during the current
revolution in breast cancer molecular biological studies have come
into clinical use as standard prognostic or predictive factors.
In addition, the role of prognostic factors in the management
of breast cancer has clearly changed, with the majority of
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node-negative patients now undergoing systemic adjuvant therapy
because we cannot precisely determine an individual’s risk of
recurrence. Undoubtedly, since only a minority of node-negative
patients will ever develop a recurrence, there is a critical need to
identify those patients with extremely low risks of breast cancer
recurrence to spare those patients unnecessary overtreatment of
their disease.

THE APPLICATION OF MICROARRAY
TECHNOLOGIES TO BREAST CANCER

RNA expression of individual genes can be detected and quantified
by a variety of techniques, such as Northern blot analysis, S1
nuclease protection, differential display, and serial analysis of gene
expression or SAGE. Recently, two array-based technologies,
cDNA and oligonucleotide arrays, have been applied to gene
expression quantification. Simply defined, a microarray is an
orderly arrangement of known and est (expressed sequence tag)
DNA samples attached to a solid support that can be interrogated
with cDNA or genomic DNA. The advantage of the newer
microarray technologies is the ability to measure the RNA
expression of thousands of genes at one time, and to relate how
the gene expression pattern of one gene correlates to the
expression of other genes in or between different tumour samples,
or to measure DNA amplification or loss of DNA. The simplicity of
experimental design for microarray analysis provides a vehicle to
tackle the complex nature of the breast cancer genome with
exquisite detail. However, emerging from our early experience with
this technology, there is a growing appreciation that ‘more data’
are not necessarily better without attention to study design.
Experimental design issues will be the subject of a later section.

Since the RNA expression microarray technology provides a
method for monitoring the RNA expression of many thousands of
human genes at one time, there was considerable anticipation that
it would quickly and easily revolutionise our approaches to cancer
diagnosis, prognosis, and treatment. The reality remains extremely
promising but is also complex. A potential complication in the
application of microarray technology to primary human breast
tumour samples is the presence of variable numbers of normal
cells, such as stroma, blood vessels, and lymphocytes, in the
tumour. Indeed, it has been demonstrated using gross analysis of
human breast cancer specimens compared with breast cancer cell
lines that the tumours expressed sets of genes in common not only
with these cell lines but also with cells of hematopoietic lineage and
stromal origin (Perou et al, 2000). Laser capture microdissection
has also been successfully used to isolate pure cell populations
from primary breast cancers for array profiling (Sgroi et al, 1999).
In this seminal paper, Sgroi et al (1999) utilised laser capture
microdissection to isolate morphologically ‘normal’ breast epithe-
lial cells, invasive breast cancer cells, and metastatic lymph node
cancer cells from one patient, and was able to demonstrate the
feasibility of using microdissected samples for array profiling, as
well as following potential progression of cancer in this patient.
However, with the emerging data supporting important roles for
the surrounding stroma in breast cancer progression, and the
labour-intensive and technically challenging nature of laser
capture technology with subsequent amplification of RNA for
quantitation, most published investigations to date have evaluated
total gene expression to identify prognostic profiles, as will be
described in the next section.

EXPRESSION MICROARRAY ANALYSES FOR THE
IDENTIFICATION OF PROGNOSTIC FACTORS

Many of the first explorations into the use of expression
microarrays were designed to evaluate the technology for
molecular and/or morphologic phenotyping of breast tumours.

One of the first comprehensive attempts to characterise the
variation in gene expression between sporadic breast tumour
samples was published by Perou et al (1999, 2000). This ground-
breaking study was the first to establish that tumours could be
phenotypically classified into subtypes distinguished by differ-
ences in their expression profiles. Perou et al examined 40 breast
tumours, and 20 matched pairs of samples before and after
doxorubicin treatment in their study; tumour samples were grossly
dissected. An ‘intrinsic gene set’ of 476 cDNAs were selected that
were more variably expressed between the 40 sporadic tumours
than between the paired samples. This intrinsic gene set was then
used to cluster and segregate the tumours into four major
subgroups: (1) a ‘luminal cell-like’ group expressing the ER, (2)
a ‘basal cell-like’ group expressing keratins 5 and 17, integrinb4,
and laminin, but lacking ER expression, (3) an Erb-B2-positive
subset, and (4) a ‘normal’ epithelial group.

A subsequent study by this group has extended the molecular
profiling of breast cancer by applying their intrinsic gene set to
cluster 78 cancers (the tumours from their previous study were
included in these), three fibroadenomas, and four normal breast
tissue samples (Sorlie et al, 2001). The same subgroups were found
as before (Perou et al, 1999, 2000), except the luminal, ER-positive
group that subdivided into further subsets with distinctive gene
expression profiles. Since clinical outcomes were available on some
of the patients, the authors also examined whether their
phenotypic profiles could function as prognostic factors. Uni-
variate survival analysis was performed on 49 patients from the
study with locally, advanced disease, but without evidence of
distant metastasis. Although ER positivity was not a significant
prognostic factor on its own in this analysis, the luminal-type
group enjoyed a more favourable (Sorlie et al, 2001) compared to
the other groups. Conversely, the basal-like group had a
significantly poorer prognosis. This study is clearly encouraging
that significant differences in outcome can be ascertained from
microarray expression profiling.

However, some limitations with this molecular classification
exist. With the statistical methods (i.e. hierarchical clustering)
used in this study, new cancers cannot be assigned to a particular
molecular group. Assignment of a sample in hierarchical clustering
algorithms to different branches of the dendogram is dependent on
the selected sets of genes and the type of clustering used (central
linkage, complete linkage, etc.). With each new case that is added
to the data, the dendogram branches get reorganised and therefore
this methodology cannot be used prospectively to classify new
cases. In addition, the independent prognostic value of the
molecular classification is currently unknown. The molecular
classification in this study did not include the current clinical
parameters like tumour grade, steroid receptor status, and HER-2/
neu. In essence, there may be more clusters and molecular
subtypes of breast cancer that may be apparent if larger sample
sets are available (McShane et al, 2002). Such formal statistical
testing has not yet been carried out on the current molecular
classification.

More recently, van’t Veer et al (2002b) have used RNA
expression microarray analyses to identify a 70 gene prognostic
signature (‘classifier’) in young, axillary lymph node-negative
patients using a training set of 78 tumours, and then tested the
classifier in a validation set of 19 tumours. The study used a case/
control design and employed 5 years of clinical follow-up to define
their ‘good’ (controls) vs ‘poor’ (cases) prognosis patients. The
optimally accurate prognostic classifier correctly predicted disease
outcome for 65 out of the 78 (83%) patients, identify poor
prognosis outcomes with a sensitivity of 85%, and good outcomes
with a specificity of 81%. Thus, the study demonstrates the
feasibility of molecular profiling for subclassification of patient
outcomes using undissected clinical material.

van de Vijver et al (2002) have now extended this study with 234
additional young (o53 years), stage I–II breast cancer patients
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with both node-negative and node-positive disease using the 70
classifier genes from the earlier study (van’t Veer et al, 2002a) to
classify the patients. The authors were able to classify patient
outcomes (sensitivity¼ 93%, specificity¼ 53%) that are consistent,
or perhaps better than estimates which can be obtained with
current prognostic indices.

A few investigators have begun to study putative precursor
lesions of invasive disease, such as ductal carcinoma in situ
(DCIS), using genomic approaches. Porter et al (Porter & Polyak,
2003) have exploited SAGE analysis to compare two SAGE libraries
prepared from DCIS to two libraries each of normal, invasive, and
metastatic cancer. Of note is that the authors used either manual
macrodissection or magnetic bead separation specific for epithelial
cell content to prepare these libraries. They found that tumours of
different histology had very distinct gene expression patterns.
However, no genes seemed to be specific only for the DCIS or
metastatic lesions. Interestingly, the most profound expression
pattern changes were found to occur during the early normal to
DCIS transition, suggesting that this type of study might identify
future targets for chemoprevention.

Recently, Adeyinka et al (2002) have performed a systematic
study comparing six cases of DCIS with necrosis to four cases
without necrosis utilising manual microdissection or laser capture
microdissestion to prepare the samples for microarray analysis.
These authors report that only 69 genes were consistently and
differentially expressed between the two histological types of DCIS
lesions. Genes important for angiogenesis were notably increased
in the DCIS with necrosis group of tumours, as well as other genes
involved in migration and hypoxia. Thus, this study demonstrates
that although gene expression is mostly similar between morpho-
logically distinct types of neoplasia, differences in expression can
be identified using expression array profiling, providing hope that
this technology will provide profiles predicting cell behaviour in
early breast disease. Since it has been demonstrated that very early
precursor lesions, such as atypical ductal hyperplasia, are
genetically related to invasive cancer, and are indeed precursor
lesions (O’Connell et al, 1994, 1998), there is much anticipation
that these lesions will provide valuable information about the
origin and aetiology of early disease. However, systematic
microarray analyses with ductal hyperplasias have yet to be
reported, probably due to their rare inclusion in established frozen
tumour banks, and their small size.

A few studies have utilised new genomic approaches for the
study of inherited breast cancer. There is accumulating evidence,
both epidemiological and histological, that tumours arising as a
result of mutations in the two breast cancer susceptibility gene
families (BRCA1 and BRCA2) are biologically distinct. For
instance, BRCA1 breast cancers are most often ER and PR
negative, but BRCA2 cancers more often tend to be positive for
these receptors (Verhoog et al, 1999). In a seminal paper published
by Hedenfalk et al (2001), seven tumours each from BRCA1 and
BRCA2 gene mutation carriers, or sporadic breast cancers, were
compared by expression microarray analysis. They found
that the gene expression profiles of the three tumour groups
differed significantly from each other, underscoring the funda-
mental differences between BRCA1 and BRCA2 mutation-asso-
ciated tumours. Of course, a potential confounding issue was the
differential distribution of ER between the BRCA1 and BRCA2
tumours. However, even after removal of ER/PR-associated
genes from the analysis, the two inherited tumour groups
were still discernable. Thus, ER status alone does not fully
explain the observed differences in gene expression profiles.
Although this study is obviously very small, and other
confounding issues such as tumour stage, grade, and treatment
were not able to be considered, it does set a foundation for larger
validation studies to confirm differential genes, which could then
provide important clues to the aetiology of inheritable breast
cancer.

EXPRESSION MICROARRAY ANALYSIS OF
METASTATIC BREAST CANCER BEHAVIOUR

There is a growing understanding of the basic biology of the
metastatic process and cancer metastasis is known to be an
inherently inefficient process with only a subset of micrometa-
stases persisting to form clinically evident metastases. Thus, the
detection of breast cancer cells in the blood stream, or in
secondary organs such as lymph nodes or bone marrow, does
not always predict the ability of the primary tumour to form viable
distant metastases. In order to increase the survival of breast
cancer patients, an increased understanding of the key genes and
mechanisms supporting metastatic behaviour of human breast
cells needs to be elucidated. Although it can be argued that
treatment with metastasis-targeting agents may be of limited value,
metastasis prevention in the advanced disease setting may have a
clinical role by preventing secondary metastases as tumours
progress. Unfortunately, distant metastatic tumour samples from
breast cancer patients are rarely biopsied or stored in tissue banks;
thus, these tumours are a very rare resource that have infrequently
been examined by microarray analyses.

The expression of several genes that have been profiled in
human tumours (Perou et al, 2000) was found to be associated
with the metastatic phenotype including mucin 1, c-Erb-B2, and
thrombospondin.

COMPARATIVE GENOMIC HYBRIDISATION (CGH)
ANALYSIS OF BREAST CANCER

Array CGH uses thousands of genetically mapped genomic DNA
clones (bacterial artificial chromosome) or cDNAs, which are
spotted on glass and are hybridised in a manner similar to that
used for microarray expression. The resolution of this technology
is determined by the number of DNA clones on the array, and the
physical chromosomal separation of the arrayed clones. Under
optimal conditions, precise measurement of DNA copy number is
possible (standard deviation of log 2 ratios are estimated to
be¼ 0.05–0.10) in both cell lines and clinical material (Snijders
et al, 2001). This level of precision allows measurement of high-
level amplification and single-copy alterations in heterogeneous
‘normal’ backgrounds, such as that common in clinical breast
tumours.

A recent publication by Pollack et al (2002) found that RNA
expression microarray analysis did indeed reveal DNA copy
number changes to have a direct role in the transcriptional
profiles of 44 human breast tumours, and impressively, 62% of the
highly amplified genes concordantly showed moderate or highly
elevated RNA expression. In summary, an extensive database of
RNA expression and DNA copy number alterations have been
compiled, many of which have been placed in public databases. It
is hoped that concordances between these two genomic ap-
proaches will help to identify ‘driver’ genes involved in tumour
progression, rather than just differential ‘consequences’ in gene
expression. An ideal strategy is to identify initial gene expression
profiles associated with clinical outcome, followed by the use of
CGH analysis to pinpoint common regions of deletion or
amplification within clinical subgroups.

MICROARRAY ANALYSIS TO IDENTIFY PREDICTIVE
BIOMARKERS

A predictive marker is defined as a biological factor, which can
predict clinical outcome in treated patients. Thus, there are two
types of questions that need to be addressed. First, who needs
treatment? Prognostic factors are useful to identify a ‘poor
prognosis’ group that could benefit from treatment. The second
question is of those who need treatment, which treatment should
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they receive? Predictive factors would be useful to answer this later
question. Systemic chemotherapy for operable breast cancer
significantly decreases the risk of relapse and death (EBCTG,
1998a, b). However, although these large clinical trials have
confirmed the value of systemic therapy, it is not possible to
identify at the outset those patients who are likely to respond to
adjuvant treatment or which type of treatment should be used.
Thus, there is a need to identify breast cancer patients who will
benefit from specific adjuvant therapies, while sparing others from
the side effects of futile treatment. Unlike patients with advanced
breast cancer, in whom response can be assessed by tumour
measurements after a few cycles of treatment, patients with early
breast cancer have no measurable disease after primary surgery.
Thus, no methods are now available to separate patients likely to
respond to standard adjuvant treatment from those unlikely to
benefit who may then choose more experimental treatments in the
context of a clinical trial. This is because we cannot yet answer our
first question, prognosis, adequately. Owing to these arguments,
the accepted practice is to prescribe adjuvant chemotherapy even if
the expected benefit is low (Fisher et al, 1998). A good example of
this practice is that we give everyone with ER-positive disease
tamoxifen therapy, even though we know that only 60% will
respond to this treatment.

Treatment given before surgery (neoadjuvant therapy) has a
number of advantages in breast cancer including earlier assess-
ment of response to therapy, and access to the primary tumour
during early treatment for in vivo testing for predictive markers
whose expression correlates with successful treatment. Unlike
response in the metastatic setting where one can measure response
at metastatic sites, but cannot estimate effects on survival,
response to neoadjuvant chemotherapy is a validated surrogate
marker for improved survival and may be used to test the efficacy
of treatment regimens. In the NSABP B-18 study, survival outcome
was better in patients whose tumours responded to neoadjuvant
chemotherapy compared to those who had chemotherapy-resistant
disease, especially those who achieved pathologic complete
response (Fisher et al, 1998). These data indicate that tumour
response to neoadjuvant chemotherapy correlates with outcome,
and the response in the primary tumour mirrors the effect of
chemotherapy on micrometastases (Fisher et al, 1998). Likewise, in
a smaller study involving 158 patients, clinical response to
neoadjuvant chemotherapy was found to closely correlate with
improved clinical outcome and response to neoadjuvant che-
motherapy was the only independent variable associated with
decreased risk of death (Chang et al, 1999). With neoadjuvant
chemotherapy, the primary breast cancer provides a unique
opportunity for assessing predictive markers and for studying
hypothesis-generating relationships, in that it allows for measure-
ments of possible biologic determinants to be made before
treatment in an intact human tumour.

Studies have been conducted assessing the amount of total RNA
obtained from each core biopsy of primary breast cancers
undergoing neoadjuvant chemotherapy for its use in expression
microarray experiments. From each core biopsy, sufficient total
RNA was extracted for oligonucleotide array analysis and
preliminary patterns predictive of sensitivity and resistance to
specific treatments have been reported (Chang et al, 2003), where
others report 45% (Buchholz et al, 2002) or as high as 93% (Ellis
et al, 2002) of core biopsies to yield sufficient high-quality RNA for
array analysis. Other investigators have reported faithful linear
RNA amplification protocols using limited amounts of RNA from
microdissected breast tissues (Aoyagi et al, 2003). Further work is
essential in integrating amplification protocols into large-scale
microarray analysis, and validating these pilot predictive expres-
sion patterns into independent patient cohorts.

A neoadjuvant approach was also undertaken by Buchholz et al
(2002) to look at the effects of chemotherapy on gene expression.
The authors obtained sufficient RNA from core biopsies of five

patients to obtain serial microarray expression profiles. Patients
with good pathological responses to neoadjuvant treatment had
gene profiles that clustered distinctly from those of patients who
were poor responders to treatment. Unfortunately, all the patients
had different gene expression changes after chemotherapy, with no
single gene expression changes significantly associated with
response in all five patients. Their result could be due in part to
the small number of patients examined, and the heterogeneity of
treatments in this study.

More recently, we have shown that gene profiling can be used to
predict accurately response to neoadjuvant docetaxel (Chang et al,
2003). The study enrolled 24 subjects, extracted sufficient RNA
from all core-needle biopsies and constructed a 92-gene predictor
of response (Figure 1). In a complete crossvalidation analysis,
which gives an unbiased estimate of performance on future
samples, the classifier correctly identified 10 of 11 responders and
11 of 13 nonresponders for an overall accuracy of 88% (Figure 2).
Correlation between RNA expression measured by the Affymetrix
arrays and semiquantitative RT– PCR was also ascertained. In
addition, this classifier was validated in an independent set of six
subsequent patients. We therefore have identified preliminary
molecular profiles in primary breast cancers that appear to predict
response or lack of response to docetaxel. This technology offers a
potentially useful predictive clinical test for docetaxel sensitivity
that, when validated, may reduce unnecessary treatment for
women with breast cancer. In addition, these results compare
very favourably with the best existing predictive factors for
response to specific therapy, and strongly suggest that after
appropriately extensive validation, microarray profiling will be
useful for treatment selection. Additional work in ascertaining
expression patterns for other commonly prescribed chemotherapy
regimens, like anthracyclines and capecitibine, is underway, in the
hop that these patterns differ between regimens so that predictive
tests for the selection of appropriate treatment can be conducted to
minimise toxicity and maximise efficacy for women with breast
cancer.
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Figure 1 Hierarchical clustering of genes correlated with docetaxel
response. Sensitive tumours (S) are defined as 25% residual disease or less
(shown as blue bars), and resistant tumours (R) are defined as greater than
25% residual disease (shown as red bars). The expression levels are shown
in red (expression levels above the mean for the gene) and blue (levels
below the mean for the gene).
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A second neoadjuvant study was recently published using cDNA
arrays to develop predictor for paclitaxel, fluorouracil, doxorubi-
cin, and cyclophosphamide, involving 24 samples. A classifier with
74 markers was developed, with 78% accuracy, suggesting that
transcriptional profiling has the potential to identify a gene
expression pattern in breast cancer that may lead to clinically
useful predictors of chemotherapy response (Ayers et al, 2004).
Outstanding issues on the optimal method for tissue acquisition
still remain. In the latter study, fine-needle aspiration was used, as
compared to core-needle biopsies. Each technique has their
relative advantages and limitations. In a study comparing the
two techniques, both yielded a similar quality and quantity of total
RNA, with similar expression profiles. The authors concluded that
each technique has relative advantages. While fine-needle aspira-
tion provided patterns representative of the tumour cell popula-
tion, core-needle biopsies included patterns of stromal origin. The
selection of the preferred biopsy sampling technique for gene
expression arrays would be dependent on the study design, patient
population, and the aims of the each individual study (Symmans
et al, 2003).

The combined neoadjuvant treatment approaches, and expres-
sion microarray technology offers a potentially clinically useful
method for developing predictive tests for chemotherapy sensitiv-
ity that, when validated, may reduce unnecessary treatment for
women with breast cancer.

EXPERIMENTAL DESIGN AND STATISTICAL
ANALYSIS

As seen above, genomic approaches can address a wide range of
objectives important in breast cancer. These include, for example,
molecular subclassification of breast cancer, characterisation of
pathways important in breast cancer aetiology and progression of
premalignant lesions, and prognostication of natural history or
prediction of benefit to specific therapies. The first two studies
focus on discovering new classes of samples or genes, while the
latter two are examples of problems in classification.

At best, genomic experiments can generate a gold mine of data
that may, with proper ‘mining’, help shed light on questions far
beyond those originally envisioned. At worst, without careful
planning these expensive and complex experiments may fail to
illuminate even their primary objectives. In all cases, it is very
important to minimise possible sources of confounding factors.
Samples should be handled and prepared in as identical a manner
as possible. Standard methods, such as blinding of laboratory staff,
and processing samples in batches that include examples of all
relevant classes, is common practice in single gene studies and is
even more important here.

In clinical trials, sample sizes are planned ahead of time to
ensure that the number of subjects to be enrolled will be adequate
to address the question. Reporting guidelines now include planned
sample sizes and target effect sizes. Traditional prognostic or
predictive studies are beginning to follow suit. In sharp contrast,
sample sizes in most genomic (expression arrays, CGH, SAGE)
experiments to date appear to have been determined by the limited
number of frozen samples available and the cost of arrays. As a
result, studies have tended to be very small. In the future, as
studies are undertaken that propose to change clinical practice,
larger samples sizes, which are more likely to encompass the full
diversity of the target population, will be required. Thus, reviews
for funding of such studies are beginning to require more rigorous
justification.

Study objectives also determine the most appropriate methods
of analysis. To date, class discovery studies have used unsuper-
vised methods, especially cluster analysis, to ‘discover’ sample or
gene groupings. Such studies are generally exploratory or
hypothesis generating, and confirmation of results often relies on
subsequent correlation with further supplemental biological or
bioinformatic data. Analysis generally proceeds in steps, beginning
with filtering of genes and samples to remove poor quality
samples, and uninformative or poorly measured genes. This is
followed by clustering or data mining designed to uncover ‘hidden’
groups or relationships. The ‘significance’ of such groups or
relationships can be difficult to assess because any data set, even a
randomly generated one, can be clustered. Fortunately, methods
have been proposed to assess the stability or reliability of the
clustering that may help distinguish real from spurious results. To
our knowledge, there are no standard methods to determine an
appropriate sample size for such studies.

Class prediction has typically been addressed with a case/control
type of design (i.e. ER positive vs ER negative; disease free vs
relapsed), and samples are included because of their known status.
All other things being equal, the most powerful discrimination
of groups is obtained when cases and controls are equally
represented. Cluster analysis has sometimes been used in the
analysis of such studies in the hope that groups will cluster
together, but, as pointed out by Simon et al (2003), unsupervised
cluster analysis is not effective for class comparison or class
prediction. When the goal is discrimination or the selection of
features that discriminate, the analysis should make use of the
available information. As with class discovery, analysis begins with
filtering of genes and samples to remove poor quality samples and
unexpressed or poorly measured genes. Analysis then proceeds to
select a subset of ‘informative’ genes, compute a score or index,
and finally to define a classification rule. The process is often
interative, and the score may be a simple weighted average of gene
expression, as in linear discriminant analysis, or a complicated
nonlinear function, as in artificial neural networks. However, the
classifier is computed and the classification rule defined; it is of
little value if it cannot be shown to generalise to other samples.
Performance is usually assessed by the misclassification error rate,
and by summary statistics borrowed from the field of diagnostic
testing, such as sensitivity, specificity, and false-positive rate.
‘Resubstitution’ estimates of classification success can be com-
puted by classifying the same cases used to create the classifier, but
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Figure 2 Receiver operating characteristic (ROC) curve for predicting
response to docetaxel using the 92-gene classifier, with positive and
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curve is 0.96.
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the estimates are biased and often highly overly optimistic. The
potential for overfitting a well-known problem even in traditional
single gene prognostic and predictor factor studies is simply made
worse by the huge number of explanatory variables and small
sample sizes.

Classifier performance is best tested by applying it to a
completely new, independent set of samples. Despite some
methodologic problems, the studies of van’t Veer et al and van
de Vijver (van’t Veer et al, 2002b; van de Vijver et al, 2002) are
ground-breaking examples. The external validation set should
include all of the types of cases in the training set, and the assay
process should be replicated as closely as possible.

When fully independent, external validation is not possible, then
some other method, such a crossvalidation, must be used to obtain
unbiased estimates of classifier performance. Properly implemen-
ted, leave-one-out crossvalidation and related methods can
provide nearly unbiased estimates of classifier performance. In
order for the estimates to be reliable, however, it is absolutely
critical that the crossvalidation be external to the entire process by
which the classifier is created (Simon et al, 2003). That is, in leave-
one-out crossvalidation, one sample is selected to left out. The
entire analysis including normalisation, expression estimation,
filtering, gene selection, weighting, and classifier rule construction
is performed on the remaining samples. The left-out sample is then
processed and classified. The process is repeated leaving out and
then classifying each sample in turn. Since each left-out case will
be classified by a slightly different classifier, the resulting
classification error is a nearly unbiased estimate of the classifica-
tion error rate of the classifier construction process, not the error
rate of a specific classifier. A final classifier is usually constructed
by the same process, using all the data. Of course, independent
validation is still important, especially if the training sample is
relatively small because any estimates of accuracy will have wide
confidence intervals. For example, in a study of 50 or fewer
samples, a crossvalidated error rate of 15% will have a 95%
confidence interval of 6 –27%, a range far too wide to guarantee
good performance on future samples. While the entire multi-
variable classification problem is too complex for useful sample
size calculations, simpler approaches can be useful. These can be
based on detecting modest differences in individual genes (gene

selection phase) with good power (i.e. 80–90%) at a stringent level
of significance (i.e. 0.1–1%) that will help control for multiple
comparisons. Sample size should also take into account the desired
width of confidence intervals for the crossvalidated or independent
validation error rates.

CONCLUSIONS

It is the goal of comprehensive, genomic-wide approaches to
identify clinically useful genetic profiles that will accurately
identify diagnostic subtypes, and predict prognosis and treatment
responsiveness of breast cancer patients. Clearly, the management
of patients would be optimised if clinicians had a molecular profile
of a patient’s tumour at the time of diagnosis that would accurately
identify those patients who could be spared unnecessary treatment
of their disease, or alternatively whose prognosis was so poor that
aggressive therapies are warranted and to pinpoint the optimal
therapy. It is obvious that single gene studies have to be replaced
with the newer molecular approaches of microarray analysis.
Undoubtedly, the benchmark for any newly identified biomarker
or biomarker DNA or RNA expression profile arising from these
new microarray technologies will have to be its comparison to
standard prognostic factors.

The importance of experimental design to ask the appropriate
question in the available data set cannot be overly stressed.
Similarly, validation of generated profiles must be performed in
independent data sets. The lessons we have learned in years of
prognostic and predictive factor identification and implication
need to be implemented in microarray approaches for the
management of breast cancer. Obviously, it is hoped that this
new technology will greatly improve our ability to diagnose, and
predict the outcomes of breast cancer patients.

ACKNOWLEDGEMENTS

This work was supported by funding provided by NIH Grants P50
CA58183 and P01 CA 30195.

REFERENCES

Adeyinka A, Emberley E, Niu Y, Snell L, Murphy LC, Sowter H, Wykoff CC,
Harris AL, Watson PH (2002) Analysis of gene expression in ductal
carcinoma in situ of the breast. Clin Cancer Res 8: 3788 – 3795

Aoyagi K, Tatsuta T, Nishigaki M, Akimoto S, Tanabe C, Omoto Y, Hayashi
S, Sakamoto H, Sakamoto M, Yoshida T, Terada M, Sasaki H (2003) A
faithful method for PCR-mediated global mRNA amplification and its
integration into microarray analysis on laser-captured cells. Biochem
Biophys Res Commun 300: 915 – 920

Ayers M, Symmans WF, Stec J, Damokosh AI, Clark E, Hess K, Lecocke M,
Metivier J, Booser D, Ibrahim N, Valero V, Royce M, Arun B, Whitman
G, Ross J, Sneige N, Hortobagyi GN, Pusztai L (2004) Gene expression
profiles predict complete pathologic response to neoadjuvant paclitaxel
and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in
breast cancer. J Clin Oncol 22: 2284 – 2293

Buchholz TA, Stivers DN, Stec J, Ayers M, Clark E, Bolt A, Sahin AA,
Symmans WF, Hess KR, Kuerer HM, Valero V, Hortobagyi GN, Pusztai L
(2002) Global gene expression changes during neoadjuvant chemother-
apy for human breast cancer. Cancer J 8: 461 – 468

Carter CL, Allen C, Henson DE (1989) Relation of tumor size, lymph node
status, and survival in 24,740 breast cancer cases. Cancer 63: 181 – 187

Chang J, Powles TJ, Allred DC, Ashley SE, Clark GM, Makris A, Assersohn
L, Gregory RK, Osborne CK, Dowsett M (1999) Biologic markers as
predictors of clinical outcome from systemic therapy for primary
operable breast cancer. J Clin Oncol 17: 3058 – 3063

Chang JC, Wooten EC, Tsimelzon A, Hilsenbeck SG, Guiterrez MC, Elledge
RM, Mohsin S, Osborne CK, Chamness GC, Allred DC, O’Connell P
(2003) Gene expression profiling predicts therapeutic response to
docetaxel (Taxotere) in breast cancer patients. Lancet 362: 280 – 287

Clark GM (2001) Interpreting and integrating risk factors for patients with
primary breast cancer. J Natl Cancer Inst Monogr 30: 17 – 21

Clark GM, Dressler LG, Owens MA, Pounds G, Oldaker T, McGuire WL
(1989) Prediction of relapse or survival in patients with node-negative
breast cancer by DNA flow cytometry. N Engl J Med 320: 627 – 633

EBCTG (1998a) Polychemotherapy for early breast cancer: an overview of
the randomised trials. Lancet 352: 930 – 942

EBCTG (1998b) Tamoxifen for early breast cancer: an overview of the
randomized trials. Lancet 351: 1451 – 1467

Ellis M, Davis N, Coop A, Liu M, Schumaker L, Lee RY, Srikanchana R,
Russell CG, Singh B, Miller WR, Stearns V, Pennanen M, Tsangaris T,
Gallagher A, Liu A, Zwart A, Hayes DF, Lippman ME, Wang Y, Clarke R
(2002) Development and validation of a method for using breast core
needle biopsies for gene expression microarray analyses. Clin Cancer Res
8: 1155 – 1166

Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER,
Wickerham DL, Begovic M, DeCillis A, Robidoux A, Margolese RG, Cruz
Jr AB, Hoehn JL, Lees AW, Dimitrov NV, Bear HD (1998) Effect of
preoperative chemotherapy on the outcome of women with operable
breast cancer. J Clin Oncol 16: 2672 – 2685

Management and treatment of breast cancer

JC Chang et al

623

British Journal of Cancer (2005) 92(4), 618 – 624& 2005 Cancer Research UK



Fisher ER, Palekar A, Rockette H, Redmond C, Fisher B (1978) Pathologic
findings from the National Surgical Adjuvant Breast Project (Protocol
No. 4). V. Significance of axillary nodal micro- and macrometastases.
Cancer 42: 2032 – 2038

Fisher ER, Redmond C, Fisher B (1980) Histologic grading of breast cancer.
Pathol Annu 15: 239 – 251

Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R,
Meltzer P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A,
Trent J (2001) Gene-expression profiles in hereditary breast cancer.
N Engl J Med 344: 539 – 548

McGuire WL (1980) The usefulness of steroid receptors in the management
of primary and advanced breast cancer. In Breast Cancer: Experimental
and Clinical Aspects Moudison HT, Palshof T (eds) pp 39 – 43. New York:
Pergammon Press

McShane LM, Radmacher MD, Freidlin B, Yu R, Li MC, Simon R (2002)
Methods for assessing reproducibility of clustering patterns observed in
analyses of microarray data. Bioinformatics 18: 1462 – 1469

O’Connell P, Pekkel V, Fuqua S, Osborne CK, Allred DC (1994) Molecular
genetic studies of early breast cancer evolution. Breast Cancer Res Treat
32: 5 – 12

O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998)
Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15
genetic loci. J Natl Cancer Inst 90: 697 – 703

Perou CM, Jeffrey SS, van de Run M, Rees CA, Eisen MB, Ross DT,
Pergamenschikov A, Williams CF, Zhu SX, Lee JC, Lashkari D, Shalon D,
Browns PO, Botstein D (1999) Distinctive gene expression patterns in
human mammary epithelial cells and breast cancers. Proc. Natl Acad Sci
USA 96: 9212 – 9217

Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR,
Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C,
Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000)
Molecular portraits of human breast tumours. Nature 406: 747 – 752

Pollack JR, Sorlie T, Perou CM, Rees CA, Jeffrey SS, Lonning PE, Tibshirani R,
Botstein D, Borresen-Dale AL, Brown PO (2002) Microarray analysis reveals
a major direct role of DNA copy number alteration in the transcriptional
program of human breast tumors. Proc Natl Acad Sci USA 99: 12963 – 12968

Porter D, Polyak K (2003) Cancer target discovery using SAGE. Expert Opin
Ther Targets 7: 759 – 769

Sgroi DC, Teng S, Robinson G, LeVangie R, Hudson Jr JR, Elkahloun AG
(1999) In vivo gene expression profile analysis of human breast cancer
progression. Cancer Res 59: 5656 – 5661

Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use
of DNA microarray data for diagnostic and prognostic classification.
J Natl Cancer Inst 95: 14 – 18

Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N, Conroy J,
Hamilton G, Hindle AK, Huey B, Kimura K, Law S, Myambo K, Palmer J,
Ylstra B, Yue JP, Gray JW, Jain AN, Pinkel D, Albertson DG (2001)
Assembly of microarrays for genome-wide measurement of DNA copy
number. Nat Genet 29: 263 – 264

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T,
Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC,
Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001)
Gene expression patterns of breast carcinomas distinguish tumor
subclasses with clinical implications. Proc Natl Acad Sci USA 98:
10869 – 10874

Symmans WF, Ayers M, Clark EA, Stec J, Hess KR, Sneige N, Buchholz TA,
Krishnamurthy S, Ibrahim NK, Buzdar AU, Theriault RL, Rosales MF,
Thomas ES, Gwyn KM, Green MC, Syed AR, Hortobagyi GN, Pusztai L
(2003) Total RNA yield and microarray gene expression profiles from
fine-needle aspiration biopsy and core-needle biopsy samples of breast
carcinoma. Cancer 97: 2960 – 2971

van‘t Veer LJ, Dai H, van De Vijver MJ, He YD, Hart AA, Mao M, Peterse
HL, van Der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven
RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002a) Gene
expression profiling predicts clinical outcome of breast cancer. Nature
415: 530 – 536

van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse
HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven
RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002b) Gene
expression profiling predicts clinical outcome of breast cancer. Nature
415: 530 – 536

van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW,
Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D,
Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H,
Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-
expression signature as a predictor of survival in breast cancer. N Engl J
Med 347: 1999 – 2009

Verhoog LC, Brekelmans CT, Seynaeve C, Dahmen G, van Geel AN, Bartels
CC, Tilanus-Linthorst MM, Wagner A, Devilee P, Halley DJ, van den
Ouweland AM, Meijers-Heijboer EJ, Klijn JG (1999) Survival in
hereditary breast cancer associated with germline mutations of BRCA2.
J Clin Oncol 17: 3396 – 3402

Management and treatment of breast cancer

JC Chang et al

624

British Journal of Cancer (2005) 92(4), 618 – 624 & 2005 Cancer Research UK


