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Draft Metagenome-Assembled Genome Sequences of Three
Novel Ammonia-Oxidizing Nitrososphaera Strains Recovered

from Agricultural Soils in Western Colorado
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ABSTRACT Microbial nitrification is critical to nitrogen loss from agricultural soils. Here,
we report three thaumarchaeotal metagenome-assembled genomes (MAGs) representing
a new species of Nitrososphaera. These genomes expand the representation of archaeal
nitrifiers recovered from arid, agricultural soils.

mmonium- or urea-based fertilizers are the dominant form of applied nitrogen in agricul-

tural systems (1). Ammonia-oxidizing bacteria and archaea (AOA) are recognized as par-
tially controlling the fate of this nitrogen through nitrification, rapidly converting ammonium
to nitrate, which is more mobile and can lead to substantial nitrous oxide (N,O) production
(1-3). The AOA are classified as Thermoproteota (formerly Thaumarchaeota) and have been
primarily tracked by marker gene sequencing in soil (4). Here, we report three metagenome-
assembled genomes (MAGs) for a novel Nitrososphaera species recovered from agricultural
soil in western Colorado.

Soil samples were collected from the Western Colorado Research Center (Fruita, CO, USA;
39°10'47.9994", —108°42'0") in February 2021. Surface (0- to 5-cm) soil samples were taken
from fallow agricultural plots managed under conventional tillage (n = 1) and an untilled sys-
tem (n = 1). DNA was extracted from 0.4 g of each soil using the Zymo Quick-DNA fecal/soil
microbe microprep kit, following the soil protocol. Metagenomic libraries were prepared
using the Tecan Ovation Ultralow v2 system and were sequenced on the NovaSeq 6000 plat-
form on a S4 flow cell at Genomics Shared Resource, Colorado Cancer Center (Denver, CO,
USA). The untilled and tilled metagenomes comprised 37.9 Gbp and 28.5 Gbp of 150-bp
paired-end reads, respectively. For each metagenome, the read quality was determined
using FastQC v0.11.2 (5), the reads were trimmed using Sickle v1.33 (pe -t sanger) (6) and
assembled using MEGAHIT v1.2.9 (-k-min 31 -k-max 121 -k-step 10 -mem-flag 1) (7), and
the contigs were binned using MetaBat2 v2.12.1 (8). The MAG quality was assessed using
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FIG 1 Phylogenetic tree based on the WCRC Nitrososphaera MAGs and GTDB-tk r202 Nitrososphaera
species representatives. The tree is rooted on the species representatives of g_Nitrosocosmicus. The GTDB-tk
de_novo_wf workflow was used to generate a multiple-sequence alignment (MSA) using g_Nitrosocosmicus
as the outgroup and filtering to g_Nitrososphaera. The resulting MSA was used to construct a maximum
likelihood phylogenetic tree using RAXML v8.2.9 (15) with the PROTGAMMAWAG model and 100 bootstraps.
Bootstraps for the nodes were all greater than 90% and are sized according to the legend.
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TABLE 1 Metagenome-assembled genome statistics for WCRC_1, WCRC_2, and WCRC_3

Data for strain:

Characteristic WCRC_1 WCRC_2 WCRC_3

Origin soil management Conventional till Untilled Conventional till
BioSample accession no. SAMN26177291 SAMN26177292 SAMN26177293
Genome size (bp) 1,081,057 1,177,263 876,390

No. of contigs 154 181 123

GC content (%) 44.6 44 .4 44.7

Longest contig (bp) 29,717 25,749 20,557

N, (bp) 8,096 7,090 7,633
Completeness (%) 78.8 83.5 71.36
Contamination (%) 1.94 2.91 0.97

No. of predicted coding genes 1,275 1,395 1,050

No. of tRNAs 28 25 20

Encoded rRNA 5S

Mean base coverage (x) 6.05 6.28 10.04

CheckM v1.1.2 (9), and the taxonomy was assigned using GTDB-tk v1.5.0 (r202) (10). MAG
annotation was performed using DRAM (11) within KBase (12). Default parameters were used
unless noted. Two of the Nitrososphaera MAGs (WCRC_1 and WCRC_3) were recovered
from the conventional tilled soil metagenome and the other (WCRC_2) from the untilled soil
metagenome.

The three MAGs were assigned to a new species in the genus Nitrososphaera using
GTDB-tk, where there are currently 14 Nitrososphaera genomic representatives across seven
species (GTDB-tk r202) (Fig. 1). The pairwise amino acid identity is 97.67% between the three
MAGs, suggesting that they are members of the same species (13). The statistics of these
three MAGs are presented in Table 1.

Genome annotation of the Nitrososphaera MAGs supported their roles as AOA. All MAGs
encoded the B and C subunits of ammonia monooxygenase (EC 1.14.99.39). While the A
subunit is missing across the MAGs, this is likely due to the known challenge of assembling
this gene and the incomplete nature of these MAGs (Table 1). In accordance with other
observed Thaumarchaeota, hydroxylamine oxidase was absent across the MAGs, while
WCRC_1 encoded nitrite reductase (14). Collectively, these MAGs provide genomic context
for a novel species of ammonia-oxidizing Nitrososphaera derived from agricultural soils.

Data availability. The sequencing data for this project have been deposited at GenBank
under BioProject accession number PRINA725542. The MAGs have been deposited under
BioSample accession numbers SAMN26177291, SAMN26177292, and SAMN26177293. The
metagenomic reads have been deposited in the Sequence Read Archive under accession
numbers SRS11831377 and SRS11831378.
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