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Abstract: The construction of a forming limit diagram (FLD) is a conventional approach to obtain
limit strains and to evaluate the formability of sheet metal. Appropriate necking criteria should
be applied to determine the forming limit curve (FLC) accurately. In recent years, deep research
on the determination of the FLC has been carried out; meanwhile, several necking criteria have
been proposed. However, the application of inappropriate necking criteria would cause deviations
when determining FLCs. In this study, both Marciniak and Nakajima tests were carried out on the
AA5086 aluminum sheet to make a comparative investigation of different necking criteria in the
determination of FLCs. In the Marciniak test, four existing necking criteria were chosen to construct
FLCs, and analyzed in detail. The well-performed time dependent and position dependent methods
were selected for the Nakajima test. Meanwhile, the modified Wang method based on the height
change of the adjacent points was proposed. The comparative results showed that the time and
position dependent methods were relatively conservative in both experiments, while the modified
Wang method could identify the onset of localized necking more accurately.

Keywords: forming limit diagram; necking criteria; Marciniak test; Nakajima test

1. Introduction

Metal sheet forming has been widely used in various industrial production processes,
especially in the automotive [1,2] and aeronautic [3] fields. A lightweight design based
on metal sheet forming has become popular in industrial production. However, the metal
formability has generally been restricted by the failure limit corresponding to the onset of
localized necking. The forming limit diagram (FLD) raised by Keeler and Backofen [4] has
been a common method for the evaluation of metal formability. By measuring the limit
deformation of the metal sheet under different strain paths, the forming limit curve (FLC)
could be constructed according to the critical major and minor strains. Afterwards, safety
and failure regions are separated by the shape and location of the FLC.

Precise construction of the FLC has been regarded as taskwork. Commonly used
methods to determine the FLC have included the theoretical method, finite element (FE)
simulation, the experimental test, etc. The theoretical method, requiring complex mathe-
matical analysis, might cause deviations due to the approximation of empirical equations or
the variation of certain constant values (e.g., the hardening index considered as a constant
might change with material deformation [5]). Fundamentally, the main limitation in the
analytical models, e.g., the MK-framework, has lied in the need for a prior forming limit
curve commonly utilized to calibrate the analytical model [6]. It has been more convenient
to obtain the FLD through numerical simulation. However, predicted limit strains might
be inconsistent with the actual forming limits due to the deviation of the mesh division
or friction coefficient selection, etc. According to Zhang et al. [7], though the FE meth-
ods evaluates the metal formability effectively, their agreement with experimental results
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was not perfect; Heidari et al. [8] also found that the simulation results showed a large
deviation on the right side of the FLD when they utilized the ductile fracture criteria to
assess the formability of AA6063 alloy. Therefore, the results of numerical simulations still
need to be validated by experimental tests. Among these test methods, the out-of-plane
Nakajima test [9] and in-plane Marciniak test [10] are the most prominent experiments. In
the Nakajima test, the specimen is deformed under a hemispherical punch and subjected
to triaxial stress; meanwhile, the through-thickness stress in the Marciniak test is small
enough to be neglected. Therefore, specimen in the Marciniak test can be considered as
plane stress conditions in the central part. Marrapu et al. [11] utilized both numerical and
experimental methods to assess the formability of DP780 steel; the consequences showed
that the simulation based on the major true strain gradient method (strain localization
criterion in [12]) had great consistency with the experimental results. Likewise, Nakajima
tests on DC04 steel were developed by Lumelskyj et al. [13] to validate the accuracy of
numerical results under two different necking criteria. The thinning rate evolution criterion
gave the values of limit strains closest to the experimental ones, while the maximum strain
acceleration criterion overestimated the limit strains compared to the experimental ISO
norm FLC. It seems, therefore, that the development of experiments is still the most reliable
and practical method to determine the FLD.

Appropriate necking criteria should be selected to define the onset of localized neck-
ing, which is considered an essential issue in precisely determining the FLD. Necking
criteria mainly contain two categories: the position dependent method and the time depen-
dent method. A clear standard of the position dependent method has been provided in
ISO 12004 (2008) [14], while the time dependent method proposed by Eberle et al. [15] is
still under standardized. In recent years, researchers have spent great efforts analyzing the
effect of different criteria on the determination of the FLC: different temporal and spatial
criteria were compared by Wang et al. [16] in the Marciniak test. The results showed that
spatial methods determining the area after fracture presented larger limit strains, whereas
temporal methods determining the diffuse necking area led to smaller consequences. Mean-
while, a new method based on monitoring the surface topography of specimens has been
proposed, which is considered as the most accurate method for measuring the boundary
of the safety area. S Dicecco et al. [17] tested a necking zone (NZ) method proposed by
Martínez-Donaire et al. [18] and found that the limit strains obtained by ISO 12004-2 and
the NZ method at room temperature were almost identical on the uniaxial of the FLC,
while the NZ approach yielded a 14.8% larger major limit strain on the biaxial side. A
time-position-dependent method (flat-valley method) based on the appearance and devel-
opment of a valley in the profile was also demonstrated in [18]. The initiation of necking
was inferred when the slope in the first spatial derivative of the vertical displacement
remained constant within the necking region. Based on surface geometry measurement, an
improved 3D curvature method was proposed by Min et al. [19] from their previous 2D
curvature works [20]. The FLC could be obtained by this method on an equivalent basis
from both Marciniak and Nakajima tests after applying compensation for the effects of the
non-linear strain path, curvature and contact pressure.

Chalal and Abed-Meraim [21], who applied four necking criteria in the Nakajima test,
verified that numerical simulation FLDs predicted by local criteria were in good agreement
with the experimental results. By contrast, the global criterion based on the maximum
punch force on the left side of the FLD seemed not to be suitable for the prediction of
local necking. A method based on thickness variation was proposed by Iquilio et al. [22]
and compared with two existing criteria. This thickness variation correlation method was
proved to be more accurate to determine the true limit strain. Lumelskyj et al. [13] compared
two different time dependent methods with the ISO standard. The through-thickness strain
method proposed by Volk and Hora [23] was defined by the point corresponding to a
sudden change to the slope of the thinning rate versus the time curve, which showed quite
similar results to ISO 12004-2. Further, the maximum of the strain acceleration method,
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which obtained the strain localization by determining the inflection point in the major
strain rate curve, gave higher values of strains than ISO.

Although plenty of failure criteria and correlative optimization tests have been in-
troduced, comparisons of the characteristics and applicability of different necking crite-
ria are still needed, especially through the experimental way. Therefore, in this paper,
both Marciniak and Nakajima tests were used to construct FLCs of the AA5086 aluminum
sheet. In the Marciniak test, four different failure criteria were applied to determine the
FLCs, and the results were compared to assess the applicability of different criteria in
the formability evaluation. In the Nakajima test, the well-performed time and position
dependent methods of the Marciniak test were selected to determine FLCs. Meanwhile,
a modified method based on [16] was proposed and tested as well. Finally, the FLCs
predicted by three different criteria were compared and the applicability of the modified
method was briefly described.

2. Experiments and Discussion

• Part I Marciniak

2.1. Experimental Apparatus

A standard Marciniak apparatus was revised to investigate the forming limit of
AA5086, with a punch diameter of 40 mm and a die diameter of 43.8 mm. The punch
corner radius was 8 mm and the die corner radius was set to 5 mm. A serrated surface
was designed on the die to better grip the specimen. To assure the occurrence of maximal
strains on the central part of the blank, and to also void the friction between the blank and
the punch, the sheet adopted in this study was machined with a non-uniform thickness,
as presented in Figure 1a. The central zone (Re) had a thickness of 0.8 mm, the adjacent zone
(Rm), 1.5 mm, and the clamping zone, (R) 2.0 mm. Related information about the specimen
dimensions is shown in Table 1. The widths of the specimen were changed from 10 to
100 mm in order to obtain different strain paths. The other radius dimensions remained
the same for the different strain paths. Each test was carried out at least three times.
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Figure 1. Experimental equipment and specimen: (a) Specimen geometry, (b) Schematic of the
Marciniak acquisition system.

Table 1. Dimensions of the specimen during different strain paths.

W (mm) 10 20 30 40 45 48 50 52 55 58 60 80 100

R (mm) Rc (mm) Rm (mm) Re (mm)
50 70 26.5 10

The digital image correlation (DIC) method was used to capture the images of sam-
ples during testing. The schematic diagram of the experimental acquisition apparatus is
presented in Figure 1b. The CMOS camera with a resolution of 512 × 448 pixels and a
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shutter speed of 500 images/s was adopted. A subset size of 32 pixels and a step size
of 16 pixels were utilized for analysis. All specimens were covered in white paint and
then sprayed with black dots on their surface to analyze the deformation by means of the
captured images.

2.2. Different Criteria to Determine the FLC
2.2.1. Position Dependent Method

This criterion was explicitly explained in ISO 12004-2. This spatial method is based on
the strain distributions in the specimen prior to the appearance of fractures. The theory
of the ISO standard is that, with a fit window of the chosen main strain values (ε11, ε22)
on both sides of the necking zone for a necking prior to a cracked specimen, an inverse
polynomial function of second-order Equation (1) is fitted to identify the limit strains at the
start of necking:

f (x) = 1/
(

ax2 + bx + c
)

(1)

To allow a reproducible evaluation, three related cross sections, including the crack,
were selected to investigate the strain distribution, as shown in Figure 2. The X(m) rep-
resents the position values of each section point on the specimen surface, which were
obtained by the DIC method. With correlative data, the major strain distributions of the
chosen sections on the sheet metal before the occurrence of a crack could be obtained,
and a procedure of a second derivative was applied on these strain evolutions. The inner
boundary of the fit window was determined by the maximum value point of the second
derivative at each side of the crack, as presented in Figure 3a. The dashed lines presented
second derivatives of the points at both sides.

To find the outer boundary of the fit window, ISO 12004-2 defined the fit window
width W for each side in Equation (2):

W = 4[1 + (ε22/ ε11)]
ε22 = 1

2 (ε22,Bl + ε22,Br)
ε11 = 1

2 (ε11,Bl + ε11,Br)

(2)

where (ε11, ε22) are the principal strain values of the inner point at each side, Bl stands for
the left inner boundary and Br stands for the right inner boundary.
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It was found that the determined strain path (βexp = ε11,limit/ε22,limit) did not always
correspond to the measured strain path (βexp), which was measured directly by the DIC.
Therefore, the limit strain ε22,limit in this test was directly determined by the (βexp) in
order to limit data scatter, with the relation (ε22,limit = βexp·ε11,limit). The thickness true
strain (ε33 = −ε11 − ε22) was obtained based upon the constancy of volume. Utilizing
the inverse best-fit parabola (Equation (1)) of the strain points over the determined fit
window, the function’s maximum peak was identified as the limit strains (ε11,limit, ε33,limit),
as illustrated in Figure 3b.

2.2.2. Time Dependent Method

In ISO 12004-2 norm, a “time dependent” method was introduced to be still under
development. A termed time dependent evaluation criterion was presented by Merklein
et al. [24] in the literature. This criterion was performed to analyze a tendency of the strain
rate in the zone of necking and the succeeding cracking. By means of the image prior to the
crack occurrence, the distribution of the major strain was acquired, as formerly presented
in Figure 3a. The maximum major strain point was selected to begin the assessment and an
average value of the three sections was adopted to obtain stable measurement results.

The different processes of this temporal criterion are presented in Figure 4. Both
major strain and major strain rates presented a homogeneous development at the initial
deformation period and then both values increased drastically at the onset of necking.
The acceleration of major strain developed linearly at the start of deformation (Figure 4c),
followed by a rapid rise. Then, a linear regression coefficient of the major strain acceleration
was obtained with calculations. The values of the linear regression coefficient started
to increase along with the continuous homogeneous plastic deformation, achieving a
maximum peak at the onset of necking. After the occurrence of necking, the major strain
acceleration showed a drastic increase, while the linear regression coefficient declined. The
maximum peak in the linear regression coefficient’s evolution indicated the instant for the
onset of necking (Figure 4d), and the relevant limit strains at this moment were noted as
one point on the forming limit curve.

2.2.3. Strain Increment Ratio Criterion

This method is frequently adopted in the M-K theory [10] (the most widely used
theoretical model in which an initial geometrical imperfection is assumed to trigger the
occurrence of the localized necking), on account of its simplistic definition. This temporal
method is based on the strain evolutions’ difference between necking and the adjacent
areas. Two points (point B in the necking area and point A in the adjacent area) on the
sample surface were selected. After strain localization, the strain discrepancy between
the two areas sped up, as presented in Figure 5a. As the major true strain increment
ratio (∆εB

Major/∆εA
Major) transcended the critical value (7 was proposed by C. Zhang [25]),
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necking was supposed to take place, and the corresponding limit strains of point B at this
instant were regarded as one point of the forming limit curve, as shown in Figure 5b.
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Nonetheless, with this criterion, the limit strain values could be affected by the
positions of points A and B and the interval time value utilized in the strain increment
ratio calculation. For the same investigated points, the major and minor strains measured
with different time intervals are presented in Table 2. As the interval time increased,
a slight increase of the forming limit value could be observed. The major and minor strains
obtained with a ∆t of 0.01 s displayed the most conservative consequence. This interval
time ∆t = 0.01 s remained in the subsequent comparisons.
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Table 2. Different interval times with corresponding forming limit values.

Interval Time (s) t Limit (s) Major Strain Minor Strain

0.01 1.307 0.2448 −0.0385
0.02 1.309 0.2566 −0.0395
0.03 1.312 0.2682 −0.0404
0.04 1.316 0.2856 −0.0405

2.2.4. Maximum Punch Force Criterion

The punch force was recorded by a traditional load cell across the duration of the
Marciniak test, as presented in Figure 6. Meanwhile, the deformation of the specimen was
observed through the high-speed camera. The punch force presented a drastic increase
until reaching the maximum point, and suddenly decreased as soon as the sheet failure
occurred. Therefore, the force evolution is feasible to be utilized as a global criterion to
determine the limit strains. The three sections adopted in the ISO standard were selected.
The maximum strains in the chosen sections with respect to the maximum force instant
were obtained with strains calculated by the DIC system. The mean values of the three
maximum strains were recorded as the limit strains.
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2.3. Results

For the investigated sheet metal with a width of 40 mm, the limit strains and corre-
sponding times determined with the various necking methods are shown in Table 3. The
Mises effective strain distributions in the necking area corresponding to the different critical
instants were determined by the CORRELA 2006 software, as presented in Figure 7. The
smallest determined instant was given by the time dependent method, while the largest
was obtained with the force method. Additionally, the strain localization obtained with the
time dependent criterion was not clear, but the onset of necking could be clearly observed
from the results of the force criterion.
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Table 3. Major and minor strains and corresponding times with different methods.

Methods t (s) Major Strain Minor Strain

Strain increment ratio 1.307 0.2448 −0.0385
ISO 12004-2 1.321 0.3149 −0.035

Time dependent 1.203 0.1344 −0.0293
Maximum Force 1.323 0.3174 −0.0405
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The FLCs of the given specimen AA5086 determined with the various necking criteria
are presented in Figure 8. The results indicated that the limit strains distinctly relied on the
selection of the necking criteria. The position dependent method gave the most regular
and repeatable data, which proves its robustness. It has been standardized and recognized
as a reliable failure criterion with wide application in the industry. However, based on
the assumption of the centrally fitted parabola, this method revealed a relatively rigorous
requirement on the location of cracks. If the crack deviated from the center location, it might
be the significant asymmetry in strain measuring which led to the inaccurate parabola
fitting results.
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The time dependent criterion gave very conservative results. This method was well
applicable to materials with a distinctive necking period before the occurrence of the crack.
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As for the tested AA5086 specimen, this method might determine the diffuse necking rather
than the localized necking, and consequently, conservative FLC results were obtained.

Dispersed data were obtained with the strain increment ratio criterion in the uniaxial
and plane strain areas. For this method, only one point in the necking area was selected.
The choices of the point position, interval time ∆t and the strain increment critical value all
affected the limit strain values.

The maximum force method presented scattered data results for some samples. For
the duration of the Marciniak test, the punch force was affected by many factors, such as
the lubrication conditions. As a result, the maximum force method seemed to be unsuitable
for determining the limit strains.

• Part II Nakajima

2.4. Experimental Apparatus

A Nakajima test model was installed on a universal mechanical testing machine. The
punch with a diameter of 44.45 mm moved down the die (49 mm diameter) to stretch the
AA5086 specimen. The deep drawing ribs owned a radius of 6 mm, and were symmetrically
located on the blank-holder with a diameter of 79 mm. The specimen’s geometry is shown
in Figure 9a. In order to construct the FLD with complete strain paths, seven specimens with
different sizes were obtained by changing the width of the geometry. Detailed dimensions
of the specimen are shown in Table 4. Grooves were provided on both sides of the specimen
dome to facilitate positioning during the test. During the test, the specimen was clamped
between the die and the blank holder by bolt fastening. The deep drawing ribs on the
die and blank holder ensured the pressed part of the material would not flow during the
stamping process. Each test was carried out at least three times.
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Table 4. Dimensions of the specimen’s geometry in the Nakajima test.

R (mm) 100

Rn (mm) 0 16.7 19.4 22.2 33.3 38.9 44.4

To record the specimen image during the deformation, two CCD cameras with the
solution of 1624 × 1236 pixels were used, and the acquisition of 2 images/s was adopted.
In this study, a subset size of 7 pixels and a step size of 14 pixels were chosen for the
correlation analysis. A speckle image of the specimen surface during deformation was
recorded by the camera and was used to calculate the strain field. The schematic diagram
of the analysis system is shown in Figure 9b.
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2.5. Different Criteria to Determine FLC

It could be seen from the results of the previous Marciniak test that position dependent
and time dependent criteria gave more concentrated (not scattered) limit strain points and
performed well in the evaluation of the formability of AA5086 sheet. Therefore, in this
work, these two criteria were retained in the Nakajima test and compared with a modified
method. Different FLC results determined by these three necking criteria are compared
and discussed at the end of this section.

Modified Wang’s Method

A modified necking criterion based on the height change of adjacent points in the
necking area was proposed in this work. It had been modified to be feasible for the
Nakajima test based on the work of Wang et al. [16]. During the forming process, the DIC
system was utilized to record and analyze the changes in surface topography (thickness
changes). The variation of the thickness strain before and after necking is shown in
Figure 10a. With the increment of deformation, the position of maximum strain gradually
transformed from convex to concave. The point P2 was at the maximum strain zone, and P1
and P3 were its adjacent points. Before necking, P2 was higher than the line between P1
and P3. As the specimen deformation increased, the height of P2 gradually changed from
higher than the line (P1–P3) to parallel with it. Finally, the position of P2 became lower
than the line (P1–P3). The geometric calculation diagram based on the above analysis is
drawn in Figure 10b. P1, P2, and P3 satisfied the following geometrical relationship:

z2 > z1−z3
y1−y3

y2 + z3 − z1−z3
y1−y3

y1 Be f ore necking

z2 < z1−z3
y1−y3

y2 + z3 − z1−z3
y1−y3

y1 A f ter necking

(3)

y and z are the coordinates of each point, and ( z1−z3
y1−y3

y2 + z3 − z1−z3
y1−y3

y1) is the intersec-
tion of the line (P1–P3) and the vertical line of P2.

Let
∆z =

z1 − z3

y1 − y3
y2 + z3 −

z1 − z3

y1 − y3
y1 − Z2 (4)
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Figure 10. Variation of adjacent points in the high strain zone: (a) Cloud image, (b) Geometric
calculation diagram.

The tendency of ∆z changing with time is shown in Figure 11. In the entire defor-
mation region, ∆z displayed a linear variation period at the beginning (Fitting Zone 1),
and then increased rapidly (Fitting Zone 2). The onset of localized necking was perceived
as occurring on the process of transforming from Fitting Zone 1 to Fitting Zone 2. Based
on this, linear fitting was performed, respectively, on Fitting Zone 1 and Fitting Zone 2.
The abscissa at the intersection of two straight lines was defined as the initial necking
time, and the limit strain at this time was obtained by linear interpolation between the two
measured adjacent strain points.



Materials 2021, 14, 3685 11 of 13

Materials 2021, 14, x FOR PEER REVIEW 11 of 14 
 

 

lower than the line (P1–P3). The geometric calculation diagram based on the above 
analysis is drawn in Figure 10b. P1, P2, and P3 satisfied the following geometrical 
relationship:  

⎩⎪⎨
⎪⎧𝑧ଶ > 𝑧ଵ − 𝑧ଷ𝑦ଵ − 𝑦ଷ 𝑦ଶ + 𝑧ଷ − 𝑧ଵ − 𝑧ଷ𝑦ଵ − 𝑦ଷ 𝑦ଵ 𝐵𝑒𝑓𝑜𝑟𝑒 𝑛𝑒𝑐𝑘𝑖𝑛𝑔   𝑧ଶ < 𝑧ଵ − 𝑧ଷ𝑦ଵ − 𝑦ଷ 𝑦ଶ + 𝑧ଷ − 𝑧ଵ − 𝑧ଷ𝑦ଵ − 𝑦ଷ 𝑦ଵ 𝐴𝑓𝑡𝑒𝑟 𝑛𝑒𝑐𝑘𝑖𝑛𝑔   (3)

y and z are the coordinates of each point, and ( ௭భି௭య௬భି௬య 𝑦ଶ + 𝑧ଷ − ௭భି௭య௬భି௬య 𝑦ଵ ) is the 
intersection of the line (P1–P3) and the vertical line of P2. 

Let Δ𝑧 = 𝑧ଵ − 𝑧ଷ𝑦ଵ − 𝑦ଷ 𝑦ଶ + 𝑧ଷ − 𝑧ଵ − 𝑧ଷ𝑦ଵ − 𝑦ଷ 𝑦ଵ − 𝑍ଶ (4)

 
Figure 10. Variation of adjacent points in the high strain zone: (a) Cloud image, (b) Geometric 
calculation diagram. 

The tendency of  Δz  changing with time is shown in Figure 11. In the entire 
deformation region,  Δz displayed a linear variation period at the beginning (Fitting 
Zone 1), and then increased rapidly (Fitting Zone 2). The onset of localized necking was 
perceived as occurring on the process of transforming from Fitting Zone 1 to Fitting Zone 
2. Based on this, linear fitting was performed, respectively, on Fitting Zone 1 and Fitting 
Zone 2. The abscissa at the intersection of two straight lines was defined as the initial 
necking time, and the limit strain at this time was obtained by linear interpolation 
between the two measured adjacent strain points.  

 
Figure 11. Variation tendency of  Δz and necking time: (a) Uniaxial stretching strain region, (b) 
Biaxial stretching strain region. 

  

Figure 11. Variation tendency of ∆z and necking time: (a) Uniaxial stretching strain region, (b) Biaxial stretching
strain region.

2.6. Results

For the three different necking criteria mentioned above, the left side of the lowest
point was fitted linearly and the right side was fitted by the exponential decay function.
The obtained experimental FLCs are shown in Figure 12. The results indicated that the
time and position dependent method were quite similar on the left side of the FLCs, while
a slightly higher limit strain was obtained by the time criterion, rather than the position
dependent method, on the right side. Further, the FLC defined by the modified method
generally exceeded the other FLCs. Overall, the position dependent method seemed more
conservative than other criteria for the construction of FLCs.
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The modified Wang method was used to measure the thickness variation of the
specimen’s surface. The onset of localized necking could be defined when the ∆z changed
sharply. Compared with the time dependent method, which measured the diffuse necking
to determine the FLC, the modified Wang method obtained larger critical limit strains
which seemed to be closer to the onset of localized necking. Moreover, based on the
physical deformation of the metal sheet, this method directly displayed the failure of the
materials, and only a simple post-processing procedure was needed. As for materials
with large and uniform deformation, only linear interpolation was required to determine
the initial moment of necking. However, for materials with a short time from necking to
fracture, the changes of ∆z could be very small and deviation might have been produced
by applying this method.
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3. Conclusions

In this paper, experimental Marciniak and Nakajima tests were used to study the effect
of necking criteria on the determination of the FLCs for AA5086 aluminum sheet. Different
necking criteria were applied to obtain limit strains, and the results were compared and
discussed in order to make an evaluation of their applicability. The conclusions were drawn
as follows:

For both the Marciniak and the Nakajima tests, the position dependent method based
on ISO 12004 gave quite conservative results. Whether on the uniaxial or biaxial stretching
side, the data given by this method were reliable, with good repeatability.

In the Marciniak test, the time dependent method gave the most conservative limit
strain data. In the Nakajima test, the time dependent method gave quite similar results
as the position dependent method on the left side of the FLCs, while slightly higher limit
strains were obtained with the time dependent method on the right side.

The strain increment ratio method predicted the onset of localized necking by compar-
ing the ratio of strain in the necking and non-necking areas. Due to the fact that only one
reference point in the necking zone was selected, this method might not perfectly reflect
the general variation of the necking zone.

The limit strain points obtained by the global criterion maximum punch force were
dispersed. The maximum punch force method was affected by many factors and hence
seemed not to be suitable for determining limit strains.

The modified Wang method measured the changes to the specimen’s surface before
and after necking to determine the onset of localized necking, and this gave higher values
of limit strain than the time and position dependent criteria for the Nakajima test. For
materials that possessed a short time from initial necking to fracture, the variation of ∆z
was hard to observe; thus, some deviation might have occurred when using this method.
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