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Abstract: Chitosan has become a highlighted polymer, gaining paramount importance and research
attention. The fact that this valuable polymer can be extracted from food industry-generated shell
waste gives it immense value. Chitosan, owing to its biological and physicochemical properties,
has become an attractive option for biomedical applications. This review briefly runs through the
various methods involved in the preparation of chitosan and chitosan nanoforms. For the first time,
we consolidate the available scattered reports on the various attempts towards greens synthesis of
chitosan, chitosan nanomaterials, and chitosan nanocomposites. The drug delivery applications of
chitosan and its nanoforms have been reviewed. This review points to the lack of systematic research
in the area of green synthesis of chitosan. Researchers have been concentrating more on recovering
chitosan from marine shell waste through chemical and synthetic processes that generate toxic wastes,
rather than working on eco-friendly green processes—this is projected in this review. This review
draws the attention of researchers to turn to novel and innovative green processes. More so, there
are scarce reports on the application of green synthesized chitosan nanoforms and nanocomposites
towards drug delivery applications. This is another area that deserves research focus. These have
been speculated and highlighted as future perspectives in this review.

Keywords: chitosan; chitosan nanoparticles; synthesis; green synthesis; drug delivery

1. Introduction

Chitosan, a natural polysaccharide is second after cellulose in terms of abundance,
usage, and distribution [1]. Chemically, chitosan consists of glucosamine and N-acetyl glu-
cosamine residues [2]. Chitosan [(1,4)-2-amino-2-deoxy-D-glucan] is a linear polyaminosac-
charide obtained subsequent to N-deacetylation of chitin. Chitin is the structural compo-
nent of the exoskeleton of shrimps, lobsters, and crabs; it is also present in the cell walls of
fungi and yeast, squid pens [3], green algae, and cuticles of insects and arachnids. Chitosan
has gained great impetus owing to its biological properties and applications in the medical,
food, and agricultural sectors [4–6]. The recovery of chitosan from marine shell waste and
from marine food waste generated by food-processing industries makes this polymer one
of the most important renewable assets.

Chitosan’s therapeutic properties, such as inhibition of microorganisms, pain allevia-
tion [7,8], promotion of hemostasis, and epidermal cell growth [9] are rather unique. Much
interest is targetted towards their potential applications in medical and pharmaceutical
roles. The increased interest in chitosan is attributed to its favorable properties, such as
biocompatibility, ability to bind some organic compounds, susceptibility to enzymatic
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hydrolysis, and intrinsic physiological activity combined with nontoxicity [10–12]. These
properties come handy for biomedical applications such as drug delivery and targeting,
wound healing and tissue engineering, as well as in nanobiotechnology. Chitosan has,
because of its biological and physicochemical properties, become an attractive option as a
drug delivery element and for delivery of other macromolecules [13–15]. Chitosan-based
delivery systems range from microparticles to nanoparticles (NPs), nanoparticle (NP) com-
posites, nanofibres, and films. Chitosan combines with nanometals such as iron (Fe), copper
(Cu), silver (Ag), silicon (Si), zinc (Zn), zinc oxide (ZnO), and titanium dioxide (TiO2) to
form nanocomposites, leading to enhanced anti-microbial properties [16–21].

The advent of nanotechnology and introduction of NPs has resulted in their diverse
applications [22]: biomedical, drug delivery, antitumour activity, tissue engineering, sen-
sor development, pathogen detection, protein detection, gene delivery, environmental
remediation and water purification, and various similar applications [23–29]. NPs have
become very attractive options for diagnosis and therapeutics, owing to their unique prop-
erties. Small sizes with large surface area to volume ratio, as well as their stability and
enhanced translocation into the cells, are handy assets equipping these NPs for diverse
applications. NPs exhibit exceptional optical properties, rendering them suitable for imag-
ing applications (based on their ability to produce quantum effects) [27–29]. The most
commonly studied metallic NPs include gold (Au), Ag, aluminum (Al), Zn, Fe, and TiO2
NPs [30]. Researchers in an attempt to enhance the properties of these metallic NPs have
conjugated/modified/functionalized these with various biomolecules and ligands [30–32].

Chitosan NPs (Ch NPs) have been recently gaining a lot of popularity. Its bio nature,
abundance, degradability, and special properties are its strengths. Chitosan can be easily
processed in diverse forms, such as films, threads, tablets, membranes, and microparti-
cles/nanoparticles. This allows to design a variety of medical and pharmacological devices
adaptable to end purposes. Ch NPs are reported to exhibit antitumor properties by improv-
ing the body’s immune function [33–38]. Chitosan is useful in bandages to reduce bleeding
and as an antibacterial agent and for drug delivery.

NPs synthesis requires the use of reactive and toxic reducing agents, which may
result in death and adversely affect the surrounding environment and organisms [39].
Green synthesis is an alternative approach. The green synthesis method has an edge over
chemical and physical methods because it is cost-effective, is environment friendly, and
there is no requirement for high pressure, energy, temperature, and toxic chemicals [40].
Furthermore, the synthesis of NPs using biological resources is even more attractive, since
it is rapid, eco-friendly, and non-toxic. Biological material includes microorganisms such
as bacteria [41] and fungus [42], algae [43,44], while plants have also become an alternative
option. Nowadays, plant-mediated synthesis is preferable compared to microbe-mediated
synthesis due to its simplicity, rapidity, and avoidance of cumbersome culture mainte-
nance processes [45,46]. Plant materials like leaves [45,47], flowers [48,49], seeds [50,51],
stems [52,53], fruits [54–56], peels [57,58], and weeds [59] have been used for the synthesis
of NPs.

In the following paper, we review the various methods for recovery of chitosan
from chitin. The methods used to prepare chitosan nanoparticles and nanoforms are also
presented briefly. The current status on the available techniques for green synthesis of
chitosan/nanochitosan has been reviewed for the first time. The drug delivery applications
of chitosan and nanochitosan have been discussed and the need for introducing green
synthesized chitosan nanomaterial for drug delivery options has been proposed.

2. Chitosan/Chitosan NPs Synthesis
2.1. Preparation of Chitosan

Chitosan is not generally available in nature; it is recovered from chitin, a naturally
available polymer. Mucor, Absidia, and Rhizopus species, that are representative members
of Mucorales are the only exceptions, where the polymer chitosan naturally exists [60].
Chitin, in turn, is extracted from discarded remnants of shrimp, squid, prawn, lobster,
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crab, and domestic marine shell wastes. Crustacean shells are composed of about 15–40%
chitin and 20–40% protein, 20–50% calcium and magnesium carbonate and astaxanthin,
lipids, and other minerals in trace quantities [61]. Isolation techniques are diverse because
the sources are diverse and their composition is variable [62]. A chemical process is
mostly initiated for extracting the protein and removing inorganic matter. A bleaching
step is optional, using a solvent or through oxidation of pigments [63]; this is followed by
demineralization of shells using dilute HCl/HNO3/H2SO4/CH3COOH [64]. Deacetylation
of chitin by hydrolysis of the acetamide groups with concentrated NaOH or KOH at
temperatures above 100 ◦C yields chitosan. The degree of acetylation (DA) of chitosan
depends on the deacetylation conditions [65]. Lertwattanaseri et al. report a microwave
technique to obtain chitin whiskers [66].

Alternative treatments use ethylene diamine tetra acetic acid (EDTA) [67] or ionic
liquid extraction [68,69]. Lactic acid fermentation has been reported for the extraction of
chitin from prawn shells [70]. Enzymatic extracts or isolated enzymes and microbiological
fermentation have been tested [71], but is time-consuming and results in 1–7% of residual
protein [72]. Other biotechnological processes that use enzymatic deacetylation of chitin
have been demonstrated as alternatives for chemical processing. Chitin deacetylases have
been used to hydrolyze N-acetamide bonds, resulting in chitosan [73]. These enzymes
are obtained from some select fungi and insects. The enzymatic deacetylation process is
reported to enhance the degree of acetylation and average molecular mass of chitosan.
However, this alternative is still in the lab [62,74].

2.2. Preparation of Ch NPs

Ch NPs have been reported to be prepared by emulsion droplet coalescence [75], a
reverse micellar method, ionic gelation [76,77], precipitation [78], sieving, and spray dry-
ing [79]. All of the above-described techniques follow a bottom-up approach. Bottom–up
techniques arrange smaller components into complex assemblies and top-down approaches
begin with large sized materials and break them into smaller ones. Routine conventional
NPs synthesis usually follow bottom–up techniques.

Chitosan micro- and nanoparticles have been prepared using varied techniques. The
particle size, stability of the active constituent and the final product, residual toxicity present
in the final product, and their drug release kinetics are what go into the selection of an
appropriate preparation method [78]. It is confirmed that the size of the prepared particles
depends on the molecular weight and chemical structure and degree of deacetylation (DDA)
of chitosan, including the method used. The higher the molecular weight of chitosan, the
larger the particle size [80,81]. The most common methods for obtaining Ch NPs are:
ionotropic gelation, microemulsion, emulsification solvent diffusion, and emulsion-based
solvent evaporation. Each of these methods influence the particle size and surface charge of
nanochitosan and impact the molecular weight and degree of acetylation. The coacervation
method involves the separation of spherical particles by mixing electrostatically driven
liquids [82,83]. In the polyelectrolyte complex (PEC) method, an anionic solution is added
to the cationic polymer, under mechanical stirring, to obtain nanoparticles [84,85]. The
coprecipitation method involves the addition of a chitosan in low pH to a high pH solution,
resulting in coprecipitation of highly monodisperses chitosan nanoparticles [86]. In the
microemulsion method, chitosan in acetic acid solution and glutaraldehyde are added to a
surfactant in an organic solvent such as hexane. NPs form overnight as the cross-linking
process is completed, resulting in the formation of small-sized nanoparticles [87]. The
Emulsification Solvent Diffusion Method is where an o/w emulsion is prepared with
mechanical stirring and high pressure homogenization [88,89] to achieve 300–500 nm sized
Ch NPs. Emulsion Based Solvent Evaporation Method is a slight modification of the above
method but avoids high shear forces. In reverse micellar method, the surfactant is dissolved
in an organic solvent, to which chitosan, and drug and crosslinking agents are added under
constant overnight vortex mixing, leading to the formation of Ch NPs of fine sizes [90].
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3. Green Synthesis of Chitin/Chitosan/Chitin and Chitosan NPs

Chemical extraction of chitosan has its own drawbacks: (i) the physico-chemical
properties of chitin are affected and MW and DA decrease, negatively affecting intrinsic
properties; (ii) wastewater effluents contain some chemicals, and (iii) increased cost of
purification processes. This is why biological/green extraction techniques are gaining
popularity. Biological synthesis uses enzymes and microorganisms for chitin extraction
and chitosan recovery. Usually, as in the case of all nanomaterial synthesis, two distinct
categories are nominated—chemical synthesis or green synthesis. Here, in the case of
chitin/chitosan-based materials, chemical synthesis was the pioneering technique; biologi-
cal methods of chitin and chitosan preparation then gained popularity. With the existence
of a middle term, already established by numerous publications, green synthesis as such
in the case of chitin research has become hard to clearly demarcate. As supporters of the
fact that biological methods are indeed green synthesis methods, we categorize biological
methods of preparation within the topic of green synthesis.

3.1. Biological Method

Khanafari et al. [91] compared chemical versus biological extraction of chitin from
shrimp shells. The biological method (using microorganisms) was demonstrated to be
better than the chemical method, since the structural integrity of chitin was preserved.
Bustos and Healy [92] confirmed that chitin obtained by the deproteinization of shrimp
shells with various proteolytic microorganisms has higher molecular weight. The bio-
logical extraction of chitin has the following advantages: high reproducibility in shorter
time, simple manipulation, less solvent consumption, and lower energy input. However,
the biological method is still limited to laboratory scale studies. Recently, two reports
have elaborately reviewed the most common biological methods used for chitin extrac-
tion [71,93]. The lactic acid bacterial fermentation process has been studied more exten-
sively by Guerrero Legarreta et al. [94] and Cira et al. [95]. Enzymatic deproteinization of
chitin requires the use of proteases. Proteolytic enzymes such as alcalase, pepsin, papain,
pancreatine, devolvase, and trypsin are mainly obtained from plant, microbe, and animal
sources; these are involved in deproteinization of crustacean shells. Alcalase 2.4 L (Novo
Nordisk A/S) is a serine endopeptidase obtained from Bacillus licheniformis; this has been
used for the isolation of chitin containing about 4% protein impurities [72]. Such purity
is sufficient for many non-medical applications of chitin [96]. Manni et al. [97] reported
the isolation of chitin from shrimp waste using Bacillus cereus SV1 crude alkaline proteases.
In another study, enzymatic deproteinization was optimized by Younes et al. [98]. In
this study six alkaline crude microbial proteases from Bacillus mojavensis, Bacillus subtilis,
B. licheniformis, B. licheniformis, Vibrio metschnikovii, and Aspergillus clavatus were used.
Mukhin and Novikov [99] used crude proteases isolated from the hepatopancreas of crab.
Younes et al. [62] used alkaline proteases from the red scorpionfish Scorpaena scrofa [100].
Here, the excessive cost of using enzymes can be decreased by performing deproteinization
using a fermentation process, using an endogeneous microorganisms (auto-fermentation)
as fermenter or by adding selected strains of microorganisms [71]. Fermentation meth-
ods could be via lactic acid fermentation or non-lactic acid fermentation. (a) Lactic acid
fermentation of crustacean shells utilizes Lactobacillus sp. that produce lactic acid and
proteases. (b) In non-lactic acid fermentation, both bacteria and fungi were used: Bacillus
sp. [101–103], Pseudomonas sp. [70,104,105], and Aspergillus sp. [106].

Sini et al. [102] studied the fermentation of shrimp shells in jaggery broth using B. sub-
tilis [104,107,108]. Ghorbel-Bellaaj et al. [109] elaborately studied the fermentation efficiency
of P. aeruginosa. Teng et al. [110] evaluated the production of chitin from shrimp shells and
fungi in a one-pot fermentation process, where fungal proteases hydrolyze proteins into
amino acids. Recently, Younes and Rinaudo extensively reviewed the preparation methods
involved in the recovery of chitin and chitosan from marine sources [98]. Their review has
dealt with the state-of-the-art methodologies involved in the recovery of chitin/chitosan
and their future perspectives.
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3.2. Green Synthesis for Chitin/Chitosan/Chitin NF/Ch NPs and Ch NF

Actually there are quite a number of studies that describe the use of chitin/chitosan
in the green synthesis of inorganic metal NPs. They have also been used as stabilizers
during NPs synthesis. However, the term ‘green synthesis’ of chitin/chitosan/Ch NPs’
did not show many results. Green synthesis of chitin and its associates, as we reviewed,
was observed to be only supported by scattered scanty reports. We use the term ‘scattered’
because these reports are single publications on this topic, which have not been further
researched or developed on. Here, we present the scattered information available on
this subject.

Recently, Madalloni et al., 2020, reviewed the green synthesis of chitin using deep
Eutectic Solvents (DESs) and Natural Deep Eutectic Solvents (NADESs) [111–113]. In this
extraction procedure, shrimp shells are treated with 10% citric acid (this is an edible, weak
acid that can be extracted from natural sources, used instead of HCl), for demineraliza-
tion [114]. Deproteinization includes using microwave irradiation, on the above-mentioned
pretreated samples suspended in different DES solutions. Finally, simple centrifugation
allows for the separation of chitin from DES. Another group [115] developed a zero-waste
method to convert shrimp shell waste into chitin in NADESs rather than in DESs. Liu
et al. [116] reported an efficient and green chemical process using glycerol to reduce the
NaOH content that is usually utilized. Glycerol is a recyclable, stable, green solvent that
can be obtained as a by-product of biodiesel. The chitin to chitosan reaction involves the
treatment of chitin with 30% NaOH and glycerol, keeping a 1:40 chitin/glycerol ratio, with
water being the only other additive. The superiority of this method is that both glycerol
and NaOH can be recovered and reused again.

Green synthesis of Ch NPs is also represented by just a few reports. Ch NPs are gener-
ated by ionic cross-linking between chitosan and sodium tri-polyphosphate (TPP); there
is a report where antimicrobial Ch NPs were synthesized by chemical cross-linking with
cinnamaldehyde, another eco-friendly bactericidal agent [117]. Bacterial leaf blight caused
by Xanthomonas oryzae devastates rice crops. The antibacterial activity of biosynthesized
Ch NPs against this rice pathogen has been reported [118].

A pair of grinding stones can effectively disintegrate chitin organization in crab shells.
Mechanical grinding is another simple, yet powerful method allowing the recovery of
chitin NFs from waste crab shell in large amounts [119]. The chitin consisted of highly
uniform NFs with a width of approximately 10 nm. The same Ifuku group also reported the
recovery of chitin NFs from shrimp shells, mushrooms, and squid pens [120–122]. Grinding
does not involve any complicated chemicals and hence is an eco-friendly process [123]. Few
reports of chitin nanofiber synthesis have also been noted with diameters of 3 nm being
fabricated in hexafluoroisopropanol (HFIP) through a self-assembly strategy [124,125]. Al-
though chitin NFs have been prepared in HFIP using self-assembly, HFIP is toxic. “Green”
solvents such as ionic liquids and urea–NaOH mixtures are preferred in place of HFIP.
Qin et al. successfully reported the use of environmentally friendly ionic liquids to obtain
high molecular weight purified chitin and chitin films and nanofibers [126–128]. Chitosan
nanofibers (Ch NFs) have also been synthesized via electrospinning [129]. Polyethylene ox-
ide and poly (vinyl alcohol) (PVA) are often used to blend with chitosan solutions [130,131].
The authors of [132] report a simple and green method for the preparation of chitosan and
chitosan-based nanofibers by freeze-drying dilute aqueous solutions, without the use of
organic solvents, high concentration of acid solutions, or the need to pre-treat chitosan.
Ch NFs with diameters ranging from 100 to 700 nm were obtained from aqueous chi-
tosan solutions. Chitosan/PVA blend NFs with different mass ratios were produced by
freeze-drying [130,131].

Our research group [133] recently reported an eco-friendly, sustainable phytomediated
one pot recovery of chitosan from commercial chitin and from crab and shrimp shells and
squid pen solid wastes. Graviola extracts were employed for the recovery of Ch NFs.
Graviola contains acetogenins that actively interact with chitin in insects. With that as the
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core idea, the graviola extracts were chosen for orchestrating chitin recovery and a possible
chitin to chitosan transformation mediated under magnetic stirring on a hot plate.

Silver nanoparticles (AgNPs), particularly those entrapped in polymeric nanosys-
tems, have arisen as options for managing plant bacterial diseases. Chitosan, owing to
its low cost, good biocompatibility, antimicrobial properties, and biodegradability, is the
polymer under high consideration. Authors have reported green-synthesized Ag NPs
using different concentrations of aqueous extract of tomato leaves, followed by entrap-
ment of AgNPs with chitosan (Ch-AgNPs). They used green synthesized systems for
controlling tomato bacterial wilt caused by Ralstonia solanacearum [134]. Green synthesis
procedures have also been demonstrated for the synthesis of chitosan bionanocomposites.
Silver-based chitosan bionanocomposites have been synthesized using the stem extract
of Saccharum officinarum [135]. The antibacterial activity of these silver-based chitosan
bionanocomposites was evaluated against Bacillus subtilis, Klebsiella planticola, Streptococcus
faecalis, Pseudomonas aeruginosa, and Escherichia coli. Kim et al. [136] used a green route to
produce Au NPs in a chitosan matrix, whose functional groups favor the interaction with
caffeic acid. Shameli et al. [137] demonstrated the green synthesis of Ag/montmorillonite
(MMT)/chitosan bionanocomposites using the UV irradiation method and demonstrated
their antibacterial activity against Gram-positive and Gram-negative bacteria. Ch NFs
with silica phase (Ch NFs/silica) were synthesized by an electrospinning technique to
obtain highly porous 3D NF scaffolds. Silver nanoparticles in the form of a well-dispersed
metallic phase were synthesized in an external preparation step and embedded in the
Ch NFs /silica to form Ag/Ch/silica nanocomposites [138]. Green synthesis of Ag-Ch
nanocomposites using chitosan as a reducing agent as well as a stabilizing agent and
NaOH as accelerator is reported [139]. The Ag/Ch nanocomposite gel is transformed into
colloid by dissolving into chitosan solution and its antibacterial activity against E. coli
and S. aureus bacteria was demonstrated. In another work [140], colloidal Au NPs were
stabilized into a chitosan matrix and prepared using a green route. The use of chitosan,
with a large number of amino and hydroxyl functional groups, enables the simultaneous
synthesis and surface modification of AuNPs in one pot. These hybrid nanocomposite
films were used as sensors for the determination of caffeic acid, an antioxidant that has re-
cently attracted much attention because of its benefits to human health. A novel Ch-Fe2O3
nanocomposite was synthesized by a facile one pot green route [141]. The nanocomposite
showed excellent recyclable efficiency up to five cycles. The nanocomposite has also been
proved to be an excellent potential sorbent for recovery of toxic elements from industrial
and medical wastewater. Using cinnamaldehyde (CA), a natural preservative, researchers
have prepared CA/SA/Ch NPs nanocomposites. In vitro release experiments showed that
CA/SA/Ch NPs had the function of sustained release, indicating that SA/Ch NPs can be
used as a promising carrier for CA [142]. Antimicrobial carboxymethyl chitosan-nanosilver
(CMC-Ag) hybrids with controlled silver release was fabricated by Huang et al. [143].
Under principles of green chemistry, the synthesis was conducted in an aqueous medium
exposed to microwave irradiation for 10 min with non-toxic chemicals. Their antibacterial
activity was tested against Staphylococcus aureus and Escherichia coli.

Ultrasound-induced synthesis of Ch-modified nano-scale graphene oxide (Ch-NGO)
hybrid nanosheets, which has great potential pharmaceutical applications, in supercritical
CO2 without catalyst is reported [144]. Ciprofloxacin hydrochloride (CIP) was incorpo-
rated into a green based nano-composite (HS/Ch-NC) to control the antibiotic release and
increase its bioavailability [145]. An in vitro drug release study of the nano-composite
HS/Ch-NC showed high activity against gram negative bacterial strains due to the success-
ful release of CIP from the chitosan composite into the tested bacterial strains. Chitosan
nanoparticles (NPs) are widely studied as vehicles for drug, protein, and gene delivery.
However, lack of sufficient stability, particularly under physiological conditions, render
chitosan NPs limited pharmaceutical utility. Stable Ch NPs suitable for drug delivery appli-
cations [146] were prepared by grafting to phthalic or phenylsuccinic acids. Subsequently,
polyphosphoric acid (PPA), hexametaphosphate (HMP), or tripolyphosphate (TPP) were
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used to achieve tandem ionotropic/covalently crosslinked chitosan NPs in the presence of
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). Chitosan-zinc oxide nanoparticle
composite [147] and CuO/Chitosan composites [148] are also reported.

Table 1 presents a consolidated list of chitin family of green synthesized materials.

Table 1. List of green synthesized chitin-based materials.

Green Synthesized Chitin Based
Material

Chitin/Chitosan/Composites/Chitin
NF/Ch Nps Green Synthesis Method References

Chitin Chitin recovered from shrimp shells NADES, DES and citric acid-based
microwave assisted method [111]

Chitin Chitin recovered from shrimp shells NADES-based zero waste method [115]
Chitosan Chitin to chitosan Glycerol-based [116]

Ch NPs Ch NPs/ cinnamaldehyde Crosslinking with ecofriendly
cinnamaldehyde [117]

Chitin NFs NFs from crab/shrimp/Squid pens Mechanical grinding [119–122]
Chitin NFs NFs Using ionic liquids instead of HFIP [124–128]

Chitosan NFs Ch NFs Electrospinning [130]
Chitosan NFs Ch NFs Freeze drying process [132]

Chitosan NFs NFs Extracted from crab/shrimp/squid
pens Graviola plant extract mediated recovery [133]

Ag NPs/Chitosan Green synthesized Ag NPs entrapped in
chitosan Aqueous extract of tomato plant [134]

Chitosan based nanocomposite Silver based chitosan bionanocomposites synthesized using the stem extract of
Saccharum officinarum [135]

AuNPs/Ch composite Au NPs in a chitosan matrix Green route [136]

Chitosan nanocomposite Ag/montmorillonite (MMT)/chitosan
bionanocomposites UV irradiation [137]

Chitosan nanocomposite Ag/Ch/silica nanocomposites Electrospinning [138]
Chitosan nanocomposite Ag-Ch nanocomposites Using chitosan [139]

Chitosan nanocomposite Au NPs were stabilized into a chitosan
matrix Using chitosan [140]

Chitosan nanocomposite Ch-Fe2O3 nanocomposite Facile one pot green route [141]
Chitosan nanocomposite CA/SA/Ch NPs nanocomposites Using cinnamaldehyde [142]
Chitosan nanocomposite carboxymethyl chitosan-nanosilver Microwave irradiation [143]

Chitosan nanocomposite Ch-modified nano-scale graphene oxide
(Ch-NGO) hybrid nanosheets Ultrasound [144]

Chitosan nanocomposite HS/Ch-Nanocomposite Green route [145]

4. Drug Delivery Applications of Chitosan/Nanochitosan
4.1. Basics of Polymers in Drug Delivery

Nanomaterials or nanoparticles offer new opportunities in material science and
biomedicine. The small size of nanoparticles allows them to enter cells and organelles for
targeted drug delivery [149]. NPs can be conjugated with ligands or antibodies to enable
recognition and binding to specific receptors on cell targets [150,151]. Different methods
are available to prepare chitosan micro-/nanoparticles in which the drug is mostly bound
to chitosan by hydrogen bonding, electrostatic interaction, or hydrophobic linkage. There
are several mechanisms which govern drug release from chitosan nanoparticles, such as
swelling of the polymer [152], diffusion of the adsorbed drug, drug diffusion through the
polymeric matrix, polymer erosion or degradation, and a combination of both erosion and
degradation [147], as represented in Figure 1. The swelling of the polymer is characterized
by the imbibition of water into the polymer until the polymer dissolves. This drug release
mechanism is characterized by the solubility of the polymer in water, or the surrounding
biological medium [153]. Erosion and degradation of polymers are interrelated features.
Sometimes, degradation of the polymer may cause subsequent physical erosion as bonds
break. Erosion of polymers is a complex phenomenon as it involves swelling, diffusion,
and dissolution.
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4.2. Chitosan Microparticles-Based Drug Delivery

Among the novel drug delivery systems investigated, chitosan micro-/NPs offer great
promise in oral, parenteral, topical, and nasal applications. In these systems, the drug is
either confined and surrounded by a polymeric membrane or is uniformly dispersed in the
polymer matrix. Drug release at a specific site and for an extended period of time could also
be achieved by mucoadhesion, where chitosan adheres to specific mucosal surfaces in the
body, such as buccal, nasal, and vaginal cavities [154–156]. Chitosan microparticles have
shown varied applications in the delivery of a range of compounds owing to particle size
reduction by micronization and their mucoadhesive properties. Dastan and Turan [157]
developed chitosan–DNA microparticles and reported a sustained-release profile of DNA,
with a potential transfer of the DNA into human embryonic kidney, Swiss 3T3, and HeLa
cell lines. Another research group prepared chitosan–DNA microparticles for mucosal
vaccination in simulated intestinal fluid and simulated gastric fluid [158]. Luteinizing
hormone-releasing chitosan-based microparticles as a vaccine delivery vehicle are also
reported. Successful delivery of hormones by these particles extends their application for
induction of immunity against some tumor antigens and microorganisms such as bacteria
and viruses [159].

Insulin delivery via the nasal route using chitosan microparticles was demonstrated
by Varshosaz et al. [160]. They demonstrated that insulin-loaded microspheres exhibited
a 67% lowering in blood glucose level, compared to insulin administered intravenously.
Many research groups have thus described the applicability of chitosan microparticles
in drug delivery. The encapsulation of diclofenac sodium [161], 5-flurouracil [162], cis-
platin [163], felodipine [164], and hydroquinone [165] into these carriers has been reported,
and the designed microparticles generally exhibit a controlled-release effect. Chitosan
magnetic microparticles (CMM) are a special class of chitosan microparticles that have
been developed and used for the delivery of anticancer drugs or radionuclide atoms to a
targeted tissue [166] by binding the drug or the radioactive atom to a magnetic compound,
which is then injected into the blood and stopped at the targeted tissue by an externally
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applied magnetic field [167,168]. Attapulgite, a nanosized silicate clay naturally occurring
polymer used in drug delivery [169], has been introduced into cross-linked diclofenac
sodium chitosan microspheres in which the prepared chitosan/attapulgite hybrid micro-
spheres exhibited narrow size distribution and minimum drug release in the simulated
gastric fluid [170].

4.3. Ch NPs-Based Drug Delivery

The preparation of curcumin-loaded Ch NPs has been reported to enhance the drug
solubility and stability in the gastro intestinal tract [171]. Facilitation of the transmucosal
delivery of two hydrophobic drugs, triclosan and furosemide, has been achieved by devel-
oping drug-loaded Ch NPs [172]. Low-molecular weight heparin (LMWH) has been loaded
into Ch NPs and showed improved oral absorption and relative bioavailability, compared
to a solution of LMWH [173]. Recently, chitosan nanotherapeutics have received great
attention in the field of oncology because of their enhanced tumor targeting, ability to load
different hydrophobic anticancer drugs, and the ability to control anticancer drug release
rates [174,175]. Chitosan-loaded paclitaxel NPs exhibited excellent tumor-homing ability
in tumor-bearing mice [176–180]. Protein/siRNA-loaded Ch NPs have been prepared
and have shown 98% entrapment efficiency with adequate stability [164]. BSA has been
encapsulated into Ch NPs [181]. Genetic immunization using Ch NPs-loaded plasmid
DNA was investigated, and the results showed measurable and quantifiable levels of gene
expression and considerable antigen titer [182]. Other workers investigated the potential
of these nanoparticles as carriers for antigens by using recombinant hepatitis B surface
antigen [183]. Ch NPs for oral delivery of insulin have been successfully formulated and
demonstrated for enhanced in vitro as well as in vivo absorption and improved insulin
bioavailability. [184] Magnetic nanosized Ch NPs were also developed as a special type of
Ch NPs and showed sustained drug release with minimal toxicity. Camptothecin magnetic
Ch NPs in which polyethylene glycol was coupled with magnetic nanoparticles to increase
their biocompatibility has been reported [185].

Ch NPs have been successfully used for drug delivery. Mohammed et al. elaborately
reviewed the extensive milestones achieved through Ch NPs-based drug delivery [186].
The effective delivery of catechin and epigallocatechin across interstinal membranes was
achieved by encapsulation within Ch NPs [187]. Permeation of tamoxifen across intesti-
nal epithelium was enabled via formulating tamoxifen into lecithin-chitosan NPs [188].
Feng et al. [189] reported successful oral delivery of anticancer drugs, using nanoparticles
of doxorubicin hydroxide (DOX)/chitosan/ carboxymethyl chitosan formulations, which
could enable enhanced absorption of DOX throughout the intestine. Alendronate sodium is
used in the treatment of osteoporosis, and alendronate sodium was encapsulated in Ch NPs.
This overcame the low oral bioavailability and gastrointestinal side-effects that this drug
confronted during drug delivery [190]. Sustained delivery of sunitinib, a tyrosine kinase
inhibitor, up to 72 h, was achieved though encapsulation of Ch NPs [191]. Insulin–loaded
Ch NPs crosslinked with TPP increased their uptake by the intestinal epithelium [192]. Bay
41-4109, an active inhibitor of hepatitis B virus, was formulated as Ch NPs to improve drug
solubility and oral bioavailability [193]. Chitosan and carboxymethyl Ch NPs were found
to be excellent carriers for oral vaccine delivery of extracellular products of V. anguillarum
(pathogenic bacteria). This chitosan-based formulation increased its stability, resulted in
sustained release, and protected the antigenic protein from entering the spleen and the
kidney, which is critical for immune response [194].

Chitosan is biodegradable, biocompatible, exhibits low toxicity, adheres to mucus,
and opens the tight junctions of the nasal membrane. Owing to these properties, chitosan
has applications in nasal delivery [195]. Carboxymethyl Ch NPs of carbamazepine (treats
epilepsy) enhanced the bioavailability and brain targeting via the nasal route. The bioavail-
ability of leuprolide (used to treat prostate cancer and hormone-dependent diseases),
increased when formulated as thiolated-Ch NPs [196,197]. Islam and Ferro [198] reviewed
the various modes of Ch NPs-based nanoparticle-aided drug delivery to the lungs. The
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authors claimed that the positive charge on the surface of chitosan provides mucoadhesive
properties, increasing the potential for drug absorption. In addition, the positively charged
chitosan are able to open the intercellular tight junctions of the lung epithelium, increasing
uptake. More so, chitosan binds to phosphoryl groups and lipopolysaccharides on bacterial
cell membranes, and helps in fighting pulmonary bacterial infections. A dry powder
inhalation (DPI) of rifampicin, an antitubercular drug, was formulated with chitosan,
bringing about sustained drug release until 24 h and no toxicity to cells nor organs [199].
The antifungal drug Itraconazole, which is used to treat pulmonary infections, suffers from
low solubility. Its aerosolization properties, which would enable its pulmonary deposition,
was improved by formulating it with spray dried chitosan NPs with lactose, mannitol, and
leucine [200].

Giovino and co-workers have investigated chitosan buccal films of insulin-loaded poly
(ethylene glycol) methyl ether-block-polylactide (PEG-b-PLA) NP [201]. Polysaccharide-
based NP chitosan [202] and curcumin prepared as polycaprolactone nanoparticles coated
with chitosan and NP encapsulation of enriched flavonoid fraction (EFF-Cg) obtained
from Cecropia glaziovii were successfully demonstrated for buccal delivery [84]. Chitosan-
vancomycin NPs for colon delivery were prepared by two different methods: ion gelation
and spray drying [203]. Coco et al. proved the ability of NPs made with chitosan for
inflamed colon drug delivery [204]. Several batches of NPs were prepared by entrapping
ovalbumin (OVA) into Eudragit S, trimethylchitosan, PLGA, PEG-PLGA and PEG-PCL,
separately. Of all the NPs made, NPs with trimethyl chitosan have shown the highest
permeability of OVA. However, high permeability was also seen with PEG-PLGA NPs as
they were coated with mannose for active targeting of the area of inflammation. As another
example, chitosan-carboxymethyl starch nanoparticles of 5-aminosalicylic acid, another
drug for inflammatory bowel disease, was prepared, which achieved high entrapment
efficiency as well as controlled drug release [205]. Systemic absorption of insulin was
demonstrated by the formulation in Ch NPs and administration by the nasal route. Insulin
loading up to 55% was achieved and nasal absorption of insulin was greater from Ch
NP [206]. Rosmarinic acid-loaded chitosan NPs was prepared by an ion gelation method
for ocular delivery. Imiquimod was formulated as chitosan-coated PCL nanocapsules
embedded in chitosan hydrogel for vaginal delivery to treat human papillomavirus infec-
tion [207]. The pharmacokinetics of chitosan-based formulations has been studied by a few
authors [89,208] and a couple of clinical vaccine trials of chitosan formulations have been re-
ported [209,210]. Quinones et al. exhaustively reviewed the chitosan-based self-assembled
NPs in drug delivery [211].

Metronidazole (MZ) is an antibiotic with common side-effects of nausea, vomiting,
epigastric pain, and mouth dryness, most likely caused by high concentrations of residual
MZ in the saliva [212]. To protect MZ from dissolution in saliva, the drug was loaded
into Ch NPs of 200–300 nm in size, showing controlled release [213]. Ch NPs loaded with
insulin were also developed to improve the systemic delivery of insulin through the nasal
passage [214]. The NPs were shown to reduce blood glucose levels by 52.9% in rats and
72.6% in sheep. Ch was chemically modified with the hydrophobic n-hexanoic anhydride to
form an amphiphilic Ch derivative that showed better blood compatibility [215]. Cefadroxil
drug-loaded nanofibers CFX-CPNFs were successfully fabricated by the freeze drying
method. The antimicrobial activity indicated that the CFXCPNFs had excellent bacterial
activity against 16 strains of Staphylococcus bacteria [216].

Electrospun Ch NFs have been reported for their role in drug delivery [217]. Ch/PVA
NFs has been successfully used for enzyme lipase immobilization [218], Ch/ PVA NFs
have been used as novel biomedicated nanofibers for preventing wound infections and
local chemotherapy [219], Chitosan Carboxymethyl-β-CycloDextrin/PVA has been demon-
strated for slow release of CD drug [220], Ch/Polylactic-Co Glycolic Acid (PLGA) showed
better fibroblast attachment and proliferation compared with PLGA alone, and Chi-
tosan/phospholipid NFs were attributed to be used as platforms for transdermal drug
delivery. The release rate of the model drugs used in this study depended on their solubil-
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ity [221,222]. Figure 2 gives an overview of the overall drug delivery options successfully
demonstrated using Ch NPs.
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5. Challenges and Future Perspectives

Ch-based nanomaterials are among the most promising polymeric biomaterials be-
ing synthesized, because of their distinctive characteristics, biodegradability, non-toxicity,
and antimicrobial properties. Ch NPs are extensively studied for biological, biomedical,
and pharmaceutical applications, including drug delivery and gene delivery, as well as a
therapeutic delivery system and nanosystem for cancer, for wound healing, and as bacteri-
cidal agents. Current research is focused on improving the stability, biocompatibility, and
synthesis of novel Ch NPs to enhance their effectiveness in biomedical applications [223].
Commonly, Ch was found to be relatively safe due to its biodegradable and biocompati-
ble properties. However, several studies showed the cytotoxicity of Ch NPs in vitro and
in vivo. Thus, the present knowledge on Ch-based nanomaterials is not adequate. More
research is required to comprehensively investigate the toxicity of Ch NPs for human
beings and other living organisms. Moreover, green and environmentally benign synthesis
methods for Ch derivatives should be developed to protect the environment [224]. Recently,
the concepts of “eco-sustainability”, “reuse”, and “recycling” have become the basis of
holistic research approaches.

There are several drawbacks in the use of chitosan for drug delivery systems. The
main drawback is its poor solubility at physiological pH owing to the partial protonation
of amino groups. To overcome these inherent drawbacks, various derivatives of chitosan,
such as carboxylated, different conjugates, thiolated, and acylated chitosan have been
devised [225,226]. Researchers reported on the goals of using chitosan as an excipient for
drug delivery systems [227,228] and in the development of chitosan drug control releasing
systems, including chitosan sponges, chitosan film, chitosan beads, chitosan microbeads
(microspheres), and chitosan nanoparticles.
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To date, chitosan has shown little or no toxicity in animal models and there have been
no reports of major adverse effects in healthy human volunteers; however, clinical data are
lacking. Even though chitosan is approved in dietary use, wound dressing applications and
cartilage formulations, chitosan-based drug formulation are yet to be approved for mass
marketing [228]. Of all the various biomedical applications, we observed that drug delivery
applications of Ch NPs are that which are being highly researched and investigated. Ch
NPs targeted cancer theranostics, dermatological applications, and targeted parenteral
drug delivery systems need to be seriously looked into [229–236]. With the advent of
new strategies in overcoming the limitations of chitosan, we expect to see more chitosan
research work in near future, especially in nasal and pulmonary drug delivery.

As this review exposes, there are only a few scattered reports on the green synthesis
of Ch NPs; this being the latest trend in nanomaterial synthesis, it is rather absurd that not
much attention is paid in this direction. This review expects a hike in research publication
in the direction of green synthesized Ch NPs, and Ch nanocomposites. In addition, not
much work is available on the use of green synthesized Ch NPs for biomedical applications;
this is an interesting area worth working on. If a material recovered from marine wastes
can be extracted using green methods and put to use for valuable biomedical causes, what
are we waiting for?

6. Conclusions

The general scenario of chitosan recovery was briefly reviewed in this paper. The
scattered reports on green synthesis of chitosan and Ch NPs have been consolidated and
presented. The drug delivery milestones by chitosan and its nanoforms has been presented
and the lacunae in the application of green synthesized towards drug delivery applications
has been highlighted.
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