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ABSTRACT Saprochaete suaveolens is an ascomycetous yeast that produces a range
of fruity flavors and fragrances. Here, we report the high-contiguity genome se-
quence of the ex-holotype strain, NRRL Y-17571 (CBS 152.25). The nuclear genome
sequence contains 24.4 Mbp and codes for 8,119 predicted proteins.

Saprochaete suaveolens is a fermentative yeast from the Magnusiomyces/Saprochaete
clade (phylum Ascomycota, subphylum Saccharomycotina). It has been isolated

from nutrient-rich sources, including industrial wastes, brewery water, process
water from wheat-starch production plants, effluent milk, maize mash, soybean
flakes, figs, and dragon fruits, and some strains were isolated from patients with
pulmonary infections (1–3). It produces large amounts of volatile organic com-
pounds with an intensive fruity odor (3–5).

The S. suaveolens strain NRRL Y-17571 was originally isolated from water in a
brewery (1). Its genome was assembled by the combination of long reads (MinION,
Oxford Nanopore Technologies) and short reads (HiSeq 2000, Illumina). DNA was
isolated from a culture grown overnight in yeast extract-peptone-dextrose (YPD)
medium (1% [wt/vol] yeast extract, 2% [wt/vol] peptone, 1% [wt/vol] glucose) at 28°C
using a standard protocol and purified using the DNeasy mini spin column (Qiagen) for
HiSeq 2000 analysis or Genomic-tip 100/G (Qiagen) for MinION analysis (6). Total
cellular RNA from the midexponential phase culture grown in yeast extract-peptone-
galactose (YPGal) medium (1% [wt/vol] yeast extract, 2% [wt/vol] peptone, 2% [wt/vol]
galactose) at 28°C was extracted with hot acidic phenol (7) and purified with the RNeasy
minikit (Qiagen).
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We obtained 204,824 long reads (mean, 9,011 nucleotides [nt]; longest read,
211,620 nt) totaling 1.8 Gbp (�74� coverage) with a MinION Mk-1B device on a R9.4.1
flow cell with a SQK-LSK109 kit and base called with ONT Albacore (v. 2.3.1). A
paired-end (2 � 101 nt) TruSeq PCR-free DNA library was sequenced on a HiSeq 2000
platform in Macrogen, Korea, which yielded 64,378,402 reads (6.4 Gbp, �262� cover-
age). RNA-Seq was performed with NovaSeq 6000 system in Macrogen, Korea, which
yielded 42,932,052 reads from a TruSeq mRNA V2 nonstranded paired-end (2 � 101 nt)
library.

Table 1 presents candidate genome assemblies. The final assembly is based on
miniasm, which had the smallest number of contigs and did not show apparent
assembly artifacts. To further improve this assembly, we removed contigs containing
fragments of mitochondrial DNA (mtDNA) and rRNA genes, individually polished rRNA
gene repeats, and replaced regions upstream and downstream of rRNA gene repeats
with 505 bp from DBG2OLC and 309 bp from Canu assemblies, respectively. The nuclear
genome has a GC content of 39.5% and likely consists of at least 7 chromosomes,
because both ends of 4 contigs and one end of 6 contigs are terminated by telomeric
repeats with a predominant motif CA3G5-7. About 2% of the genome (508 kbp) is
covered by simple and low-complexity repeats identified with RepeatMasker v. 4.0.7 (8).

RNA-Seq reads processed with Trimmomatic v. 0.36 (9) were assembled into tran-
scripts with Trinity v. 2.8.3 (10). We trained Augustus v. 3.2.3 (11) on the Magnusiomyces
capitatus data set (12) and, using RNA-Seq transcripts aligned to the reference with blat
v. 34 � 1 (13), we predicted 8,119 protein-coding genes.

The genome sequence of S. suaveolens will provide a basis for understanding
metabolic pathways involved in the production of volatile organic compounds, suitable
as flavors and aromas in the food industry, and genetic traits associated with the ability
to colonize humans.

Data availability. This whole-genome shotgun assembly has been deposited in
EMBL ENA under the accession no. CAAAMA010000000. Illumina, MinION, and RNA-Seq
reads have been deposited under accession no. ERR3039972, ERR3040055, and
ERR3039974, respectively. Genome annotations are available through a genome
browser at http://genome.compbio.fmph.uniba.sk/ and are also archived through Ze-
nodo (14).
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TABLE 1 Candidate genome assembliesa

Assembly software
Software
version Polishing procedure

Length of
assembly
(Mbp)

No. of
contigs

No. of
contigs
>50 kbp

Longest
contig

N50

value

No. of
mismatches
per 100 kbp

No. of
indels per
100 kbp

SPAdes (18) 3.12.0 24.2 2,224 137 640 kbp 173 kbp
Canu (19) 1.7.1 Pilon (2�) 24.9 26 24 4.2 Mbp 1.7 Mbp 41.7 13.9
MaSuRCA (20) 3.2.8 Pilon (1�) 25.4 29 23 6.8 Mbp 2.7 Mbp 45.7 7.6
Miniasm (21)/minimap2 (22) 0.3/2.12 Racon (2�) 24.5 15 13 3.7 Mbp 2.8 Mbp 81.5 367.9
DBG2OLC (23)/platanus (24) 1.2.4 Racon (1�), Pilon (1�) 25.8 31 24 4.2 Mbp 1.8 Mbp 55.2 35.1
Final Racon (2�), Pilon (2�) 24.4 12 11 3.8 Mbp 2.8 Mbp 45.6 11.0
a Statistics were produced with Quast v. 4.5 (15). To estimate mismatches and indels, SPAdes assembly based on Illumina short reads was used as a reference. With
SPAdes, the result was filtered for length �100 and coverage �10. Canu assembly used only reads overlapping SPAdes by �200 bp, and we filtered out contigs
supported by fewer than 5 reads. All assemblies were polished with Pilon v. 1.21 (16) and Racon v. 1.3.1 (17). Most of the size differences between candidate
assemblies can be accounted for by mtDNA and rRNA gene fragments as well as other repetitive sequences.
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