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Abstract: A piezoelectric ultrasonic transducer (PUT) is widely used in nondestructive testing,
medical imaging, and particle manipulation, etc., and the performance of the PUT determines its
functional performance and effectiveness in these applications. The optimization design method
of a PUT is very important for the fabrication of a high-performance PUT. In this paper, traditional
and efficient optimization design methods for a PUT are presented. The traditional optimization
design methods are mainly based on an analytical model, an equivalent circuit model, or a finite
element model and the design parameters are adjusted by a trial-and-error method, which relies
on the experience of experts and has a relatively low efficiency. Recently, by combining intelligent
optimization algorithms, efficient optimization design methods for a PUT have been developed based
on a traditional model or a data-driven model, which can effectively improve the design efficiency
of a PUT and reduce its development cycle and cost. The advantages and disadvantages of the
presented methods are compared and discussed. Finally, the optimization design methods for PUT
are concluded, and their future perspectives are discussed.

Keywords: piezoelectric ultrasonic transducer; optimization design; finite element model; data-
driven model; intelligent optimization algorithm

1. Introduction

Sound waves are a form of energy transmission in the mechanical vibration state of an
object. Ultrasound is a type of sound wave with a vibration frequency higher than 20 kHz,
which cannot be heard by humans [1]. A piezoelectric ultrasonic transducer (PUT) is a
device for achieving mutual conversion of mechanical energy and electrical energy [2].

Due to the advantages of high safety and low cost, a PUT has been widely used as
the core device for non-destructive testing (NDT), medical imaging, particle manipulation,
and flow measurement [3–6]. In NDT, ultrasonic detection and the guided-wave structural
health monitoring (SHM) method are combined to detect the damage of wind turbine
blades, and the defect position can be precisely determined [7]. The annular PUT array
printed by three-dimensional (3D) printing technology has adjustable focal domain and
resolution and has been successfully used for NDT [8]. In medical imaging, the piezoelectric
performance of a PUT is improved by polarizing to achieve high imaging resolution [9].
In addition, the inaccuracy of transcranial imaging caused by phase aberration can be
eliminated by using ultrasonic adaptive beam forming to make ultrasonic imaging more
accurate [10]. An acoustic radiation force optical coherence tomography system, using
integrated micro ultrasound and optical coherence tomography, can map the correlated
elasticity of vascular tissue to aid medical diagnosis [11]. In particle manipulation, the
accurate control of ultrasound is extremely important for non-contact manipulation of
biologics and bioanalysis [12]. Single-beam acoustic tweezers with pressure-focusing
technology can be used as the manipulators in a wide range of biomedical and chemical
sciences [13]. In addition, a bending PUT has been widely used for flow measurement under
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atmospheric pressure conditions [14]. A flexible piezocomposite ultrasound transducer can
continuously measure blood pressure by tracking the ultrasonic motion of the vessel wall,
and it can be used for non-invasive, non-obstructive, calibration-free blood pressure and
blood flow monitoring [15]. Therefore, a PUT is the key component in specific ultrasonic
application systems, and its performance mainly affects the performance and effectiveness
of these systems.

In order to fabricate a high-performance PUT, an effective optimization design method
is essential and critical. In this paper, recent developments of optimization design meth-
ods for a PUT are systemically reviewed, as shown in Figure 1. The optimization design
methods for a PUT include the traditional and efficient optimization design methods. The
traditional optimization design methods are based on an analytical model, an equivalent
circuit model (ECM), or a finite element model (FEM) and the design parameters are ad-
justed by a trial-and-error method. The efficient optimization methods are proposed based
on a traditional model or a data-driven model, and intelligent optimization algorithms are
utilized to optimize the design parameters of the PUT. The advantages and disadvantages
of these optimization design methods for a PUT are systemically compared and discussed.
Finally, future perspectives of the optimization design methods for a PUT are presented.
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Figure 1. Optimization design methods for a piezoelectric ultrasonic transducer.

2. Traditional Optimization Design Methods for a PUT

Generally, traditional optimization design methods for a PUT are mainly based on an
analytical model, an ECM, or a FEM to determine the design parameters. An analytical
model is derived from a wave equation, and an ECM is established by treating the PUT as a
two-port device. A FEM is established based on the physical equations and its geometrical
structure, which can accurately simulate the characteristics of a PUT.

2.1. Analytical Model

An analytical model is a relatively simple model that provides the analytical solution
of the wave equation, which can describe the characteristics of ultrasonic propagation.
Therefore, due to its simplicity of calculations and derivation of wave transport, an ana-
lytical model can be used to design a PUT. Because the regular geometry of a PUT limits
its working bandwidth, Canning et al. [16] proposed a new three-dimensional (3D) fractal
mathematical model for a PUT by studying the lattice structure of Sierpinski TETRIX, as
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shown in Figure 2A. The working bandwidth and amplitude of the PUT designed by the
proposed model could be effectively improved. To improve the development of ultrasonic
retinal stimulation, Yu et al. [17] proposed a racing array transducer with a contact lens
shape by using the discrete Rayleigh–Sommerfeld method. According to the analytical
model, the “CAS” pattern was constructed in the ultrasonic field (shown in Figure 2B),
which could achieve a stimulus resolution of about 0.6 mm. Using three-dimensional
motion equations and an electrostatic charge equation, Zhang et al. [18] deduced the ana-
lytical resonance frequency equation of coupled longitudinal and radial vibrations for a
longitudinally polarized piezoelectric tube, as shown in Figure 2C. The calculated resonant
frequency showed good agreement with the simulated resonant frequency by a FEM, which
proved the reliability of the analytical model. In addition, Danilov et al. [19] deduced the
center frequency (CF) estimation formula for a PUT and found that adding an acoustic
impedance matching layer could significantly increase the working signal frequency, as
shown in Figure 2D. Gorostiaga et al. [20] derived an analytical expression for ultrasonic
receivers at an optimal electrical load, which could minimize energy loss. Combining lamb
wave modeling with ultrasonic microelastic imaging techniques, Shih et al. [21] developed
a microelastic imaging system that could improve spatial resolution and measured the
shear viscoelasticity of thin layers by using this imaging system, as shown in Figure 2E.

Micromachines 2021, 12, 779 3 of 16 
 

 

mathematical model for a PUT by studying the lattice structure of Sierpinski TETRIX, as 
shown in Figure 2A. The working bandwidth and amplitude of the PUT designed by the 
proposed model could be effectively improved. To improve the development of ultrasonic 
retinal stimulation, Yu et al. [17] proposed a racing array transducer with a contact lens 
shape by using the discrete Rayleigh–Sommerfeld method. According to the analytical 
model, the ”CAS” pattern was constructed in the ultrasonic field (shown in Figure 2B), 
which could achieve a stimulus resolution of about 0.6 mm. Using three-dimensional mo-
tion equations and an electrostatic charge equation, Zhang et al. [18] deduced the analyt-
ical resonance frequency equation of coupled longitudinal and radial vibrations for a lon-
gitudinally polarized piezoelectric tube, as shown in Figure 2C. The calculated resonant 
frequency showed good agreement with the simulated resonant frequency by a FEM, 
which proved the reliability of the analytical model. In addition, Danilov et al. [19] de-
duced the center frequency (CF) estimation formula for a PUT and found that adding an 
acoustic impedance matching layer could significantly increase the working signal fre-
quency, as shown in Figure 2D. Gorostiaga et al. [20] derived an analytical expression for 
ultrasonic receivers at an optimal electrical load, which could minimize energy loss. Com-
bining lamb wave modeling with ultrasonic microelastic imaging techniques, Shih et al. 
[21] developed a microelastic imaging system that could improve spatial resolution and 
measured the shear viscoelasticity of thin layers by using this imaging system, as shown 
in Figure 2E. 

 
Figure 2. (A) 3D fractal structure for a piezoelectric ultrasonic transducer (reproduced from [16]); (B) simulation diagram 
of a racing array transducer applied to ultrasonic stimulation and the CAS pattern in ultrasonic field (reproduced from 
[17]); (C) schematic diagram of a piezoelectric tube (reproduced from [18]); (D) high-frequency piezoelectric ultrasonic 
transducer structure diagram and performance test diagram (reproduced from [19]); (E) porcine corneal and rabbit carotid 
artery phase velocity fitted lines, high-frequency ultrasonic microelastic imaging system (reproduced from [21]). 

Figure 2. (A) 3D fractal structure for a piezoelectric ultrasonic transducer (reproduced from [16]); (B) simulation diagram of
a racing array transducer applied to ultrasonic stimulation and the CAS pattern in ultrasonic field (reproduced from [17]);
(C) schematic diagram of a piezoelectric tube (reproduced from [18]); (D) high-frequency piezoelectric ultrasonic transducer
structure diagram and performance test diagram (reproduced from [19]); (E) porcine corneal and rabbit carotid artery phase
velocity fitted lines, high-frequency ultrasonic microelastic imaging system (reproduced from [21]).
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An analytical model is simple and can be easily used in the design of a PUT. However,
there are assumptions and simplifications in an analytical model, and therefore its accuracy
is low, which leads to low accuracy for designing a PUT. In traditional optimization design
methods, the accuracy of a model determines the efficiency of designing a PUT, therefore,
it is necessary to improve the accuracy of models.

2.2. Equivalent Circuit Model

An ECM is a type of resistance matching network, which takes different layers, such
as piezoelectric, backing, and matching layers, as loads on the transmission line. In an
ECM, the acoustic impedance and electrical resistance matching networks of a PUT can be
studied separately, which makes the model more accurate [22]. In addition, the complexity
of an ECM is significantly simplified. However, an ECM cannot consider all the design
parameters of a PUT and has some limitations [23]. The Krimholtz, Leedom and Mattaei
(KLM) model and the Mason model are general ECMs and have been widely used for
designing a PUT [24,25].

According to the KLM model, Ou-Yang et al. [26] designed and fabricated a 37 MHz
high-frequency needle PUT, which was made of KNNS-BNKZ material, as shown in
Figure 3A. Compared with PUTs made with other materials, the fabricated PUT had high
electromechanical coupling coefficients and low insertion loss. Additionally, Kar et al. [27]
constructed a contactless ultrasonic power transmission system by using the KLM model,
as shown in Figure 3B. This system had metal shielding effect, which could effectively
reduce the energy transmission loss. The PizeoCAD software (Sonic Concepts, Woodinville,
WA), which is based on the KLM model, has been widely used for designing a PUT.
Fei et al. [28] designed and manufactured an ultra-high frequency PUT with a CF higher
than 300 MHz by using PizeoCAD software. The ultra-high frequency PUT could be used
as the acoustic tweezer to precisely manipulate a particle, as shown in Figure 3C. This
needle-type PUT could manipulate a single microsphere as small as 3 µm, and therefore
has great potential in biomedical applications. Deng et al. [29] developed a PUT with dual
frequency (5 MHz transmission and 30 MW reception) for microvascular imaging based on
the KLM model. As shown in Figure 3D, the PUT included double layers of piezoelectric
materials (PMN-PT single crystal and PVDF). The fabricated PUT had a bandwidth of 79%,
which meant it had excellent performance. In the optimization design of a piezocomposite
ultrasonic transducer, Chao et al. [30] designed a 1-3 piezocomposite PUT with a matching
layer by using an ECM and acoustic theory, as shown in Figure 3E. The errors between
theoretical and experimental results of the 1-3 piezocomposite PUT were less than 5.3%. In
order to achieve NDT at high temperatures, Sun et al. [31] designed a PUT with a CF of
7 MHz based on PiezoCAD software, as shown in Figure 3F. In addition, Quan et al. [32]
designed a Put with high frequency using PiezoCAD software. The fabricated PUT had a
CF of higher than 80 MHz and a −6 dB bandwidth of 52%, which had excellent resolution
for ultrasonic imaging.
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Figure 3. (A) Electrical impedance amplitude and phase variation with frequency, pulse-echo waveform, and spectrum
of needle piezoelectric ultrasonic transducer (reproduced from [26]); (B) ultrasonic power transfer experimental setup
diagram and KLM equivalent circuit diagram (reproduced from [26]); (C) needle-type piezoelectric ultrasonic transducer,
4 um tungsten wire imaging schematic, and acoustic tweezers manipulating particles to form USC patterns (reproduced
from [27]); (D) schematic diagram of a dual-frequency confocal transducer (reproduced from [28]); (E) 1-3 piezoelectric
composite ultrasound transducer structure, emission voltage response, and simulated impedance (reproduced from [29]);
(F) BDF-PT ultrasonic transducer (reproduced from [30]).
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The Mason model is another common ECM for the design of a PUT. According to
the Mason model (shown in Figure 4A), Hori [33] et al. determined the design parame-
ters of a PUT, and the manufactured PUT had high transmission efficiency. For medical
imaging and NDT, Bybi et al. [34] proposed a one-dimensional ECM for ultrasonic trans-
ducer array based on the Mason model (shown in Figure 4B), which could be used to
solve the phenomenon of interference. Smyth et al. [35] derived the Mason model for a
circular splint PUT (as shown in Figure 4C) at 31 modes. The practicability of the derived
model was verified by electro impedance measurement experiments. The proposed model
could be widely used in the field of medical ultrasound applications and NDT. To better
match the impedance of piezoelectric material with the load medium, Hou et al. [36] de-
signed a 2-2 piezocomposite ultrasonic transducer based on the Mason model (shown in
Figure 4D). Due to the ideal electrical properties of piezocomposites, the bandwidth of the
2-2 piezocomposite ultrasonic transducer was increased from 21.28% to 35.54%.
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An ECM can quickly simulate the electrical properties of a PUT on the basis of given
materials and parameters. With the advantages of simple calculations and accuracy, ECMs
has been widely used in the optimization design of PUTs. However, the design parameters
considered in an ECM are finite, which cannot effectively and comprehensively design
a PUT.

2.3. Finite Element Model

A FEM is a common modeling and simulation method for engineering applications,
and it has been used to simulate the acoustic, electric and other multi-physical fields of a
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PUT. A FEM does not have the limitations of an analytical model and an ECM, and it has
been utilized to design various PUTs.
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Figure 5. (A) Radiation pattern diagrams of graded ultrasonic transducer, impedance, and pulse
echo diagrams of conventional and graded ultrasonic transducers (reproduced from [37]); (B) ANSYS
(Ansys Inc., Canonsburg, PA, USA) simulation results of impedance and vibration displacement
(reproduced from [37]); (C) simulated pulse-echo waveform, spectrum, and schematic diagram of
a focused high-frequency piezoelectric ultrasonic transducer (reproduced from [38]); (D) physical
diagrams of different types of piezoelectric ultrasonic transducers and simulated radiation patterns
(reproduced from [39]); (E) simulated acoustic field, the impulse echo response of a conventional
ultrasonic transducer, and a double piezoelectric layer ultrasonic transducer with PMNT + PZT
(reproduced from [40]); (F) impulse response of a piezoelectric ultrasonic transducer obtained by the
KLM model (reproduced from [41]).

On the basis of a vibration mode simulated by a FEM, Fei et al. [37] designed and
fabricated a high sensitivity PUT with functional gradations (as shown in Figure 5A).
Compared with a traditional PUT, the insertion losses of the fabricated PUT were sig-
nificantly reduced by using the graded design. Li et al. [38] analyzed and optimized
the geometrical parameters of a piezoelectric vibrator with flexural bending mode by
using a coupled-field FEM. Higher electromechanical conversion efficiency and acoustic
radiation efficiency could be achieved, as shown in Figure 5B. To realize an ultra-high
frequency system, Li et al. [39] designed a tightly focused 500 MHz PUT by a FEM (shown
in Figure 5C). In order to meet the requirement of a high-quality sensor, Lin et al. [40] pro-
posed a 5 MHz piezocomposite ultrasonic transducer based on the finite element analysis
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software PZFlex (Weidlinger Associates, Cupertino, USA), as shown in Figure 5D, and
found that the piezocomposite ultrasonic transducer had a wider bandwidth (40.6 %) and
a higher peak voltage (18 mv) than the PUT fabricated by PZT. In addition, Liu et al. [41]
designed a PUT with two piezoelectric layers (PMNT and PZT materials) by using PZFlex.
The PUT had the highest performance when the thickness ratio of the two piezoelectric
materials was 7.5:2.5 (as shown in Figure 5E). Similarly, Kim et al. [42] developed a flexible
piezocomposite ultrasonic transducer combining PZT-5H and PDMS. The performance of
the flexible piezocomposite ultrasonic transducer was simulated using ANSYS software
(Ansys Inc., Canonsburg, PA, USA), as shown in Figure 5F. The result of the hydrophone
test showed that the designed piezocomposite ultrasonic transducer had strong mechanical
flexibility (bending radius lower than 5 mm) and high sensitivity.
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liquid lens (reproduced from [45]).

COMSOL Multiphysics (COMSOL Inc., Burlington, MA, USA) is an effective multi-
physical finite element simulation software, which has been widely used in the simulation
and design of PUTs. Bruno et al. [43] investigated the performance of a typical bending
actuator fabricated with PZT ceramics and PMN-PT material by using COMSOL software,
as shown in Figure 6A. In addition, Zhang et al. [44] designed and fabricated a medical
phased array ultrasonic transducer (as shown in Figure 6B) based on COMSOL software.
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The fabricated phased array ultrasonic transducer had a CF and –6 dB bandwidth of
3.0 MHz and 89.9%, respectively. Its axial and transverse resolutions were 0.5 and 1.8 mm,
respectively, which showed excellent performance for biomedical imaging. With the help
of COMSOL software, Peng et al. [45] proposed an ultrafast ultrasound imaging system
for capturing mobile microbubbles, as shown in Figure 6C, which could be used to control
drugs in an accurate location for clinical use. Similarly, Li et al. [46] designed and fabricated
an acoustic liquid lens using COMSOL software for a PUT and improved the imaging
performance, as shown in Figure 6D. The results showed that the acoustic liquid lens
combined with a 6.8 MHz PUT had a tunable focus, which made accurate imaging in
different conditions possible.

A FEM can comprehensively and accurately simulate the multi-physical fields of a
PUT, which is useful for its optimization design and fabrication. However, a FEM has
a large amount of computations and long calculation time, which is not beneficial for
decreasing the research and development cycle and cost of a PUT.

3. Efficient Optimization Design Methods for a PUT

Traditional optimization design methods for a PUT are developed based on an ana-
lytical model, an ECM, or a FEM, and the design parameters are determined by using a
trial-and-error method, which is inefficient and depends on the knowledge of experts. Effi-
cient and intelligent optimization design methods for a PUT are proposed and developed
based on intelligent optimization algorithms. In the efficient optimization design methods,
a traditional model or a data-driven model is used to describe the relationships among
design and performance parameters of a PUT.

3.1. Optimization Design Methods Based on Traditional Models

A simple and efficient optimization design method for a PUT can be developed by
combining the traditional models and intelligent optimization algorithms. The traditional
models can characterize the effects of design parameters on the performance of a PUT, and
the intelligent optimization algorithms are utilized to optimize the design parameters.

Using CIVA software, Puel et al. [47] constructed a multiobjective optimization func-
tion for the optimization design of a PUT, and the evolutionary algorithm was used to
optimize the design parameters, as shown in Figure 7A. According to the required perfor-
mance of detection, the CF, size, and kerf of element could be optimized by the developed
method. According to the principle of sound field, Choi et al. [48] proposed a mathematical
model to describe the acoustic field distribution, as shown in Figure 7B. Then, the design
parameters of a concave annular high intensity focused ultrasonic transducer could be
optimized by using a nonlinear programming algorithm, which was beneficial for fabricat-
ing a high-intensity focused ultrasonic transducer. By combining an ECM and the particle
swarm optimization (PSO) algorithm, Chen et al. [49] developed an optimization design
method for PUT (as shown in Figure 7C). According to the optimized design parameters,
the fabricated PUT had a CF of 6.3 MHz and a −6 dB bandwidth of 68.25%. With the
combination of topology optimization and a FEM, Rubio et al. [50] designed a functional
gradient PUT, (Figure 7D). The design parameters of the functional gradient PUT were
optimized by using a topological optimization algorithm, which effectively improved the
performance of the PUT.
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Due to the simple and fast calculations of an analytical model and an ECM, they can
be easily combined with an intelligent optimization algorithm to design a PUT, but only
several design parameters can be optimized due to the limitations of the analytical model
and ECM. Although a FEM can be combined with an intelligent optimization algorithm to
design a PUT, the design efficiency is very low because a FEM is very time-consuming.

3.2. Optimization Design Methods Based on a Data-Driven Model

Due to the limitation of traditional models, the optimization design of a PUT cannot
be designed in an efficient or comprehensive way. A data-driven model is established
based on data and can be used to accurately and quickly describe the relationships among
design and performance parameters, which can effectively improve the optimization design
efficiency for a PUT.

On the basis of a genetic algorithm-based back-propagation neural network (GABPNN)
model and the PSO algorithm, Chen et al. [51] proposed an optimization design method
for a high-performance transmitting PUT (shown in Figure 8A). The GABPNN models
were trained using the data simulated by PiezoCAD software to describe the relationships
among the design and performance parameters of the PUT, and the PSO algorithm was
adopted to determine the design parameters. The CF and insertion loss of the designed
PUT were 1.07 MHz and 7.2 dB, respectively, which had excellent transmitting perfor-
mance. In addition, Chen et al. [52] designed a 1-3 piezocomposite ultrasonic transducer
for imaging application based on a data-driven model and modified PSO algorithm. As
shown in Figure 8B, the ultrasonic images showed that the designed 1-3 piezocomposite
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ultrasonic transducer had high resolution and good signal-to-noise ratio. On the basis of
intelligent optimization algorithms, Li et al. [53] designed a PUT with multi-match layers,
as shown in Figure 8C. The CF, –6 dB bandwidth, and pulse width of the designed PUT
were 5.672 MHz, 50.08%, and 0.295 us, respectively, which were significantly better than
those of the PUTs without a matching layer. Additionally, the testing error of five-step
block thickness was less than 1.0%.
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In order to effectively and flexibly control the acoustic field, Li et al. [54] proposed an
efficient optimization design method for an acoustic liquid lens (as shown in Figure 9A)
under the PSO framework. Tungsten wires and porcine eye were imaged by the 6 MHz
PUT with an optimized acoustic liquid lens, and the ultrasonic imaging quality was
obviously improved, which verified the reliability and effectiveness of the developed
method. As shown in Figure 9B, Sun et al. [55] proposed an intelligent optimization
design method for matching layers of a PUT. The neural network models were trained
to establish the mapping relationships among the thicknesses of matching layers and
performance parameters of the PUT. An improved PSO algorithm was used to optimize the
thicknesses of matching layers (Ag-epoxy and parylene C). It was found that the PUT with
the optimized matching layers had a −6 dB bandwidth of 68.5% and pulse echo width of
0.123 us, which were superior to those of the PUT with matching layers determined by the
traditional quarter-wavelength theory.
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1 
 

 

Figure 9. (A) Acoustic liquid lens and ultrasonic imaging results of porcine eye (reproduced from [54]); (B) Effect of
matching layers on the performance of a piezoelectric ultrasonic transducer, and the intelligent optimization design of
piezoelectric ultrasonic transducer with two matching layers (reproduced from [54]).

In the efficient optimization design method, a data-driven model can be established
to represent the relationships among the design parameters and the performance parame-
ters of a PUT, and an intelligent optimization algorithm is used to determine the design
parameters. This method is relatively efficient and can reduce the design cycle and cost for
a PUT. However, a large amount of data should be obtained and accumulated to establish
the data-driven model, and therefore the data acquisition is the key for this method.

4. Comparison and Discussion

In the optimization design of a PUT, the predictive model is very important, which
mainly determines the design accuracy. In addition, the optimization strategy also plays an
important role in the optimization design of a PUT, which determines the design efficiency.
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The comparison of traditional and efficient optimization design methods for a PUT is
presented in Table 1.

Table 1. Comparison of traditional and efficient optimization design methods for piezoelectric ultrasonic transducers.

Methods Advantages Disadvantages

Traditional optimization
design methods

Analytical model Easy and rapid calculation,
simple model

Low accuracy, relying on the
experience of expert

Equivalent circuit model Easy and rapid calculation,
simple and accurate model

Finite parameters considered in
this model, relying on the

experience of an expert

Finite element model High accuracy, comprehensive
model

Large calculation and memory,
relying on the experience of an

expert, long design cycle

Efficient optimization design
methods

Traditional model Simple method, high
efficiency, low design cycle Limitation of traditional models

Data-driven model High efficiency, high
reliability, low design cycle Requiring large amount of data

In traditional optimization design methods for a PUT, a traditional model is used as
the predictive model, and the optimization strategy is the simple trial-and-error method,
which relies on the experience of an expert. An analytical model and an ECM are relatively
simple models. The accuracy of an ECM is relatively high, but the design parameters
considered in an ECM are finite. Although a FEM is precise and comprehensive, it is
not conducive to shorten the design cycle of a PUT, due to large amounts of calculations
and storage.

In the efficient optimization method based on a traditional model, the traditional
model is also used as the predictive model, but an intelligent optimization algorithm is
utilized in the optimization strategy, which can effectively improve the design efficiency.
However, due to the limitation of traditional models, this efficient optimization design
method for a PUT also has several disadvantages which existed in the traditional op-
timization design methods. Compared with the traditional model-based optimization
design methods, a data-driven model-based optimization design method for a PUT has
high efficiency, high reliability, and a low design cycle. However, the establishment of a
data-driven model requires a large amount of data. With the accumulation of data, the
efficient optimization design method based on a data-driven model is an effective way for
the design and fabrication of a PUT.

5. Conclusions and Perspectives

In this paper, traditional and intelligent optimization methods for a PUT are summa-
rized and compared. The traditional optimization design methods are generally based on
an analytical model, an ECM, or a FEM, and the design parameters of a PUT are determined
by trial-and-error method, which is inefficient and depends on the knowledge of experts.
In the efficient optimization design methods for a PUT, a traditional model or a data-driven
model can be used as the predictive model, and an intelligent optimization algorithm is
adopted to determine the design parameters, which can effectively improve the design
efficiency. The efficient optimization design methods can make the design of a PUT more
efficient and intelligent, however, a data-driven model is established based on a large
amount of data.

Compared with traditional optimization design methods, the design efficiency of
an efficient optimization design method is greatly improved. With the development of
artificial intelligence, the intellectualized design for a PUT is a promising trend. In the
future, the development and perspectives for the optimization design method of a PUT
should include the following:
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(1) The predictive model is very important for the design accuracy of a PUT; therefore, a
high-precision predictive model should be developed based on traditional models.

(2) A large amount of original data should be accumulated to establish the database,
which can be used to train data-driven models.

(3) Efficient optimization design strategies or algorithms should be developed to further
improve the efficiency of the optimization design for a PUT.

(4) Efficient optimization design software should be developed by integrating the predic-
tive models and intelligent optimization algorithms.

(5) Most optimization design methods are developed for a low-frequency PUT [28,36,37,40,46],
therefore, an efficient optimization design method for a high-frequency PUT should
be proposed and developed in the future.
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