

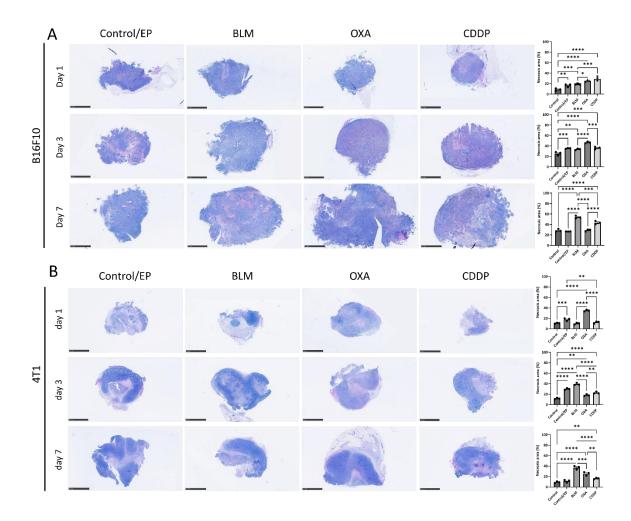


**Figure S1**. **Gating strategy in flow cytometry.** We conducted an assessment of the proportion of dendritic cells loaded with tumor cells. Double cells were eliminated by employing a forward scatterarea (FSC-A) and forward scatter-height (FSC-H) dot plot, and only live dendritic cells negative for eFluor 780 and positive for CFSE were considered for the evaluation of mCherry expression.

**Table S1. List of antibodies.** Listed are antibodies used for immunofluorescence (IFC) and immunohistochemical (IHC) staining. Antibody names, abbreviations, dilutions and manufacturers are presented.

| antibody name                                                           | abbreviation                  | dilution | manufacturer           |  |  |  |  |
|-------------------------------------------------------------------------|-------------------------------|----------|------------------------|--|--|--|--|
| Immunofluorescence staining                                             |                               |          |                        |  |  |  |  |
| Primary: Anti CD31/PECAM-1 Goat Polyclonal Antibody AF3628              | anti CD31                     | 1:200    | R&D systems            |  |  |  |  |
| Primary: Anti-CD4 Rabbit Recombinant Monoclonal antibody EPR19514       | anti CD4                      | 1:200    | Abcam                  |  |  |  |  |
| Primary: Anti CD8 alpha Rabbit Recombinant Monoclonal antibody EPR20305 | anti CD8                      | 1:200    | Abcam                  |  |  |  |  |
| Primary: Anti Calreticulin Chicken Polyclonal Antibody AB_2069607       | anti CLR                      | 1:200    | Invitrogen             |  |  |  |  |
| Secondary: Donkey Anti Rabbit IgG Cy3 #711-165-152                      | Anti Rabbit Cy3               | 1: 400   | Jackson Immunoresearch |  |  |  |  |
| Secondary: Donkey Anti Goat IgG Alexa Fluor® 647 #705-605-147           | Anti Goat Alexa Fluor® 647    | 1: 400   | Jackson Immunoresearch |  |  |  |  |
| Secondary: Donkey Anti-Chicken Alexa Fluor® 488 #703-545-155            | Anti Chicken Alexa Fluor® 488 | 1: 500   | Jackson Immunoresearch |  |  |  |  |
| Immunofluorescence staining                                             |                               |          |                        |  |  |  |  |
| Primary: anti HMGB1 Recombinant Rabbit Monoclonal antibody (SA39-03)    | anti HMGB1                    | 1: 500   | Invitrogen             |  |  |  |  |
| Primary: Anti Granzyme B Rabbit Polyclonal antibody ab4059              | anti GrB                      | 1: 1500  | Abcam                  |  |  |  |  |
| Primary: Anti CD11c (D1V9Y) Rabbit Monoclonal Antibody #97585           | anti CD11c                    | 1:200    | Cell Signaling         |  |  |  |  |







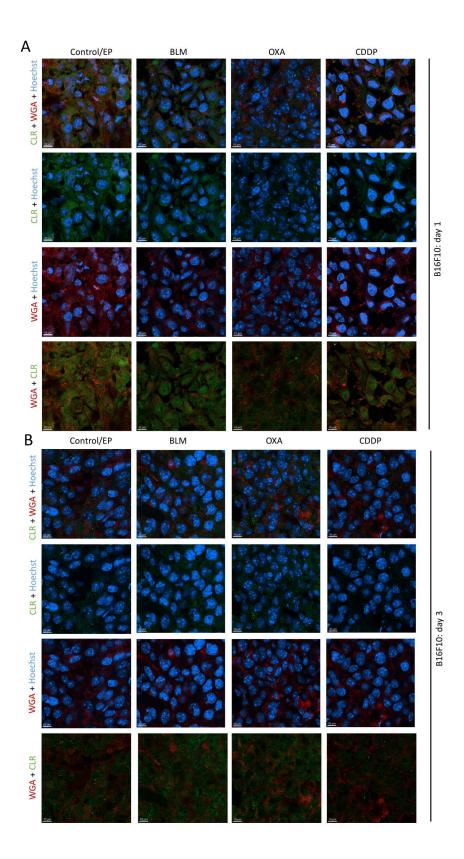


**Figure S2. Tumor growth is delayed after ECT.** Tumor growth curves of individual mice are shown for different treatment groups in (**A**) B16F10 and (**B**), 4T1 tumors (n = 6-8). Red frames indicate equieffective ECT with BLM, OXA and CDDP or the doses in ECT, which were used for subsequent analyses. BLM: bleomycin, OXA: oxaliplatin, CDDP: cisplatin.

Table S2. Average survival is prolonged after ECT. Average survival time of treatment groups is presented. Data are compared to control group and to each other (n = 6-8; AM  $\pm$  SE; \*p < 0.05).

|            |                 | B16F10                           |            | 4T1                              |              |
|------------|-----------------|----------------------------------|------------|----------------------------------|--------------|
| Group name |                 | V = 200<br>mm <sup>3</sup> [day] | Statistics | V = 200<br>mm <sup>3</sup> [day] | Statistics   |
| 1          | Control         | $2.57\pm0.25$                    |            | $6.67 \pm 0.52$                  |              |
| 2          | Control/EP      | $3.63 \pm 0.55$                  |            | $8.76 \pm 0.67$                  |              |
| 3          | BLM 0.75 μg     | /                                | /          | $7.06 \pm 0.51$                  |              |
| 4          | OXA 20 μg       | /                                | /          | $7.50 \pm 0.87$                  |              |
| 5          | CDDP 5 μg       | /                                | /          | $7.91 \pm 0.86$                  |              |
| 6          | BLM 5 μg        | $2.73 \pm 0.28$                  |            | /                                | /            |
| 7          | OXA 85 μg       | $3.95 \pm 0.65$                  |            | /                                | /            |
| 8          | CDDP 40 µg      | $3.36 \pm 0.57$                  |            | /                                | /            |
| 9          | BLM 0.4 μg/ECT  | /                                | /          | $13.71 \pm 1.07$                 | *1           |
| 10         | BLM 0.75 μg/ECT | /                                | /          | $14.26 \pm 1.57$                 | *1           |
| 11         | BLM 1.5 μg/ECT  | /                                | /          | 15.51 ± 1.87                     | *1           |
| 12         | BLM 2.5 μg/ECT  | $15.82 \pm 1.03$                 | *1         | /                                | /            |
| 13         | BLM 5 μg/ECT    | $16.85 \pm 0.82$                 | *1         | /                                | /            |
| 14         | BLM 7.5 μg/ECT  | $18.42 \pm 0.94$                 | *1         | /                                | /            |
| 15         | OXA 10 μg/ECT   | /                                | /          | $13.51 \pm 1.04$                 | *1           |
| 16         | OXA 20 μg/ECT   | /                                | /          | 14.41 ± 1.47                     | *1           |
| 17         | OXA 30 μg/ECT   | /                                | /          | 15.63 ± 1.45                     | *1           |
| 18         | OXA 60 μg/ECT   | $15.12 \pm 1.67$                 | *1         | /                                | /            |
| 19         | OXA 85 μg/ECT   | 17.77 ± 1.96                     | *1         | /                                | /            |
| 20         | OXA 100 μg/ECT  | $18.96 \pm 1.41$                 | *1         | /                                | /            |
| 21         | CDDP 2.5 µg/ECT | /                                | /          | $14.06 \pm 1.2$                  | *1           |
| 22         | CDDP 5 µg/ECT   | /                                | /          | $12.90 \pm 1.15$                 | *1           |
| 23         | CDDP 10 μg/ECT  | /                                | /          | 19.18 ± 1.88                     | *1, *22, *21 |
| 24         | CDDP 30 μg/ECT  | $22.53 \pm 1.48$                 | *1         | /                                | /            |
| 25         | CDDP 40 µg/ECT  | 22.65 ± 1.48                     | *1         | /                                | /            |
| 26         | CDDP 50 μg/ECT  | $24.84 \pm 1.01$                 | *1         | /                                | /            |



**Figure S3. ECT induces necrosis.** Necrotic areas in control groups one, three and seven days after the treatment in (**A**) B16F10 and (**B**) 4T1 tumors. Scale bar: 2.5 mm. BLM: bleomycin, OXA: oxaliplatin, CDDP: cisplatin. (n = 3; AM  $\pm$  SE and individual measurements are presented; \*  $p \le 0.05$ , \*\*  $p \le 0.01$ , \*\*\*  $p \le 0.001$ , \*\*\*\*  $p \le 0.0001$ ).



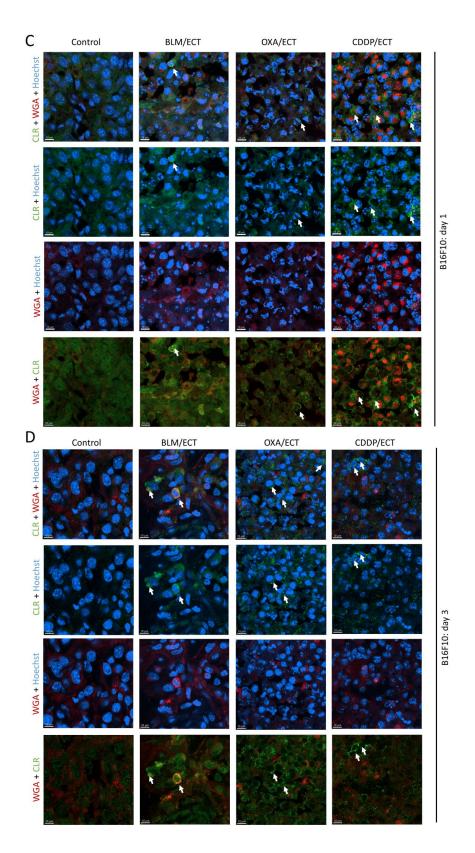
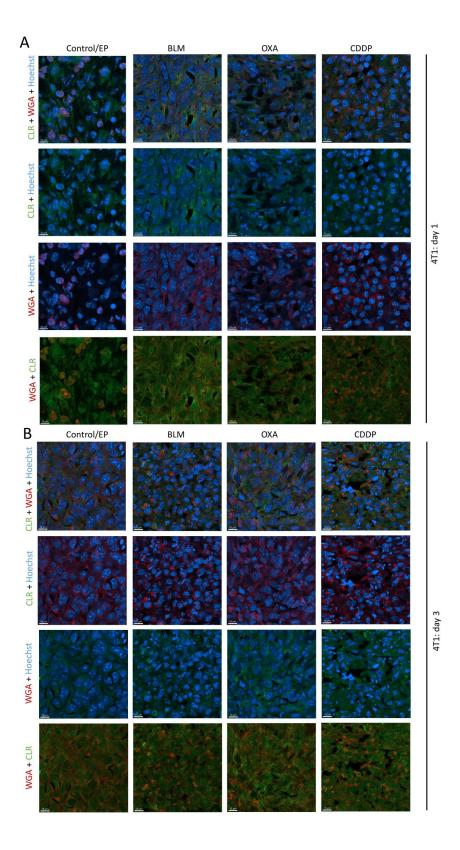




Figure S4. ECT induces translocation of calreticulin to plasma membrane of B16F10 tumors. (A) Control groups on day 1 and (B) day 3, as well as (C) ECT groups on day 1 and (D) on day 3 in B16F10 tumors. Arrows indicate calreticulin translocation to plasma membrane. CLR (green): calreticulin staining, Hoechst (blue): DNA (nuclei) staining, WGA (red): wheat germ agglutinin staining of membranes. Scale bar:  $10~\mu m$ . BLM: bleomycin, OXA: oxaliplatin, CDDP: cisplatin.



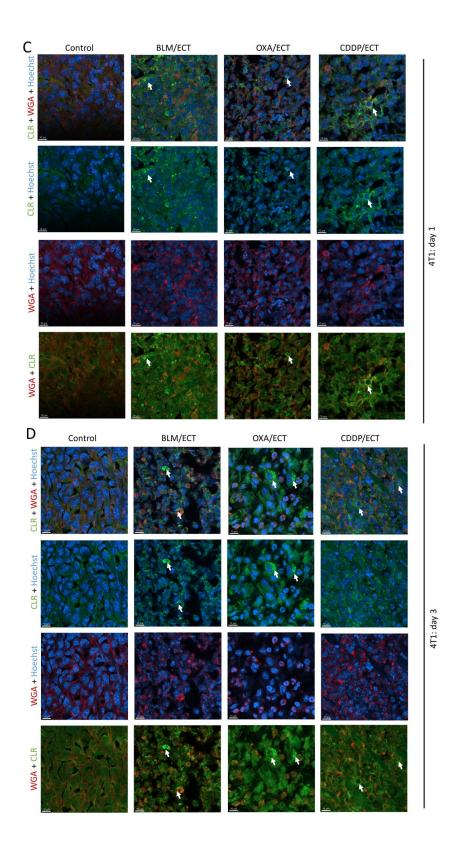
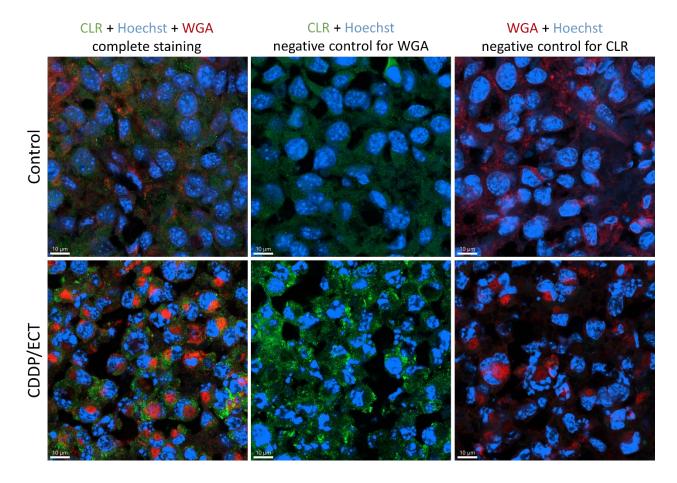
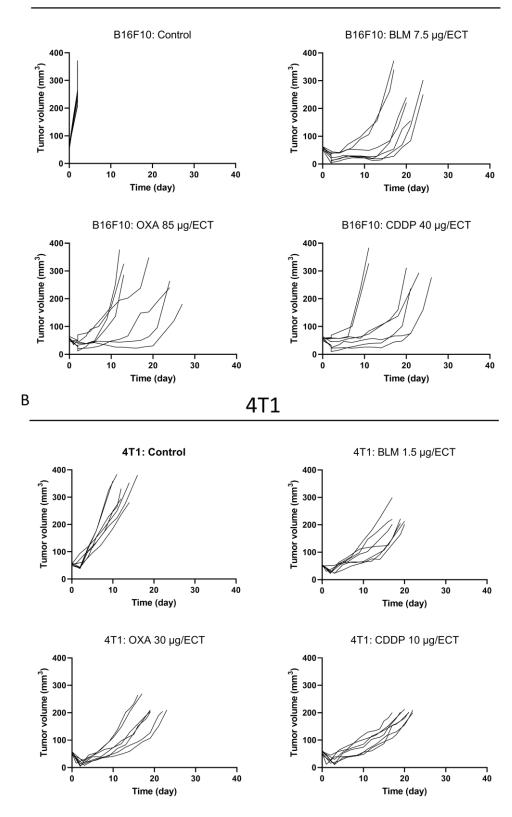





Figure S5. ECT induces calreticulin translocation to plasma membrane of 4T1 tumors. (A) Control groups on day 1 and (B) day 3, as well as (C) ECT groups on day 1 and (D) on day 3 in 4T1 tumors. Arrows indicate calreticulin translocation to plasma membrane. CLR (green): calreticulin staining, Hoechst (blue): DNA (nuclei) staining, WGA (red): wheat germ agglutinin staining of membranes. Scale bar:  $10~\mu m$ . BLM: bleomycin, OXA: oxaliplatin, CDDP: cisplatin.



**Figure S6. IFC control groups.** Representative micrographies of Control B16F10 tumors and B16F10 tumors treated with ECT using CDDP are presented after complete staining (CLR + WGA + Hoechst) and stainings for CLR or WGA only. CLR (green): calreticulin staining, Hoechst (blue): DNA (nuclei) staining, WGA (red): wheat germ agglutinin staining of membranes. Scale bar:  $10 \, \mu m$ .



**Figure S7. ECT in NUDE mice.** Tumor growth curves of individual immunodeficient NUDE mice bearing (**A**) B16F10 and (**B**) 4T1 tumors are shown after ECT with BLM, OXA or CDDP (n = 6-8). BLM: bleomycin, OXA: oxaliplatin, CDDP: cisplatin.

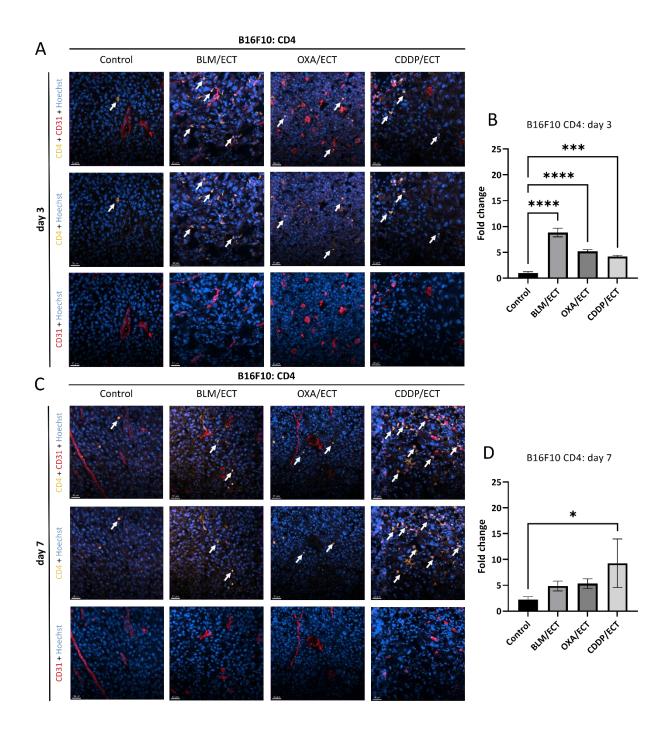



Figure S8. ECT leads to infiltration of B16F10 tumors by CD4 positive immune cells. Tumors were harvested three (A, B) and seven (C, D) days after the therapy. Hoechst (blue): DNA (nuclei) staining, CD4 (orange): CD4 positive immune cells, CD31 (red): vessels. Arrows indicate IFC positive cells. Scale bar: 30  $\mu$ m. (n=3; AM  $\pm$  SE; ns: p  $\geq$ 0.05; \*p 0.01 – 0.05; \*\*p 0.001 – 0.01; \*\*\*p 0.0001 – 0.001; \*\*\*\*p <0.0001)

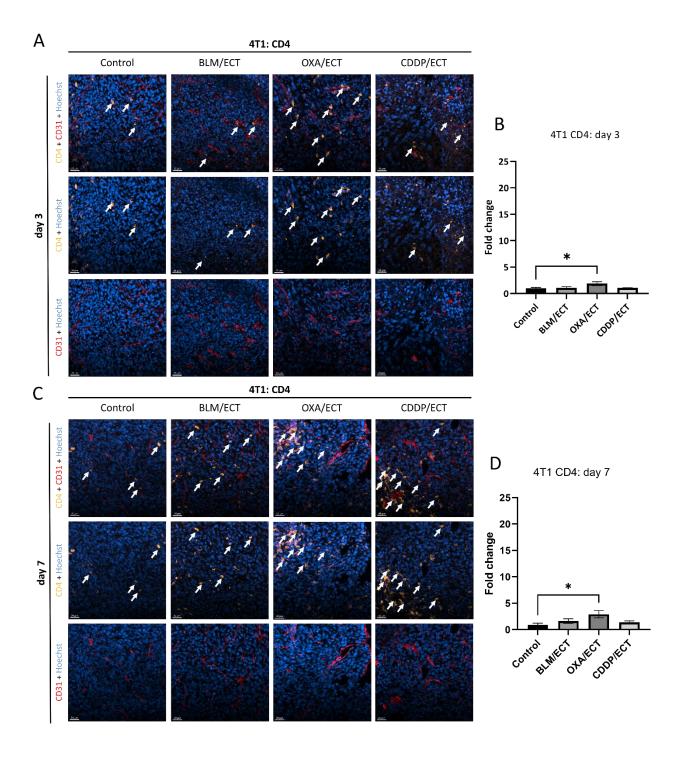



Figure S9. ECT leads to infiltration of 4T1 tumors by CD4 positive immune cells. Tumors were harvested three (A, B) and seven (C, D) days after the therapy. Hoechst (blue): DNA (nuclei) staining, CD4 (orange): CD4 positive immune cells, CD31 (red): vessels. Arrows indicate IFC positive cells. Scale bar: 30  $\mu$ m. (n=3; AM  $\pm$  SE; ns: p  $\geq$ 0.05; \*p 0.01 – 0.05; \*\*p 0.001 – 0.01; \*\*\*p 0.0001 – 0.001; \*\*\*\*p <0.0001)

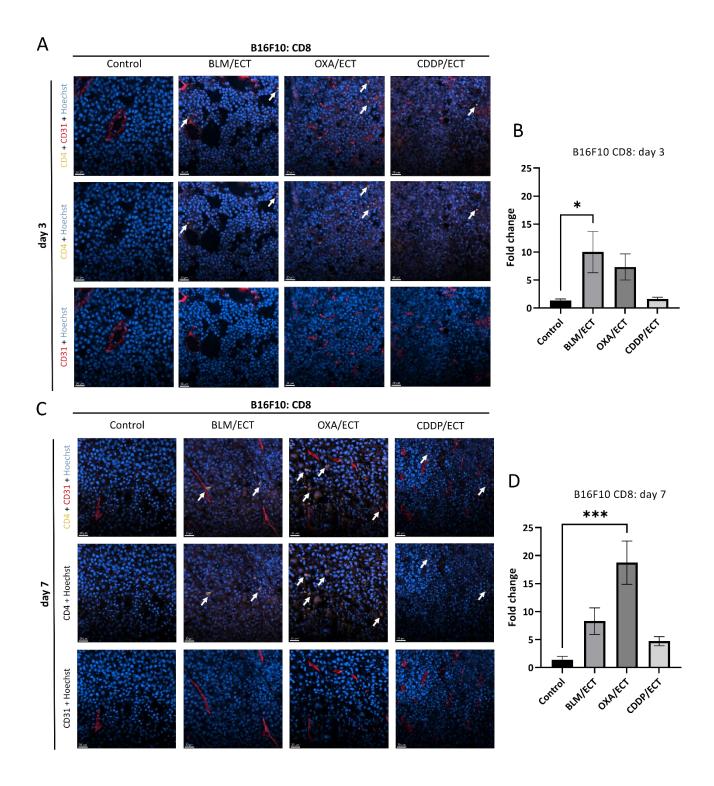



Figure S10. ECT leads to infiltration of B16F10 tumors by CD8 positive immune cells. Tumors were harvested three ( $\bf A$ ,  $\bf B$ ) and seven ( $\bf C$ ,  $\bf D$ ) days after the therapy. Hoechst (blue): DNA (nuclei) staining, CD8 (orange): CD8 positive immune cells, CD31 (red): vessels. Arrows indicate IFC positive cells. Scale bar: 30  $\mu$ m. (n=3; AM  $\pm$  SE; ns: p  $\geq$ 0.05; \*p 0.01 – 0.05; \*\*p 0.001 – 0.01; \*\*\*p 0.0001 – 0.001; \*\*\*\*p <0.0001)

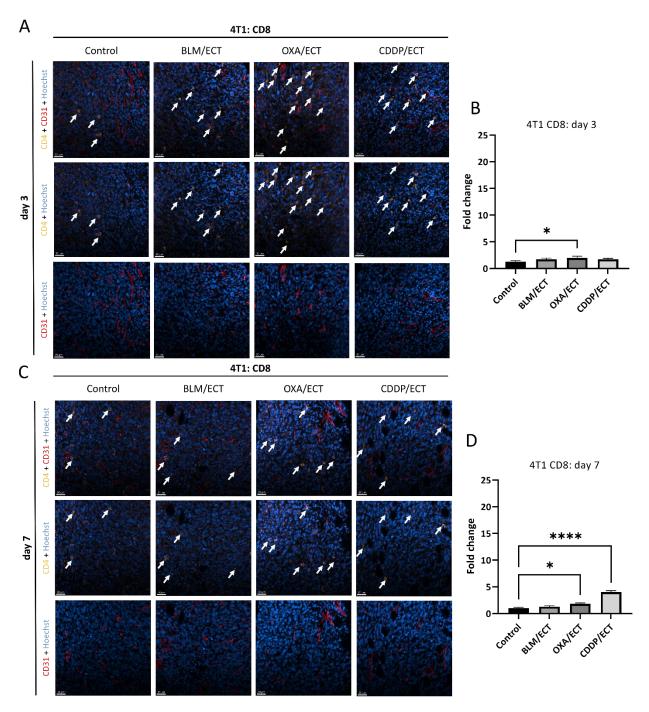
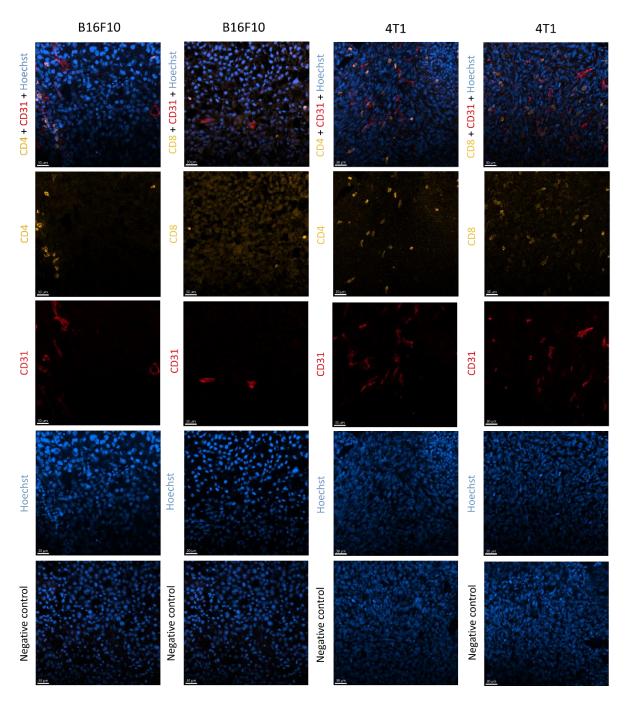




Figure S11. ECT leads to infiltration of 4T1 tumors by CD8 positive immune cells. Tumors were harvested three (A, B) and seven (C, D) days after the therapy. Hoechst (blue): DNA (nuclei) staining, CD8 (orange): CD8 positive immune cells, CD31 (red): vessels. Arrows indicate IFC positive cells. Scale bar: 30  $\mu$ m. (n=3; AM  $\pm$  SE; ns: p  $\geq$ 0.05; \*p 0.01 – 0.05; \*\*p 0.001 – 0.01; \*\*\*p 0.0001 – 0.001; \*\*\*\*p <0.0001)



**Figure S12. IFC staining of B16F10 and 4T1 tumors**. Complete staining of tumors after ECT and respective negative controls are presented. Hoechst (blue): DNA (nuclei) staining, CD4 or CD8 (orange): CD4 or CD8 positive immune cells, CD31 (red): vessels. Scale bar: 30 μm.