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Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, and the prognosis of HCC patients with lymph
node metastasis (LNM) is poor. However, robust biomarkers for predicting the prognosis of HCC LNM are still lacking. This study
used weighted gene coexpression network analysis of GSE28248 (N = 80) microarray data to identify gene modules associated with
HCC LNM and validated in GSE40367 dataset (N = 18). The prognosis-related genes in the HCC LNM module were further
screened based on the prognostic curves of 371 HCC samples from TCGA. We finally developed a prognostic signature, PSG-
30, as a prognostic-related biomarker in HCC LNM. The HCC subtypes identified by PSG-30-based consensus clustering
analysis showed significant differences in prognosis, clinicopathological stage, m6A modification, ferroptosis activation, and
immune characteristics. In addition, RAD54B was selected by regression model as an independent risk factor affecting the
prognosis of HCC patients with LNM, and its expression was significantly positively correlated with tumor mutational burden
and microsatellite instability in high-risk subtypes. Patients with high RAD54B expression had a better prognosis in the immune
checkpoint inhibitor-treated cohorts but had a poor prognosis in the HCC sorafenib-treated group. The association of high
RAD54B expression with LNM in breast cancer (BRCA) and cholangiocarcinoma and its prognostic effect in BRCA LNM cases
suggest the value of RAD54B at the pancancer level. In conclusion, PSG-30 can effectively identify HCC LNM population with
poor prognosis, and high-risk patients with high RAD54B expression may be more suitable for immunotherapy.

1. Introduction

Liver cancer is a malignant tumor with a very poor progno-
sis. The mortality rate ranks third among all malignant
tumors, accounting for approximately 8.3% of the deaths
from malignant tumors [1]. HCC is the most common path-
ological type of primary liver cancer [2]. The survival rate of
patients with extrahepatic metastasis is not ideal [3]. Lymph
node is a common metastasis site of HCC, second only to
the lung. It has been reported that approximately 10.3% of
patients with HCC after radical resection will have lymph
node metastasis (LNM) [4]. Through the lymphatic system,
secondary tumor recurrence and extrahepatic metastasis will
cause patients to lose the opportunity for radical surgery,
which will seriously affect the prognosis of patients.

Our previous works has identified several effective bio-
markers to help predict the occurrence of HCC LNM, such

as HIF-1a, VEGFA, and MMP-2. Subsequently, some
scholars also reported the effectiveness of these markers in
LNM event indications of other cancer types [5–7]. Some
identified biomarkers and sensitive imaging examinations
can identify the existing LNM to a certain extent, but there
is still a lack of systematic research on the prognosis of
HCC patients with LNM. As the effectiveness of immuno-
therapy for liver cancer has been verified, the treatment of
liver cancer tends to be diversified [8]. Therefore, more
detailed biomarkers are urgently needed to guide the formu-
lation of individualized treatment plans for liver cancer
patients to further improve the prognosis.

At present, based on abundant high-throughput sequenc-
ing data, specific gene expression signatures can define the
high or low risk of disease events at the molecular level.
Through the identification of gene expression characteristics,
several studies have reported effective gene signatures to
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identify disease subtypes and risk groups. Garg et al. identified
a signature containing 121 metastasis-related genes based on
RNA-seq data from 204 patients with primary melanoma in
clinical trials. The signature was confirmed to be closely
related to PFS and OS in 175 independent LNM cohorts,
and the signature score was negatively correlated with
immune cell infiltration [9]. Bagaev et al. reported on the
establishment of a model for interpreting the tumor microen-
vironment (TME) by 29 characteristic gene signatures and
analyzed the prognostic correlation of TME subtypes from
the perspective of pancancer which could be used as a clinical
indicator for predicting tumor immune response [10]. Thors-
son et al. used the marker gene signature of immune cells to
identify the immune subtypes of pancancer and constructed
cascade networks of mutation-TF-immune subtypes based
on the master regulator of each immune subtype to describe
the cellular and molecular interactions involved in the tumor
immune response [11]. However, there is still a lack of charac-
teristic gene signatures that can accurately identify high-risk
patients in the HCC LNM population.We speculate that there
is abnormal expression of a set of characteristic gene signa-
tures in tumor samples of HCC patients with LNM, and the
prognosis-related genes contained in this gene cluster can
effectively predict the prognosis of HCC LNM population.

The study followed the steps shown in the flowchart in
Figure 1 for analysis and validation. We screened the gene
signature cluster (PSG-30) of HCC LNM with high prognos-
tic correlation based on the microarray data of 20 pairs of
HCC samples with and without LNM, the public pancancer
transcriptome data, and the corresponding clinical data.
Using this gene signature cluster, we first analyzed the differ-
ences in biological phenotype, clinical information, drug
sensitivity, and immune infiltration/response among tumor
samples of HCC LNM patients with different prognostic
risks. M6A modification and ferroptosis activation were also
analyzed in the identified subtypes, as they are broadly
implicated in tumor progression, including LNM [12–15].
Secondly, the prognostic risk model was constructed, and
the gene with the largest influence weight were selected from
the model to comprehensively analyze its mutation land-
scape, clinical correlation, and histological expression. We
aim to comprehensively interpret the LNM of HCC in order
to provide clues for further prognosis prediction and treat-
ment intervention.

2. Methods

2.1. Data Sources. Data Sources from Gene Expression Omni-
bus (GEO,http://www.ncbi.nlm.nih.gov/geo)

(i) GSE28248: cDNAmicroarray data ofHCC tumor tis-
sue (N = 40) and adjacent normal tissue samples
(N = 40). The source patientswerematched according
to the history of LNM, and patients with significant
statistical differences in other clinicopathological indi-
cators were excluded. In this study, the total samples
were divided into tumor tissues of HCC with LNM
(N = 20), tumor tissues of HCC without LNM
(N = 20), peritumoral tissues of HCC with LNM

(N = 20), and peritumoral tissues of HCC without
LNM (N = 20) for analysis

(ii) GSE40367: cDNA microarray data from OCT fro-
zen specimens (N = 61) of primary and metastatic
liver and colon cancer. Source patients were classi-
fied according to tumor type and history of primary
or metastases. In this study, 10 HCC samples with-
out metastasis and 8 HCC/CC samples with LNM
were selected for analysis

(iii) GSE5975: oligonucleotide microarray data of HBV-
positive HCC patient tumor tissue (N = 238).
Source patients were classified based on EpCAM
expression and HBV history. All 238 HCC samples
were included in this study for subtype verification

Data Sources from TCGA (https://portal.gdc.cancer.gov)

(i) TCGA LIHC: sequencing dataset and correspond-
ing clinical information of 371 HCC samples. Cases
with complete prognostic information were
included in further survival analysis

(ii) TCGA CRC: sequencing dataset of all 620 colorectal
cancer (CRC) samples and corresponding clinical
sample information

(iii) TCGA BRCA: sequencing dataset of all 1097 breast
cancer (BRCA) samples and corresponding clinical
sample information. According to the clear history
of LNM, 550 samples with LNM and 514 samples
without LNM were screened for analysis

(iv) TCGA CHOL: sequencing dataset and correspond-
ing clinical information of all 45 cholangiocarci-
noma (CHOL) samples. According to the clear
history of LNM, 5 samples with LNM and 26 sam-
ples without LNM were screened for analysis

Data Sources from cBioPortal Platform (http://www
.cbioportal.org/) [16]

A total of 1026 samples from six independent HCC
cohorts were used to analyze the PSG-30 gene cluster and
RAD54B mutational landscape, survival prognosis, and dis-
tribution of clinical information. A total of 7771 samples
from seventeen independent BRCA cohorts were used to
analyze the mutational landscape and clinical information
distribution of the PSG-30 gene cluster. Fifty-one samples
from CHOL (TCGA, Firehose Legacy) were used to analyze
the mutational landscape, survival prognosis, and clinical
information distribution of RAD54B.

The transcription data related to drug sensitivity came
from the Genomics of Drug Sensitivity in Cancer (GDSC,
https://www.cancerrxgene.org/) database [17]. And the tis-
sue and single-cell level expression profile data were derived
from the Human Protein Atlas (HPA) https://www
.proteinatlas.org/) [18].

2.2. Data Processing. For the unnormalized RNA-seq data-
set, the original expression of each gene was log2 processed
uniformly. In the microarray dataset from the GEO
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database, if one gene was mapped to multiple probes, the
average value was taken as the expression level of the gene.
The probe entries that failed to map to any gene ID or
mapped to multiple gene IDs were removed. Finally, the
probe IDs were converted into gene symbols according to
the annotation of the corresponding microarray platform.

2.3. WGCNA Analysis. First, we calculated the median abso-
lute deviation (MAD) of each gene by using the gene expres-
sion profile, eliminated the top 50% of the genes with the
smallest MAD, removed the outlier genes and samples by
using the gsg (goodSamplesGenes) method, and further
constructed the scale-free coexpression network by using
the “WGCNA” R package. Specifically, the Pearson correla-
tion matrix and average linkage method were first used for
paired genes, and the power function ajmn = jCjmn^β
(c ∣mn = Pearson correlation between gene m and gene n; a
∣mn = adjacency between gene m and gene n) was then
used for weighted adjacency matrix construction. β is a soft
threshold parameter that can emphasize the strong correla-
tion between genes and punish the weak correlation. By
selecting the power of 6, the adjacency can be transformed
into a topological overlap matrix (TOM), which can mea-
sure the network connectivity of a gene. To classify genes
with similar expression profiles into modules, average link-

age hierarchical clustering was carried out according to the
dissimilarity measure based on TOM. The minimum size
(gene group) of the gene dendrogram was 30, and the sensi-
tivity was set as 3. By calculating the difference in module
characteristic genes, the cutting line of the module dendro-
gram was selected, and the modules with a distance less than
0.25 were merged. Three coexpression gene modules were
finally obtained.

2.4. Subtype Grouping. Subtype grouping was based on RNA
sequencing data and corresponding clinical information of
371 HCC tissues in TCGA dataset. Setting parameters were
as follows: the maximum number of clusters was 6, 80% of
the total samples were extracted 100 times, clusterAlg = “

HC”, and innerlinkage = “ward:D2”. The consistency analy-
sis was carried out by using the R package “ConsensusClus-
terPlus” (v1.54.0), and the clustering heatmap was
generated using the “pheatmap” (v1.0.12) R package. The
gene expression heatmap was drawn by the R packages
“survival” and “surviviner,” and the genes with variances
above 0.1 were retained.

2.5. Differential Expression Analysis and Functional
Enrichment. Differential gene expression was analyzed by
the “Limma” R package (version: 3.40.2). To correct the
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Figure 1: Flowchart of study design.
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false-positive results, we further analyzed the adjusted P
value based on TCGA or GTEX data. The differentially
expressed genes were screened with adjusted P < 0:05 and
an absolute value of log2 ðfold changeÞ > 1. Gene expression
diversity dominates the changes in biological function, and
enrichment analysis can link differentially expressed genes
(DEGs) with related biological function items. Therefore,
Gene Ontology (GO) enrichment analysis was used to anno-
tate DEGs from three categories: molecular function (MF),
biological pathway (BP), and cellular component (CC).
KEGG enrichment analysis is a tool for advanced functional
annotation of the genome. The “ClusterProfiler” R package
was applied to analyze the correlations between DEGs and
GO functions/KEGG pathways.

2.6. Correlation Analysis of M6A and Ferroptosis. The m6A-
related genes were derived from the research by Li et al. on the
molecular characterization and clinical significance of m6A
modulators across thirty-three cancer types [19]. Ferroptosis-
related genes were derived from the systematic analysis of Liu
et al. of the abnormalities and functions of ferroptosis in cancer
[20]. Correlation analysis and visualization were achieved
through the “ggplot2” and “pheatmap” R packages.

2.7. Kaplan-Meier Survival and Drug Sensitivity Analysis.
The Kaplan-Meier survival curves were based on RNA
sequencing data and corresponding clinical information,
which were analyzed and visualized by the “survival” and
“surviviner” R packages.

Drug sensitivity analysis was based on the GDSC dataset,
the chemotherapeutic response of each sample was predicted
by the R package “pRRophetic,” and the IC50 value was
further evaluated by the ridge regression method.

2.8. Immune Cell Infiltration Analysis. We used the “immu-
nedeconv” R package for immune cell infiltration assess-
ment, which contains six algorithms, including
MCPcounter, CIBERSORT, quanTIseq, xCell, EPIC, and
TIMER. The immune scoring results are displayed visually
through “ggplot2” and “pheatmap” package.

2.9. Screening of Prognostic Factors and Establishment of Risk
Model. First, the log rank test was used to detect the prog-
nostic differences between groups compared by KM survival
analysis, and the “timeroc” package was used to compare the
prediction accuracy and risk score of target genes. Then, the
R package “glmnet” was used to screen variables by the least
absolute shrinkage and selection operator (LASSO) regres-
sion algorithm, and 10× cross-validation was applied. The
selected prognostic risk factors were included in univariate
and multivariate Cox regression analyses, and the P value,
HR, and 95% CI of variables were visualized by the “forest-
plot” package. Furthermore, a nomogram with the chosen
independent risk factors was drawn by the R package
“rms” to evaluate the prognostic risk of patients at 1, 3,
and 5 years.

3. Results

3.1. Identifying Prognostic Gene Signature for HCC LNM.We
first analyzed the cDNA microarray data derived from
GSE28248, which contained tumor and adjacent normal
samples from 20 pairs of matched HCC patients with and
without LNM. In this study, the threshold is selected as β
= 6 according to the scale-free topology criterion, which is
the lowest power of the scale-free topology fitting index of
0.87, and the corresponding mean connectivity is 2.6
(Supplementary Fig. 1A, B). Then, three coexpressed gene
modules were obtained by WGCNA clustering and distin-
guished by turquoise, blue, and gray colors (Supplementary
Fig. 1C, D). The clustering heatmap drawn according to
the adjacency relationship shows the independence
between the expression patterns distinguished by modules
(Supplementary Fig. 2A). The correlation analysis between
the blue module and clinical phenotype showed that there
was a significant correlation between the blue module and
HCC LNM (P = 2:9e − 6, r = 0:44) (Supplementary Fig. 2B,
C). The coexpression relationship of 73 genes belonging to
the blue module in the TCGA-LIHC sample (N = 424) is
shown in Supplementary Fig. 2D. Then, liver cancer sam-
ples with (N = 8) and without LNM (N = 10) were selected
in the GSE40367 dataset, and the heatmap for intergroup
differences is shown in Figure 2(a). To refine the HCC
LNM-related modules, we further aligned 73 genes belong-
ing to the blue module in paired samples from GSE40367
(Figure 2(b)). KDR, NTRK1, and RAP1A genes that were
significantly differentially expressed but in opposite trends
between groups with and without LNM in the GSE28248
and GSE40367 datasets were excluded. Figure 2(c) also
displays the top three entries of the enrichment results of
GO (BP, biological process; CC, cellular component; MF,
molecular function) and KEGG pathway of the genes from
the blue module.

Based on the above results, the remaining 70 genes were
analyzed for the prognosis of OS (N = 364) and RFS
(N = 316) through the KM plot database, and 40 genes that
had no significant effect on OS and RFS of HCC were
excluded. The rest 30 genes were included in the prognostic
signature gene set and defined as PSG-30 for subsequent
analysis (Supplementary Fig. 9 and 10).

As a complement, we analyzed the mutational landscape
of PSG-30 in LIHC multicohort samples (N = 1026) and
found that the constituent genes of PSG-30 exhibited high-
frequency gene amplification (Supplementary Fig. 11A, B).
The OS and DFS of the PSG-30 mutant population were
significantly reduced (Supplementary Fig. 11C, D). Limited
by the number of samples with a clear history of LNM, the
PSG-30 mutant population did not show a significant corre-
lation with LNM, but the PSG-30 mutant population
showed more vascular macro invasion, which is a critical
risk factor for HCC LNM (Supplementary Fig. 11E, F). Fur-
ther, when mRNA expression was taken into account in the
LIHC cohort with the highest PSG-30 mutation rate (TCGA,
Firehose Legacy), PSG-30 mutation and transcriptional
activity were more closely associated with poor prognosis
(Supplementary Fig. 11G-I). In order to confirm the
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Figure 2: Continued.
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correlation between PSG-30 and LNM in pancancer, PSG-30
was also tested in BRCA multicohort samples (N = 7771)
(Supplementary Fig. 11J, K). The results showed that PSG-
30 mutation was not only related to the poor prognosis of
BRCA (figure not shown). More importantly, the detection
rate of positive lymph nodes in BRCA population with
PSG-30 mutation is significantly higher than that in unmu-
tated population and was more common in those with mul-
tiple positive lymph nodes (Supplementary Fig. 11L, M).

3.2. Consistency Clustering of HCC Samples Based on PSG-
30. By comprehensively analyzing the relative change in area
under the cumulative distribution function (CDF), k = 4 was
selected as the optimum, so four subtype groups of TCGA
LIHC samples (N = 371) were determined by the consistent
clustering method (Figures 3(a)–3(c)). A cluster heatmap
showed that there was a significant difference in the expres-
sion of the PSG-30-related genes among the groups, and the
characteristic expression of PSG-30 showed an upward trend
from cluster 1 to cluster 4 (Figure 3(d)). The PCA diagram

visually distinguished the differences in gene expression pat-
terns among subtypes (Figure 3(e)). Subtype 4 is the subtype
with the highest expression of PSG-30 signature. Compared
to baseline subtype 1, subtype 4 emphasizes cancer cell-
stromal interactions, cell cycle dysregulation, and immune
dysregulation (Supplementary Fig. 3).

A total of 238 HCC samples from the GSE5975 dataset
were further collected, and the subtype classification was
verified by PSG-30 (Supplementary Fig. 4A). After that, the
samples were divided into 4 subtype groups, and group 2
was taken as the baseline because the number of group 1
samples was too small (Supplementary Fig. 4B). Compared
with group 2, group 4 accumulated abnormal activity of can-
cer cell-matrix interactions and cell cycle dysregulation
(Supplementary Fig. 4C-E). It is worth noting that the
enrichment of immune-related terms decreased compared
with the results from TCGA LIHC dataset. We speculate
that the cases contained in GSE5975 are HBV positive, and
the original background of tumor tissue carries interference
factors of immune tolerance.

Counts
5

11

17

(c)

Figure 2: Verification and screening of genes from “blue module.” (a) In the validation set GSE40367 of the GEO database, LNM (N = 8)
and non LNM (N = 10) samples of liver cancer were selected. The significant differences of gene expression between the two groups were
compared by Limma test and displayed by heatmap. (b) The expression patterns of genes belonging to the blue module in the above
paired groups. (c) GO and KEGG enrichment analysis of the blue module genes. The top 3 terms of each enrichment classification are
highlighted in red, and the number of enriched genes is distinguished by node size.
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3.3. Multidimensional Comparison between HCC Subgroups
Distinguished by PSG-30. Through the correlation analysis
between subtype groups and m6A regulatory factor expres-

sion, we found that there was a significant positive correla-
tion between m6A modification activity and PSG-30
expression level (Figure 4(a)). Likewise, we found that
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Figure 3: Subtype classification based on PSG-30. (a and b) Cumulative distribution function (CDF) for consensus clustering (left) and
relative change in area under CDF curve for k = 2 − 6 (right). (c) Heatmap of consistent clustering results of 371 LIHC samples with k =
4. (d) Heatmap of LNM-related gene expression in the 4 subgroups (blue represents low gene expression, while red represents high gene
expression). (e) The PCA diagram shows the sample separation of the four subtypes.
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ferroptosis-related genes were significantly activated in the
subtypes with high PSG-30 expression (Figure 4(b)). The
distribution plot showed the expression level and trend of
each gene contained in PSG-30 in the four subtypes
(Figure 4(c)), which indicates that the characteristics of
PSG-30 may contribute to the malignant phenotype of tumor
cells through m6A modification and ferroptosis activation.

In addition, we compared the clinical information
among the subtype groups. The results showed that sub-
types with high PSG-30 expression were related to more
advanced T stage, TNM stage, and pathological stage. Lim-
ited by the small number of LNM cases included in TCGA
LIHC samples (N = 4), the N stage showed a sufficient sig-
nificant difference. However, it is noteworthy that samples
with LNM were concentrated in PSG-30 high expression
subtypes (Figure 5(a)).

Survival analysis highlighted significant prognostic dif-
ferences between subtype groups, which were manifested
in OS (P = 0:0078), PFS (P < 0:0001), DFS (P < 0:0001),
and DSS (P = 0:00065) (Figures 5(b)–5(e)). The above
results indicated that high PSG-30 expression was signifi-
cantly associated with worse prognosis. The efficacy of the
targeted drug sorafenib in advanced liver cancer has been
recognized. Single drug application prolongs the time to
progression (TTP) and improves the OS of patients [21].
Based on the Genomics of Drug Sensitivity in Cancer
(GDSC) and TCGA LIHC transcriptome data, IC50 predic-
tions were made for drug sensitivity to sorafenib for each
identified subtype (Figure 5(f)). We found that the PSG-30
high expression group was more sensitive to sorafenib, sug-
gesting that the drug may have better efficacy in HCC
patients with LNM.

As a complement, we performed a cross-over analysis
between PSG-30 and the gene sets associated with common

tumor malignancies and displayed in the Sankey diagram.
The concordance of PSG-30 with energy metabolism, DNA
damage repair, immunity, and EMT signals was 6.7%, 10%,
23.3%, and 50%, respectively (Figure 5(g)). This implies that
multiple malignant phenotypic modules synergistically pro-
mote the lymph node metastatic behavior of HCC, in which
disturbances of EMT and immune-related functions are
major contributing factors.

From a pancancer perspective, PSG-30 can also distin-
guish subtypes of CRC with high lymph node metastasis
potential. Using PSG-30 to divide TCGA CRC samples
(N = 620) into four subtype groups, we noticed the emer-
gence of abnormally active “plates” of PSG-30 expression
in group 4 (Supplementary Fig. 5A). Enrichment analysis
of differentially expressed genes between groups 1 and 4
revealed that significantly disrupted cell adhesion and T
cell function occurred in group 4 (Supplementary Fig.
5B-D). We further demonstrated a highly activated state
of myeloid cells in group 4 by immune infiltration analysis
based on the xCell algorithm (Supplementary Fig. 5E). The
results of clinical data analysis indicated that the cases in
group 4 had higher T stage and TNM stage. And more
importantly, the number of cases with LNM in group 4
increased significantly and mainly clustered in the N2
stage (Supplementary Fig. 5F).

We also assessed the immune infiltration of the identi-
fied subtypes of HCC based on four algorithms, CIBER-
SORT, MCPcounter, TIMER, and quanTIseq. The results
showed that the degree of infiltration of myeloid cells,
especially macrophages, was closely related to the high-
risk group of LNM (Figures 6(a) and 6(b)). Immune
checkpoint molecules that mediate immune suppression
and immune escape were also overexpressed in high-risk
subtypes (Figure 6(c)).

Expression patterns of genes from PSG-30
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Figure 4: Correlation analysis between functional gene expression and identified subgroups. (a) Correlation analysis between subgroups and
m6A modification: the horizontal axis represents different subtype groups, and the vertical axis represents m6A related gene expression. (b)
Correlation analysis between subgroups and ferroptosis: the horizontal axis represents different subtype groups, and the vertical axis
represents ferroptosis related gene expression. Different colors represent the expression trend in each subgroup. (c) Differential
expression of PSG-30 genes between the four subtypes (∗P < 0:05, ∗∗ P< 0.01, and ∗∗∗P < 0:001).
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Figure 5: Clinicopathological analysis of identified HCC subtypes. (a) The distribution of clinical characteristics in samples of different
subtype groups, in which the horizontal axis represents different groups, the vertical axis represents the percentage of clinical
information contained in corresponding grouped samples, and different colors represent different clinical information. The above table
represents the distribution of a clinical feature in any two groups. The marked value is -log10 (P value), and the ∗ represents significant
difference between two groups (∗P < 0:05). (b–e) Kaplan-Meier analysis of prognosis of subtype groups in TCGA LIHC data set.
Different groups were tested by log-rank method and P < 0:05 depict statistically significant difference between groups ((b) OS, P =
0:0078; (c) PFS, P < 0:0001; (d) DFS, P < 0:0001; and (e) DSS, P = 0:00065). Mean time represents the median survival time in years. (f)
Box diagram of IC50 score distribution of sorafenib in different subtype groups, in which the horizontal axis represents samples of
different groups (different colors), and the vertical axis represents IC50 score distribution (Kruskal Wallis test, ∗∗∗∗P < 0:0001; ns: not
significant). (g) A Sankey diagram shows the overlapping areas and proportions of PSG-30 genes and known functional cluster genes.
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Figure 6: Comprehensive immune infiltration score and immune checkpoint-related molecular expression analysis in the identified
subgroups. (a) A box plot shows the distribution of immune score from xCell, MCPcounter, and TIMER in four subtypes related to
HCC LNM, in which the horizontal axis represents the type of immune cells and the vertical axis represents the distribution trend of the
immune score between subtypes. (b) The heatmap shows the distribution of tumor infiltrating immune cells between subtype groups
evaluated by quanTIseq method, in which different colors highlight the differences in the composition of infiltrating immune cells
between subtypes. (c) A heatmap displays the expression and distribution of immune checkpoint related genes among samples of the
four subtypes. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001, Kruskal-Wallis test.
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3.4. Screening of Prognostic Markers in HCC Patients with
LNM. First, we selected the subtype 4 with the most signifi-
cant characteristics of PSG-30 as the training set (N = 61)
and screened the genes contained in PSG-30 by the LASSO
regression model [22]. Seven genes were included in the
optimal OS prediction model: lambda:Min = 0:0658, risk
score = ð−0:1021Þ ∗ CD44 + ð0:0541Þ ∗ FZD7 + ð0:0613Þ ∗
LIF + ð−0:0951Þ ∗ BCL6 + ð0:2979Þ ∗ CCNA2 + ð1:2388Þ ∗
RAD54B + ð0:4193Þ ∗ RECQL (Supplementary Fig. 6A-E).
The correlation analysis of the risk score and immune score
was carried out by using TIMER and quanTIseq algorithms.
The results showed that the model risk score was signifi-
cantly negatively correlated with NK cell and CD8+ T cell
infiltration (P = 0:001, P = 0:028) (Supplementary Fig. 6F,
G). Similarly, we build the optimal DSS prediction model:
lambda:Min = 0:0827, risk score = ð0:0206Þ ∗MYC + ð
1:4093Þ ∗ RAD54B (Supplementary Fig. 7A-E). Both the OS-
and DSS-based risk prediction models described above
showed the great weighting of RAD54B.

PD-L1 (CD274) expression level, TMB, and MSI are
putative indicators to predict the efficacy of immunotherapy
[23]. Figure 6(c) revealed significantly elevated PD-L1
expression in samples from subtype 4. We then analyzed
the correlation between the expression level of RAD54B
and TMB and MSI in the identified HCC subtypes. It was
obvious that the expression of RAD54B in subtype 4 was sig-
nificantly positively correlated with TMB and MSI but not in
other subtypes (Supplementary Fig. 7F-G).

Additionally, we included the top three risk factors from
the LASSO regression model for OS constructed in subtype 4
above, as well as clinical indicators, into the multivariate
regression analysis of the identified subtype 4 and total
TCGA LIHC cases (Figures 7(a) and 7(c)). In subtype 4
cases, RAD54B (P = 0:00342, HR: 4.78, 95% CI: 1.68-13.63)
and CCNA2 (P = 0:032, HR: 2.34, 95% CI: 1.07-5.09), as
independent risks for OS factors, were incorporated into risk
models and plotted as nomograms to help predict 1-, 2-, and
3-year survival (P < 0:001, C − index = 0:835, 95% CI: 0.764-
1) (Figure 7(b)). The calibration curve in Figure 7(e) is not
ideal due to the lack of samples. However, in total TCGA
LIHC cases, RAD54B also appeared to be the most weighted
independent risk factor (P = 0:00024, HR: 2.16, 95% CI:
1.43-3.24). The nomogram composed of RAD54B, age, and
pTNM stage had better predictive performance and reliabil-
ity (Figures 7(d) and 7(f)).

3.5. Genomic Landscape and Clinical Correlations of
RAD54B in HCC. To comprehensively evaluate the mutation
landscape of RAD54B in HCC patients, we applied the cBio-
Portal platform to analyze 6 independent HCC cohorts.
RAD54B had genomic changes in 7% of the total population,
in which gene amplification events accounted for the major-
ity, especially in the cohort (TCGA, Firehose Legacy)
(Figure 8(a)). Further analysis of TCGA LIHC data using
the MEXPRESS platform showed that RAD54B expression
in tumor tissue was inversely correlated with age at initial
pathologic diagnosis and OS. Its expression also showed a
significant correlation with Child-Pugh grade, histological
grade, new neoplasm event type, relative family cancer

history, and race. From Figure 8(b), we can also infer that
high expression of RAD54B is associated with copy number
variation (CNV). Demethylation appeared to simultaneously
promoted the overexpression of RAD54B, especially at the
two methylation sites cg26323655 (r = −0:291, P < 0:001)
and cg25305774 (r = −0:239, P < 0:001).

Based on the cBioPortal platform, we conducted a
prognosis test in 1022 cases out of 6 independent cohorts,
and the prognosis of the RAD54B-altered group was signif-
icantly worse than that of the unaltered group
(Figures 8(c)–8(f)). Interestingly, high RAD54B expression
was significantly associated with better OS in the ICI treat-
ment cohorts of bladder cancer (Mariathasan et al.) and
melanoma (Auslander et al.) (Figures 8(g) and 8(h)). More-
over, GDSC susceptibility analysis indicated that the
RAD54B mutant population was highly sensitive to pyri-
methamine and gefitinib. The above results show that the
efficacy of ICI therapy combined with pyrimethamine or
gefitinib is worth observing, especially in patients with
RAD54B overexpression (Figure 8(i)).

As a complement, we found that compared with the
prognostic differences in the TCGA LIHC dataset shown
in Figures 9(a)–9(c), the prognosis of the RAD54B high-
expressing population in the sorafenib-treated group
(N = 30) was significantly worse (Figures 9(d)–9(g)).
BRCA has the highest incidence of LNM among malig-
nancies, and multiple identified markers of BRCA LNM
are consistent with markers of HCC LNM [24–27]. There-
fore, to make up for the lack of HCC LNM samples in the
TCGA dataset, we compared the prognostic differences
between the high and low RAD54B expression groups in
TCGA BRCA samples with (N = 550) and without LNM
(N = 514). As shown in Figures 9(j) and 9(k), in the
LNM group (N stage: N1+N2+N3), the prognosis of the
RAD54B high expression group was significantly worse
than that of the RAD54B low expression group. However,
in the non-LNM population (N stage: N = 0), the expres-
sion level of RAD54B was not significantly associated with
the prognosis of patients (Figures 9(h) and 9(i)).

Regarding the possible interference of HBV present in
the above-mentioned GSE5975 gene set on PSG-30-related
subtype classification, we additionally analyzed the progno-
sis of hepatitis virus-positive samples (N = 153) and virus-
negative samples (N = 169) in TCGA LIHC. The high
expression of RAD54B in the hepatitis virus negative group
(Supplementary Fig. 8A-D) showed a more significant
association with poor prognosis compared to the hepatitis
virus-positive group (Supplementary Fig. 8E-H).

3.6. Histological Analysis of RAD54B Expression. We per-
formed tissue expression analysis on the Human Protein
Atlas (HPA) platform. Figure 10(a) shows that RAD54B is
highly expressed in lymphoid tissues at both the protein
and RNA levels but is expressed at low levels in normal liver
organs. Furthermore, single-cell level analysis revealed that
RAD54B was highly expressed in Ito cells, T cells, and
cholangiocytes but expressed at lower levels in normal hepa-
tocytes (Figure 10(b)). Through the above analysis, we
observed that RAD54B seems to have a basal high expression
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Figure 7: Continued.
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Figure 7: Construction and validation of nomograms for risk prediction of OS in HCC. (a and c) The risk factors CCN2, RAD54B, and
RECQL from the established LASSO regression model for OS and the recorded clinical factors age, gender, pTNM stage, and
pathological grade were included in multivariate logistic regression analysis to determine the independent risk factors for OS in the
identified HCC subtype 4 cases (a) and total TCGA LIHC cases (c). (b and d) Construction of nomogram predicting 1-, 2-, and 3-year
OS for patients from the identified HCC subtype 4 (P < 0:001, C-index: 0.835, 95% CI: 0.764-1) (b) and total TCGA LIHC (P < 0:001, C-
index: 0.682, 95% CI: 0.629-1) (d). (e and f) Calibration curve of nomogram for subtype 4 (e) and total TCGA LIHC (f).
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in the immune tissues and infiltrating immune cells of the
liver. Therefore, based on the quanTIseq algorithm, the
expression of RAD54B in TCGA LIHC samples was revealed
to be significantly positively correlated with Tregs and mac-
rophage infiltration (P < 0:001) (Figure 10(c)).

CHOL is another pathological type of liver cancer, which
occasionally coexists with HCC. Moreover, compared with

HCC, CHOL patients tend to develop LNM earlier and more
frequently. Immunohistochemical results showed that the
expression intensity of RAD54B in HCC was generally
weaker than that in CHOL (Figure 10(d)).

Therefore, based on TCGA CHOL samples (N = 45), we
found that RAD54B was significantly increased in CHOL
compared to normal tissue. However, due to the limitation
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Figure 8: The mutation view of RAD54B and its clinical relevance. (a) The mutation landscape of RAD54B in 1026 samples of 1022 patients
in 6 HCC cohorts and the comparison of mutation frequency of RAD54B in each cohort from cBioPortal platform. (b) The correlation
between the expression of RAD54B in HCC and the clinical characteristics (upper) or DNA methylation level (below) was analyzed by
MEXPRESS tool. (c–f) The prognosis of the RAD54B mutated and unmutated groups in 6 cohorts of patients was analyzed on the
cBioPortal platform ((c) OS, P = 1:310e − 4; (d) DFS, P = 0:0131; (e) DSS, P = 0:165; and (f) PFS, P = 0:313). (g and h) The effects of
RAD54B expression on the OS of patients was analyzed in the ICI treatment cohorts for bladder cancer (P = 0:007, HR = 0:7, 95% CI:
0.54-0.91) and melanoma (P = 0:015, HR = 0:34, 95% CI: 0.13-0.89). (i) Drug sensitivity analysis based on the GDSC, the horizontal axis
shows the group (wild type and mutant), and the vertical axis shows the given drug and the corresponding ln(predicted IC50) value.
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Figure 9: Prognostic analysis of RAD54B in HCC subgroup and other cancer types. (a–c) The prognosis of RAD54B was analyzed in the
total TCGA sample (N = 371) ((a) OS, P = 0:001, HR = 1:82, 95% CI: 1.28-2.58; (b) DSS, P = 0:004, HR = 1:92, 95% CI: 1.23-3.01; and (c)
PFS, P = 0:01, HR = 1:47, 95% CI: 1.10-1.96). (d–g) KM plot tool was used to analyze the effects of high and low expression of RAD54B
on prognosis in sorafenib treatment group of HCC ((d) OS, P = 0:023, HR = 3:58, 95% CI: 1.11-11.50; (e) PFS, P = 0:04, HR = 2:23, 95%
CI: 1.02-4.91; (f) RFS, P = 0:13; and (g) DSS, P = 0:023, HR = 3:58, 95% CI: 1.11-11.50). (h–k) The breast cancer samples were divided
into LNM and non LNM groups, and the prognosis of RAD54B expression was analyzed. RAD54B showed significant prognostic value
only in LNM group ((h) N0-OS, P = 0:275; (i) N0-DSS, P = 0:259; (j) N1&2&3-OS, P = 0:004, HR = 1:85, 95% CI: 1.22-2.82; and (k)
N1&2&3-DSS, P = 0:015, HR = 1:90, 95% CI: 1.13-3.19).
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of the sample size, the expression of RAD54B in the CHOL
LNM group (N = 5) was increased but not statistically signif-
icant compared with the non-LNM group (N = 26)
(Figure 10(e)). Further, in TCGA CHOL (Firehose Legacy)
dataset, 19% of the samples had genomic alterations of
RAD54B, which were significantly associated with LNM
(P = 0:0117) (Figures 10(f) and 10(g)). Cases with genomic
alterations did not show significant prognostic differences
and may require larger numbers of samples to support
(Figures 10(h) and 10(i)).

4. Discussion

This study first established the prognosis-related gene
marker PSG-30 in HCC patients with LNM, and differenti-
ated HCC patients into subtypes with significantly different
prognosis. Compared with the low-risk subtype group, the
tumor tissue of the high-risk subtype group showed signifi-
cantly elevated m6A methylation modification, ferroptosis
activation, and drug sensitivity to sorafenib. Moreover, the
infiltration of myeloid cells, especially macrophage, was
significantly increased in samples from the high-risk subtype
group, and the expression of corresponding immune check-
point molecules was upregulated. Based on this, we found
that RAD54B in the PSG-30 gene cluster was an independent

risk factor for the prognosis of HCC LNM. High RAD54B
expression was associated with worse prognosis in samples
from the sorafenib-treated cohort and hepatitis virus-
negative cohort. However, high expression of RAD54B also
brings potential increased benefits of ICI treatment.

From a pancancer perspective, we selected CRC as the
validation group for PSG-30 subtype grouping. The reason
is that there are a sufficient number of LNM samples in
the TCGA CRC dataset. Furthermore, CRC is most prone
to liver metastases, and its colonization is not only related
to circulating blood flow but also depends on a favorable
metastatic microenvironment in the liver [28–30]. There-
fore, we speculate that there is a close biological link between
CRC and HCC, especially in the tumor microenvironment
(TME) [31, 32]. The results showed that the high- and
low-risk subtypes differentiated by PSG-30 were similar to
HCC subtypes in terms of biological function enrichment
differences, and their high-risk subtypes also showed the
same significant macrophage infiltration as HCC. More
importantly, CRC samples with LNM were significantly
enriched in the high-risk subtype group.

We also selected BRCA samples for validation. The first
reason is that the incidence of LNM is highest in BRCA, and
the samples available for analysis are abundant. Moreover,
the biomarkers of LNM for BRCA and HCC have high
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Figure 10: Histological overview of RAD54B and its potential role in cholangiocarcinoma. (a) Expression and distribution of RAD54B
protein and RNA in different tissues and organs in HPA database. (b) Single-cell analysis of differences in RAD54B expression among
different types of cell clusters in the liver. (c) Relationship between RAD54B and immune cell infiltration in HCC calculated by
quanTIseq method. (d) The HPA database was used in order to determine the RAD54B protein expression level in HCC and CHOL via
immunohistochemistry (IHC) staining, and the typical IHC images were obtained from the HPA database. (e) Comparison of RAD54B
mRNA expression levels in subgroups N0, N1, and normal tissues in TCGA CHOL dataset. (f and g) The gene mutation and mRNA
overexpression of RAD54B in TCGA CHOL (Firehose Legacy) samples and the correlation analysis of the altered group with LNM. (h
and i) Prognostic analysis of the RAD54B mutation and mRNA overexpression group in the TCGA CHOL (Firehose Legacy) cohort.

35Oxidative Medicine and Cellular Longevity



concordance among existing studies. We found that gene
amplification of PSG-30 dominated the genetic alteration
landscape of BRCA samples, and the altered group had
significantly worse prognosis, LNM rate, and number of
positive lymph nodes. Interestingly, RAD54B expression,
an independent risk factor for HCC LNM, was also signifi-
cantly associated with prognosis in the BRCA LNM group,
but not in the LNM-free group.

We further analyzed the protein and mRNA expression
of RAD54B at the tissue level. We found that RAD54B was
significantly highly expressed in lymphoid tissues, and the
high expression of RAD54B in tumor tissues with LNM
may be partly due to the contribution of tumor neoplastic
lymphatic vessels, which proved to be associated with
LNM. Single-cell expression analysis highlighted the high
baseline expression of Ito cells, T cells, and cholangiocytes
in normal liver tissue. Among them, Ito cells and T cells
are involved in the immune response, so we specifically ana-
lyzed the correlation between the mRNA expression of
RAD54B and the type of immune cell infiltration in HCC.
The results showed that the correlation between prominent
Tregs and macrophage infiltration was more significant than
that of CD4+/CD8+ T cells, and NK cell infiltration was
negatively correlated. When considering cholangiocytes, we
additionally analyzed the expression profile and mutational
landscape of CHOL, another histological type in liver
tumors. The results demonstrate a high mutation rate and
tissue expression of RAD54B in CHOL. Notably, RAD54B
mRNA had a trend of high expression in the LNM group
of CHOL. Moreover, when high mRNA expression was
considered together with gene amplification, RAD54B was
significantly associated with CHOL LNM (P = 0:0345).

We noticed that the identified HCC LNM-related recog-
nition module contained 70 genes, which were mainly
related to the regulation of endopeptidase activation, T cell
activation, and intercellular adhesion. Current studies have
found that a variety of endopeptidases are specifically highly
expressed in cancer and play a role in promoting cancer.
Asparagine endopeptidase can mediate the formation of
malignant tumor phenotype and adverse tumor microenvi-
ronment by acting on substrate proteins such as P53, integ-
rin, and matrix metalloproteinase, thereby promoting the
occurrence, development, and metastasis of malignant
tumors [33]. Neutral endopeptidase expression in CRC cells
can enhance liver metastasis of CRC by degrading the hepa-
toprotective methionine enkephalin [34]. Meanwhile, cells
can acquire enhanced proliferation and metastatic ability
by overexpressing the neural cell adhesion molecule L1
(L1-CAM), and the expression of neutral endopeptidase is
a necessary condition for the acquisition of L1 characteristics
of cancer cells [35]. Regulation of T cell activation also plays
a dominant role in tumor metastasis, especially in the
immune microenvironment of early LNM. In metastatic
sentinel lymph nodes, the effects of metastatic BRCA cells
on the immune system focus at an early stage on sustained
T-cell immune responses, depletion of effector T cells, and
enhanced Treg-mediated immunosuppression [36–38]. In
addition, γδ T cells can promote BRCA LNM through
neutrophil-mediated CD8+ T cell suppression [39]. Regula-

tion of cell adhesion plays a cornerstone role in the forma-
tion of the tumor-associated microenvironment and tumor
cell metastasis. Studies have found that intercellular adhe-
sion molecule-1 (ICAM-1) of tumor cells plays a role in
tumor progression by promoting malignant phenotype of
cancer cells, activity of angiogenesis/lymphangiogenesis,
and macrophage infiltration and is significantly associated
with LNM [40].

As shown in the Sankey diagram shown in Figure 5(g),
the screened PSG-30 gene modules overlapped with gene
modules associated with tumor malignant phenotypes, espe-
cially EMT, immunity, DNA damage repair, and energy
metabolism. The different weights of each overlapping mod-
ule underscored the advantages of EMT and immunity in
LNM of poor prognosis HCC, both of which are mainly
related to the remodeling of the TME. Significantly upregu-
lated m6A modification and ferroptosis activation in high-
risk subtype tissues also suggested the occurrence of TME
remodeling [41, 42]. Our studies have highlighted the corre-
lation between macrophage infiltration and high-risk popu-
lations in HCC LNM. Tumor-associated macrophages
(TAMs) are macrophages infiltrating tumor tissues, which
are closely related to LNM in various tumor types [43–45].
Weichand et al. reported the relationship between inflam-
matory macrophages and tumor lymphangiogenesis in
pancancer and confirmed the relationship between the
expression of inflammasome NLRP3 in TAMs and LNM
[46]. Chen et al. reported that LNMAT1-induced upregula-
tion of CCL2 recruited TAMs and further promoted LNM
in bladder cancer by secreting VEGF-C [47]. PDPN-
expressing macrophages (PoMEs) have been validated to
promote tumor lymphangiogenesis and LNM in BRCA
[48]. Interestingly, this study found a significant positive
correlation between PSG-30 and TAM/M2 macrophage
markers in TCGA LIHC samples, which further corrobo-
rated the promoting effect of TAM on HCC LNM (Supple-
mentary Fig. 12B). The significant expression correlation
between PSG-30 and HCC LNM-related free mRNA
screened from the microarray in our previous study also
expanded the potential value of PSG-30 in clinical applica-
tion (Supplementary Fig. 12A) [49].

RAD54B belongs to the SWI2/SNF2 gene superfamily
and is mainly involved in the homologous recombination
repair process of DNA. RAD54B detects copy number varia-
tions, single nucleotide polymorphisms, and aberrant
mRNA expression in multiple tumor types and has been
shown to be closely related to tumor prognosis. In hepatoma
cell lines, RAD54B was significantly higher expressed than in
normal hepatocytes. Moreover, high expression of RAD54B
protein in liver cancer tissues was significantly associated
with poor prognosis. Studies have reported that RAD54B
can promote the metastatic properties of liver cancer cells
through the Wnt/β-catenin signaling axis. In lung adenocar-
cinoma, simultaneous expression of RAD54B and FEN1
proteins was also associated with late-stage LNM in patients.
According to our study, gene amplification and increased
transcription of RAD54B were significantly associated with
the prognosis of HCC, which was also manifested in BRCA.
The high-risk HCC subtypes identified in this study were
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analyzed to have higher sorafenib sensitivity and high
expression of immune checkpoint molecules, suggesting that
this population is more suitable for sorafenib combined with
ICI therapy. However, in the above-mentioned high-risk
subtype samples, while high RAD54B expression suggested
a worse prognosis, it was significantly positively correlated
with increased TMB/MSI and showed a worse prognosis in
the sorafenib-treated group. This suggests that for the
HCC LNM population with high expression of RAD54B,
sorafenib may not be the first choice drug, but the status of
immunotherapy is further highlighted. The results of suscep-
tibility analysis provided gefitinib as a combination option.

To date, many advances have been made in the immuno-
therapy of advanced liver cancer. Patients who received
immunotherapy had significantly improved outcomes com-
pared with treatment with sorafenib alone. Atezolizumab
combined with bevacizumab has become the first-line treat-
ment for patients with unresectable or metastatic HCC
[50]. Here, our study provides more nuanced evidence for
immunotherapy in HCC patients with LNM.

There are some limitations of our work. First, there is a
lack of sufficient HCC LNM samples to directly validate
PSG-30 as well as prognostic models. Furthermore, consider-
ing that the findings were analyzed and obtained based on
datasets from bioinformatics and public databases, it is nec-
essary to further validate the recognition ability of PSG-30
and the prognostic role of RAD54B in a larger independent
cohort. The molecular mechanisms of HCC TNM-related
genes in vivo and in cell lines also need to be fully validated.

In conclusion, we developed PSG-30, a prognostic gene
signature for HCC LNM, to help identify HCC patients with
LNM with poor prognosis. Through further regression
model analysis of prognosis, RAD54B with the largest risk
weight was selected as an independent prognostic risk factor.
Through the systematic analysis of PSG-30-related subtypes
and prognostic factor RAD54B, this work provides clues for
the study of the pathogenesis of HCC LNM and the imple-
mentation of clinical individualized treatment.
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Supplementary Materials

Supplementary Figure 1: gene expression clustering analysis
based on weighted gene coexpression network analysis
(WGCNA) on paired samples from the GEO:GSE28248
dataset. (A and B) Selection of the soft-thresholding power
(β = 6) with scale free topology model and mean connectiv-
ity. (C) Gene dendrogram and gene-module relationships
obtained by hierarchical clustering of TOM-based dissimi-
larity. (D) The colored line below the gene dendrogram
shows the three characteristic modules that are combined
after being identified by the dynamic tree cutting algorithm
(the grey module is defined as the gene set that cannot be
assigned). Supplementary Figure 2: identification and
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phenotypic association analysis of LNM-related gene mod-
ules in HCC. (A) Clustering based on modular eigenvectors
displayed significant discrimination between the identified
modules. (B) A heatmap of the correlation between module
and clinical traits of interest showed that the blue module
had significant statistical significance in distinguishing
HCC LNM (P = 7:4e − 3, r = 0:3). (C) A scatter plot of gene
significance (GS) and module membership (MM) in blue
module showed a significantly positive correlation
(P = 2:9e − 6, r = 0:44); HCC LNM-related modules (blue)
were further confirmed. (D) The coexpression network of
73 genes belonging to the blue module in the TCGA-LIHC
data set. Supplementary Figure 3: differential gene analysis
and gene function enrichment analysis of subtype 1 and sub-
type 4 separated by PSG-30. (A) Heatmap of differential
gene expression among subtypes: the 50 upregulated genes
(red) and 50 downregulated genes (blue) with the largest
differential changes are shown here, and the green and red
bands above the heatmap correspond to different subtypes.
(B) A volcano plot of differentially expressed genes
(fold change ≥ 1:5) between identified subtypes depicts the
adjusted P value (−log10) vs. fold change (log2). (C) Func-
tional enrichment: KEGG pathway and GO term enrich-
ment results of differentially upregulated or downregulated
genes among subtypes. Different colors represent the signif-
icance of differential enrichment terms, and the size of nodes
reflects the number of enriched genes. Supplementary Figure
4: subtype verification based on independent HCC samples
from GSE5975 microarray dataset. (A and B) Consistent
clustering (k = 4) heatmap of 238 HCC samples and heat-
map for PSG-30 related gene expression among the four
subgroups. (C and D) Differential gene expression profile
between subtype 2 and 4 presented with a volcano plot and
a clustered heatmap (fold change ≥ 1:5). Different colors on
the horizontal axis correspond to different subtype groups.
(E) KEGG pathway and GO term enrichment results of
differentially upregulated or downregulated genes among
subtype 2 and 4. Different colors represent the significance
of differential enrichment terms, and the size of nodes
reflects the number of enriched genes. Supplementary Figure
5: verification of PSG-30’s subgroup discrimination ability in
CRC. (A) Heatmap of PSG-30 related gene expression in
subtypes identified by consensus clustering (k = 4) in TCGA
COADREAD samples (N = 620). Red represents high
expression and blue represents low expression. (B–D)
Enrichment analysis of DEGs between subtype 1 and 4. (E)
Immune infiltration analysis of identified subgroups based
on xCell algorithm. (F) The distribution of clinical charac-
teristics in samples of different subtype groups. ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001, Kruskal-Wallis test. Supple-
mentary Figure 6: construction of LASSO regression model
based on OS data and analysis of its correlation with
immune cell infiltration. (A) Dynamic relationship between
coefficients of selected features and regularization parameter
λ. (B) The relationship between partial likelihood deviation
and log (λ) is obtained by LASSO Cox regression model.
(C) The composite diagram evaluates the relationship
between risk score and survival time and survival status
based on TCGA data set, in which the upper figure repre-

sents the scatter diagram of risk score from low to high,
distinguishes high- and low-risk groups by color, and maps
them to the middle and lower figures. The middle figure
shows the scatter diagram distribution of survival time and
survival state corresponding to high- and low-risk groups,
and the states of “alive” and “dead” are distinguished by
color. The lower figure represents the expression heatmap
of the included prognostic factor genes in the sample. (D)
The distribution of KM survival curve of the risk model in
TCGA data set, in which the difference between groups is
tested by log-rank test, and the mean time represents the
median survival time in years. (E) The ROC curve and
AUC value of the constructed risk model at the point of 1,
3, and 5 years. (F and G) Spearman correlation analysis
between model risk score and immune score evaluated by
TIMER (F) and quanTIseq (G). The horizontal axis repre-
sents the distribution of model risk score, the vertical axis
represents the distribution of immune scores, and the right
density curve represents the distribution trend of immune
scores. The upper density curve is the distribution trend of
model risk score. Supplementary Figure 7: construction of
LASSO regression model based on DSS data and analysis
of its correlation with TMB and MSI. (A) Dynamic relation-
ship between coefficients of selected features and regulariza-
tion parameter λ. (B) The relationship between partial
likelihood deviation and log (λ) is obtained by LASSO Cox
regression model. (C) The composite diagram evaluates the
relationship between risk score and survival time and sur-
vival status based on TCGA dataset, in which the upper
figure represents the scatter diagram of risk score from low
to high, distinguishes high- and low-risk groups by color,
and maps them to the middle and lower figures. The middle
figure shows the scatter diagram distribution of survival time
and survival state corresponding to high- and low-risk
groups, and the states of “alive” and “dead” are distinguished
by color. The lower figure represents the expression heatmap
of the included prognostic factor genes in the sample. (D)
The distribution of KM survival curve of the risk model in
TCGA dataset, in which the difference between groups is
tested by log-rank test, and the mean time represents the
median survival time in years. (E) The ROC curve and
AUC value of the constructed risk model at the point of 1,
3, and 5 years. (F and G) Correlation between independent
prognostic molecule RAD54B and TMB (F)/MSI (G) in four
subtypes. Supplementary Figure 8: prognostic analysis of
RAD54B in samples with and without hepatitis virus.
(A–D) KM plot of RAD54B expression in the hepatitis
virus negative group with respect to OS, PFS, RFS, and
DSS. (E–H) KM plot of RAD54B expression in the hepati-
tis virus-positive group with respect to OS, PFS, RFS, and
DSS. Supplementary Figure 9-10: prognostic analysis of OS
and RFS in HCC using the KM plot database for 70 genes
selected. Genes with no prognostic significance in both OS
and RFS have been deleted from display. And genes with
one or both prognostic significance in OS and RFS were
retained and displayed as KM plots. Supplementary Figure
11: the mutational landscape of PSG-30 and its clinical
prognostic relevance. (A and B) The genomic changes of
PSG-30 in samples from the 6 independent LIHC cohorts
(N = 1026) of the cBioPortal platform and the distribution of

38 Oxidative Medicine and Cellular Longevity



mutation types in each cohort. (C and D) Comparison of the
prognosis of PSG-30 mutant population and nonmutated
population in OS and DFS. (E and F) Comparison of the inci-
dence of LNM (Neoplasm Disease Lymph Node Stage Amer-
ican Joint Committee on Cancer Code) and vascular invasion
between people with PSG-30 mutation and those without
mutation. (G) The genome changes and mRNA expression
of PSG-30 in the LIHC cohort samples (N = 360) derived from
the TCGA dataset (Firehose Legacy). (H and I) Comparison of
the prognosis of the PSG-30 genome-altered population and
the unaltered population in DFS and OS. (J and K) The geno-
mic changes of PSG-30 in 17 BRCA cohort samples (N = 7771
) of the cBioPortal platform and the distribution of mutation
types in each cohort. (L and M) The comparison of number
of positive lymph nodes examined and the population distri-
bution ratio between the BRCA samples with and without
PSG-30 mutation. Supplementary Figure 12: coexpression
analysis of biomarkers in TCGA LIHC dataset. (A) The
expression correlation analysis of PSG-30 (horizontal coordi-
nate) and HCC LNM-related free mRNAs (vertical coordi-
nate). (B) The expression correlation analysis of PSG-30
(horizontal coordinate) and TAM/M2 macrophage markers
(vertical coordinate). (C) The expression correlation analysis
of TAM/M2 macrophage markers (horizontal coordinate)
and HCC LNM-related free mRNAs (vertical coordinate).
(Supplementary Materials)
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