
INTRODUCTION 

Fragility fractures, which occur owing to low-energy trauma such 
as a fall from a standing height or lower, are a major public health 
and economic concern worldwide, with an incidence estimated to 
outnumber those of stroke, heart attack, and breast cancer com-
bined.1,2) With aging populations, fragility fractures are predicted 
to become a burden on healthcare systems. Although fragility frac-
tures occur at various sites, including the wrist, humerus, and 
spine, commonly causing pain and disability and reducing quality 
of life, hip fractures present the most serious consequences. A re-
cent epidemiological study using a nationwide database revealed 
that 14% and 21% of women and men, respectively, died within 1 
year of hip fractures.3) Even if they recover, more than six out of ten 
older adults with hip fractures require assistance to carry out their 
activities of daily living.4,5) Therefore, preventing these low-trauma 
fractures is critical for independent living in older age. 

Osteoporosis is a metabolic skeletal disorder characterized by 
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low bone mass and poor bone quality, which result in an increased 
risk of fragility fractures. The prevalence of osteoporosis increases 
with age in both men and women in Korea, reaching nearly 70% in 
women aged > 70 years.3) Based on the underlying mechanisms of 
osteoporosis, many effective drugs, such as anti-resorptives or 
bone-forming agents, have been developed and used in clinical 
practice to improve bone strength.6) However, despite these ef-
forts, decreases in the incidence of osteoporosis and resultant frac-
tures have been stagnant, thereby forming the major cause of in-
creased morbidity and mortality in older adults. Given the multi-
faceted pathogenesis of fragility fractures, a systemic approach to 
various risk factors besides deteriorated bone health is essential for 
fracture prevention.  

Sarcopenia corresponds to a progressive loss of skeletal muscle 
mass and function due to an imbalance between protein synthesis 
and breakdown.7) Several lines of evidence indicate that sarcopenia 
is closely associated with higher mortality and adverse health out-
comes, such as metabolic and degenerative diseases, disability, co-
morbidities, and institutionalization in older adults.8-10) As a result, 
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this syndrome has received attention globally in the last decade 
and is now considered a “geriatric giant” in super-aged societies.11) 
In particular, sarcopenia directly enhances fragility fractures by in-
creasing the risk of falling due to aberrant balance and poor physi-
cal performance.12,13) Consequently, to effectively reduce fragility 
fractures, not only the metabolism of each bone and muscle but 
also the mechanisms underlying their interactions should be eluci-
dated. The present review discusses muscle–bone communication, 
with a focus on the impact of muscles on bone health. 

CLINICAL EVIDENCE SUPPORTING THE HIGHLY 
INTEGRATED NATURE OF MUSCLES AND BONES 

Skeletal muscles and bones represent the largest tissues in the body 
of a non-obese person and comprise the musculoskeletal system, 
the structure of which allows mobility and protects the internal or-
gans.14) In the law of the jungle, the coordination between muscles 
and bones is critical. For example, even if an animal has strong 
bones, weak muscles make it difficult to avoid predators. Converse-
ly, in cases of weak bones but strong muscles, abrupt muscle-de-
rived stress on the neighboring bones might increase fracture risk. 
Therefore, muscular and bone changes are likely matched through-
out life. 

Epidemiological studies have revealed that muscle and bone 
losses frequently occur simultaneously, especially in older individ-
uals. In a nationwide population-based study of Asians aged > 65 
years, lower height-adjusted appendicular skeletal muscle was as-
sociated with lower bone mineral density (BMD) after considering 
potential confounders.15) Other studies, including a systematic re-
view and meta-analysis, have consistently suggested that mid-
dle-aged and older adult men and women with sarcopenia are 
more likely to have a higher risk of developing osteoporosis than 
those without sarcopenia.16-18) More importantly, skeletal muscles 
affect not only bone mass but also bone quality and strength. Poor 
structural parameters of the femoral neck and distal radius, includ-
ing thinner cortices, reduced cortical area, deteriorated microarchi-
tecture, and lower section modulus, are more common in men 
with lower muscle mass and weaker handgrip strength.19,20) In a 
representative cohort of the general Korean population aged ≥ 50 
years, women with sarcopenia had markedly decreased femoral 
neck composite strength indices for compression, bending, and 
impact.21) These findings provide clinical evidence of the strong re-
lationship between muscles and bones in aging. 

To describe the concurrent development of osteoporosis and 
sarcopenia, “osteosarcopenia,” a unique geriatric syndrome, was 
initially proposed by Hirschfeld et al.22) Although common hor-
monal, nutritional, lifestyle, and genetic determinants may explain 

at least some of the highly integrated nature of muscles and 
bones,23-26) the pathogenesis of osteosarcopenia is multifactorial 
and remains actively investigated. From the perspective of physi-
cians investigating the musculoskeletal system, the clinical implica-
tion of osteosarcopenia is that treatment strategies that target ei-
ther osteoporosis or sarcopenia separately may not be sufficient for 
fracture prevention; thus, novel approaches to simultaneously im-
prove both tissues are needed. Several comprehensive reviews on 
osteosarcopenia have been published recently.27-29) 

MUSCLE CHANGES OCCUR FIRST, FOLLOWED BY 
BONE ALTERATIONS 

Although the crosstalk between muscles and bones is bidirection-
al, some clinical and preclinical observations indicate the dominant 
role of muscles over bones in synchronizing the mass and quality 
of these two tissues. For example, a longitudinal study of 138 boys 
and girls during pubertal development revealed that the rate of 
muscle force accrual was the highest a few months before the peak 
gain in bone strength.30) Similarly, other studies including adoles-
cents and young adults showed that lean mass changes preceded 
alterations in whole-body BMD and bone strength.31,32) Anteced-
ent muscle atrophy also affected bone loss in an animal model.33) 
Furthermore, when astronauts return to normal gravity, their mus-
cle loss is recovered six times faster than the bone loss.34) Conse-
quently, these data suggest that muscle changes occur first, fol-
lowed by bone alterations, in the sequence of muscle–bone com-
munication. 

MUSCLE FORCE-GENERATED MECHANICAL 
SIGNALS TO THE BONE 

The impact of muscles on bones has traditionally been addressed 
from a mechanical standpoint. The skeletal muscles attach to 
bones along the motion axis, transforming skeletal segments into 
a lever system that requires significant muscle force to generate 
the torque necessary for movement.35) The muscle force-generat-
ed strain transducing anabolic activity in nearby bones has been 
theoretically supported by the “mechanostat” theory.36,37) Osteo-
cytes, the most mechanosensitive bone cells, respond to fluid 
shear stress and convert mechanical strain into biochemical sig-
nals to recruit osteoclasts or osteoblasts.38,39) Therefore, osteo-
cytes are key players in mediating the loading effects on bone 
strength. The model of bone as a biomechanical tissue is further 
supported by the results of murine experiments showing the 
beneficial effects of low-magnitude mechanical stimuli on bone 
mass and structure.40,41) 
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Patients with spinal cord injury (SCI) are a useful human mod-
el to better understand the importance of muscle atrophy in bone 
health.42) This devastating condition refers to temporary or per-
manent spinal cord damage, mainly resulting from trauma, such 
as sports injuries, falls, or vehicle accidents, and mimics neurecto-
my by surgical procedures to induce deteriorated musculoskeletal 
phenotypes. Paralyzed patients enter an extreme catabolic state 
and undergo dramatic contractile and morphological muscular 
changes below the injury level, leading to a substantial loss of 
muscle mass, function, and endurance.43-45) Osteoporosis is a 
common consequence of SCI, with bone loss occurring at a rate 
of 1% per week during the first 6–12 months after SCI, that is, 
5–20 times faster than that observed with aging, prolonged bed 
rest, or microgravity.43,46-48) Interestingly, bone loss is observed 
mainly in the paralyzed limbs and not in the non-affected areas.46) 

Other studies have shown that electrical stimulation of paralyzed 
muscles markedly reduces deleterious post-SCI bone adaptations 
and even reverses, at least partially, bone loss after SCI.44,49,50) 
These human data point to the elimination of internal loading via 
muscle contractions and regular gravity loading via ground reac-
tion forces as the primary causes of SCI-related weak bone 
strength. 

Consistent with findings showing concomitant muscle atrophy 
and bone loss in rodent disuse models of hindlimb unloading and 
botulinum toxin injection,33,42,51,52) muscle-induced mechanical im-
pulses are the main factors with positive effects on bone metabo-
lism. 

BEYOND MECHANICAL: THE ROLE OF MYOKINES 
ON THE MUSCLE–BONE CROSSTALK 

To describe cytokines or other peptides that are expressed, synthe-
sized, and secreted from the skeletal muscles and exert biological 
activity in the human body, Pedersen et al.53) coined the term 
“myokine,” from the Greek words for “muscle” and “motion.” Rec-
ognizing muscles as an endocrine organ marks a watershed mo-
ment in our knowledge of how muscles communicate with other 
organs, such as the liver, brain, and adipose tissues, and establishes 
the notion of the critical need to maintain muscle health to reduce 
clinical disorders. With the development of modern technologies, 
including quantitative mass spectrometry-based proteomics, sev-
eral secretome analyses have led to the identification of novel mus-
cle-derived factors and various candidates from the supernatants of 
mouse C2C12 cells, human skeletal muscle cells, and L6 rat myo-
tubes.54-58) Determining their biological roles in human health is 
currently a hot topic in this field. 

Because skeletal muscles and bones are in close anatomical prox-

imity, myokines likely biochemically influence bone homeostasis 
in a paracrine manner, a possibility strongly supported by 
long-standing observations in humans and rodents. Extensive 
muscle damage in open fractures is well known to impede fracture 
healing, with more negative consequences if the muscles are lost 
rather than crushed.35,59-61) Quantitative peripheral computed to-
mography, mechanical testing, and histomorphometry analysis in 
a mouse model indicated that covering open tibial fractures 
stripped from the periosteum with muscle flaps increased bone re-
generation quality and rate compared to those obtained by cover-
ing them with similarly vascularized fasciocutaneous tissues.62,63) 
Furthermore, early soft tissue cover with a vascularized muscle flap 
markedly improved the healing of severe open tibial fractures after 
trauma in humans.64) These findings supported the idea that mus-
cle production of local growth factors may induce bone formation, 
irrespective of physical load, and that biochemical and mechanical 
stimuli work together for muscle–bone crosstalk.65) 

Several research groups have experimentally demonstrated the 
direct effect of myokines on bone metabolism. Conditioned media 
(CM) collected from C2C12 myotubes exerted protective effects 
against glucocorticoid-induced osteoblast and osteocyte apoptosis 
through β-catenin activation,66) and the primary myoblast CM of 
exercised mice significantly enhanced in vitro osteoblastogenesis.67) 
We first demonstrated that myotube CM suppressed in vitro bone 
resorption by inhibiting osteoclastogenesis and the resorptive ac-
tivity of individual osteoclasts, whereas the same CM increased os-
teoblast viability and migration, thereby stimulating calvaria bone 
formation (Fig. 1).68) Furthermore, systemic treatment with myo-
tube CM through the tail vein in ovariectomized mice increased 
bone mass by 30.7% compared to that of the non-CM.68) Although 
skeletal muscles can secrete complex factors, including positive or 
negative regulators, in terms of bone metabolism, our results 
showed the osteoprotective in vitro and in vivo net effects of various 
myokines on bone metabolism. 

Fig. 1. Myotube-conditioned media (CM) show dual osteoprotective 
effects of simultaneously stimulating bone formation and inhibiting 
bone resorption.

Osteoclasts Osteoblasts

Myotube 
CM

Viability ↑
Migration ↑

Differentiation ↓
Resorptive activity ↓

Dual effects of stimulating bone formation and inhibiting bone resorption
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The finding that CM from skeletal muscle cells can promote 
bone formation while inhibiting bone resorption has crucial thera-
peutic implications in the management of osteoporosis. Although 
anti-resorptive agents, such as bisphosphonate and denosumab, 
have been most frequently used to treat osteoporosis worldwide, 
these drugs also concomitantly suppress bone formation due to a 
coupling phenomenon, raising questions about their long-term 
side effects and efficacy.69,70) Bone-forming medications such as 
teriparatide or abaloparatide have been suggested as alternatives. 
However, these drugs also sequentially stimulate bone resorption, 
rendering their anabolic action ineffective after 2 years of use.71) 
Therefore, dissociation of bone resorption from bone formation is 
essential for effective osteoporosis treatment. In this regard, mus-
cle-secreted factors with opposing effects on osteoblasts and osteo-
clasts might be ideal candidates as potential therapeutic targets 
against metabolic bone diseases. 

MUSCLE-DERIVED FACTORS INFLUENCING BONE 
METABOLISM 

Specific myokines affecting bone homeostasis are being continu-
ously discovered. Among these factors, myostatin and irisin have 
attracted the most attention in muscle–bone interactions. Myo-
statin, also known as growth differentiation factor 8, is a protein 
released by myocytes.72) Its levels are increased in catabolic situa-
tions, causing muscle atrophy, such as inflammation, microgravi-
ty, and immobilization.73) Although myostatin has been primarily 
evaluated as a negative regulator of muscles,74-76) increasing data 
indicate its direct function in bone remodeling. Myostatin 
strongly accelerates receptor activator of nuclear factor-κB ligand 
(RANKL)-mediated osteoclastogenesis,77) whereas osteogenic 
differentiation of bone marrow-derived mesenchymal stem cells 
increases in a load-dependent manner in myostatin-deficient 
mice, resulting in improved bone mass and strength.78,79) Conse-
quently, myostatin plays a detrimental role in both bones and 
muscles. Irisin is a myokine that regulates energy metabolism and 
is activated by physical activity. In bone metabolism, irisin stimu-
lated in vitro osteoblastogenesis and in vivo bone formation and 
prevented bone loss in hindlimb-suspended mice,67,80,81) while in-
hibiting bone resorption by directly suppressing osteoclast differ-
entiation or indirectly downregulating RANKL expression in os-
teoblasts and osteocytes.82,83) Therefore, exercise-induced irisin is 
a pro-osteogenic factor explaining the parallel muscle and bone 
changes. 

Our group proposed lumican, a small leucine-rich repeat pro-
teoglycan, as a muscle-derived osteoprotective factor.84) Norheim 
et al.85) identified lumican in CM collected from human myotubes 

based on the results of proteomic analyses using database searches 
and reported significantly upregulated lumican expression in hu-
man skeletal muscles following strength training. These results 
matched our findings of its strong production and secretion in 
both cell lysates and the CM of myotubes.84) Importantly, lumican 
knockdown markedly reduced the known beneficial effects of 
myotube CM on the bones, while adding lumican to these CM 
restored the reduced osteoblast viability caused by lumican silenc-
ing.84) Additional in vitro and animal experiments revealed that lu-
mican not only increased bone formation by stimulating osteo-
blast viability and differentiation but also suppressed osteoclasto-
genesis and in vitro bone resorption.84,86) These findings indicate 
that lumican may be a myokine involved in bone anabolism. 

β-Aminoisobutyric acid (BAIBA), a metabolite released during 
muscle contraction, is involved in various metabolic processes 
such as improved insulin resistance and white adipose tissue 
browning.87,88) BAIBA has also recently demonstrated bone-pro-
tective activities such as enhancing osteocyte survival under oxida-
tive stress and reducing bone loss with hindlimb unloading.89,90) 
Brain-derived neurotrophic factors,91) follistatin,92) leptin,93) inter-
leukin (IL)-6,94) and IL-795) have been suggested as myokines that 
link muscle activity with skeletal health. In contrast, biochemical 
muscle–bone communication is a complicated process involving 
various beneficial or detrimental mediators to preserve musculo-
skeletal homeostasis. Therefore, in addition to the important roles 
of individual myokines, future studies should focus on identifying 
how combinations of these muscle-derived factors precisely regu-
late bone metabolism, especially in vivo. 

CONCLUSION 

Although muscles and bones have a close relationship throughout 
life, observations during development and aging and in both hu-
man and animal disuse models revealed that the synchronization 
of tissue mass occurs in such a way that changes in muscle pheno-
types precede BMD and bone strength alterations.30-34) The pres-
ent review discussed evidence that mechanical forces, which have 
been the traditional focus, are not the only mechanisms by which 
muscle-derived signals may affect bone metabolism and empha-
sized the significance of skeletal muscles as an endocrine organ 
that secretes bone-regulatory factors. Consequently, both me-
chanical and biochemical aspects should be considered to fully 
understand muscle–bone crosstalk. Moreover, muscle-secreted 
factors could be ideal therapeutic targets for osteoporosis, with 
dual effects of increasing bone formation and reducing bone re-
sorption. 

A particularly intriguing characteristic of myokines is that they 
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can affect muscle metabolism in an autocrine manner. In addition 
to myostatin and irisin, which have well-established functions in 
muscles,96-98) apelin rejuvenated behavioral and circadian pheno-
types and prevented muscle weakness and poor physical activity in 
aged mice.99,100) These results suggested that muscle-derived fac-
tors may be promising pharmacological candidates against osteo-
sarcopenia and can simultaneously control bone and muscle losses 
beyond those due to osteoporosis (Fig. 2). 

The ultimate objective of musculoskeletal research is to prevent 
fragility fractures and their consequent morbidity and mortality. 
To achieve this objective, the early detection of high-risk popula-
tions who are vulnerable to these low-trauma fractures is critical, in 
addition to effective treatment for osteoporosis and sarcopenia. In 
this regard, the levels of muscle-released factors can be easily mea-
sured in the blood; thus, myokines, whose actions on bone and/or 
muscle metabolism have been verified, could be useful as potential 
circulating biomarkers to predict musculoskeletal health. However, 
despite tremendous efforts to uncover the pivotal role of myokines 
in muscle and bone metabolism, human evidence of the clinical 
applicability of these muscle-derived factors as therapeutic targets 
and blood-based biomarkers for musculoskeletal diseases is lack-
ing. Future efforts are expected to provide a solution to these lim-
itations, allowing older individuals to live healthy lives through in-
dependent daily activities. 
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