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Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in
medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence
of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and
multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was
proposed to determine the rotational differences between two images based on orientation histogrammatching accumulated from
local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the
orientation angle between two unregistered images with advantages over the existedmethod based on edge-map inmultimodalities.
Applying the orientation detection into the registration of CT/MR, T1/T2MRI, andmonomadality images with respect to rigid and
nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of
optimization.

1. Introduction

Image registration is the spatial mapping of corresponding
locations between different images with broad applications
in neurosurgery and radiotherapy [1]. Medical image reg-
istration techniques have undergone continuous develop-
ment and extensive research over decades [2–7]. In general
applications of medical image registration, an image pair
is often aligned initially based on a rigid or affine trans-
formation before a nonrigid warp is applied. The initial
rigid transformation is performed to fast approximate the
global deformation between the images, and the subsequent
nonrigid warp is supposed to refine the local deformation,
such as free-form deformation (FFD) [8] or Demons [9,
10]. An initial preregistration may be defined manually or
automatically [11, 12]. In the image moments-based method,
the rotational difference is determined by the second-order
central moment, and the translation is determined by the
displacement of the centroid of corresponding objects in two

images. Manual initialization by users may be accurate but
impractical for clinicians. The application of image moments
for initial estimation needs presegmentation of objects for
moment calculation and often complicates the registration.
In particular, the accurate segmentation of corresponding
structures in Multimodality images may be impossible to
complete. Feature-based registration methods [13, 14] are
prone to fail due to the less availability of the corresponding
features between multimodality images.

It was previously reported that orientation difference
estimation based on edge information [15] with Canny filter
depends on the similarity between the two images. Automatic
multimodal image registration remains challenging in terms
of consistency in intensity or contrast patterns and the
existence of nonoverlapping regions between images. In
addition, the method was limited for rigid transformation
due to the utilization of polar and Fourier transformations in
frequency domain, thus not much robust to partial occlusion
and complex global or local deformation between images.
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Since the unregistered images may contain considerable
global and local nonlinear deformations in addition to global
rigid deformation, orientation detection between images has
to be robust to considerable complex deformation, partial
occlusion, and illumination changes.

In this study, the feasibility of calculating the orientation
difference between two unregistered images is explored to
facilitate the image registration without any feature extrac-
tion. The challenges lie in the lack of abundant corre-
sponding characteristics between multimodality images. Tis-
sue boundaries may vary in corresponding multimodality
images, but the distribution of gradient information often has
considerable similarities. The orientation difference between
multimodality images is expected to be determined by the
orientation histogram of gradient information. Gradient
information has been widely used in the field of image
registration [16–21]. Histogram of gradient (HOG) has been
widely used in computer vision and pattern recognition [22],
for example, feature point descriptors [23] and hand gesture
recognition [24]. The applications of HOG in the previous
work are mainly designed for local descriptions in images.
The orientation bins in the histogram are often 4 or 8 to
describe the local content of nearest neighborhood around
the feature point.

Contrast to all previously proposed methods based on
gradient information, gradient information is adopted to
estimate the global orientation difference between images
in this work. The estimation of global rotational difference
is casted as the problem of gradient magnitude weighted
orientation histogram matching. A robust technique for
histogram matching based on L1 norm and L2 norm is also
provided, which is robust to local deformation, partial occlu-
sion, and illumination change in addition to noise in images.
Normalizing the gradient magnitude weighted orientation
histogram allows estimating the orientation difference across
scale differences of images.Themain contribution of thework
lies in the fact that the global orientation is estimated based
on the accumulation of local gradient information, and the
global orientation difference is formulated as the problem of
robust matching of gradient magnitude weighted orientation
histograms.

2. Material and Methodology

The prealignment for multimodality images mainly con-
sists of two components: (1) estimating the rotation and
(2) estimating the translation. Figure 1 shows a schematic of
the method for estimating the rotational difference. Initially
the gradient magnitudes weighted orientation histograms
were constructed for two unregistered images, image A and
image B, respectively. Subsequently, the two histograms were
normalized for further histogram matching to eliminate the
influence of scale differences between images. The process of
robust histogrammatching was then performed to determine
the rotational difference between the images. T1 (T1WI) and
T2 (T2WI) weighted magnetic resonance images (MRI) of
human brain images were shown in Figure 2 to demonstrate
the detailed performance of the proposed algorithm.

2.1. The Local Gradient. The local orientation in the image is
obtained by calculating the first derivatives in two orthogonal
directions and the orientation is determined using the gradi-
ent expression illustrated as [25]

∇𝑓 =
𝜕𝑓
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𝑥 +
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𝜕𝑦
𝑦, (1)
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The gradient direction is calculated as
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) . (3)

The gradient is computed pixelwise and this operation
is carried out by filtering the image with operators such as
Sobel in the 𝑥 and 𝑦 directions. To reduce the effect of noisy
directions, the partial derivatives in the image are calculated
by filtering the image in the 𝑥 and 𝑦 direction with the filters
that implement the derivatives of theGaussian functions.This
is achieved by filtering the image with 1D operators that are
computed using the expression by the following formula:

𝐺 (𝑥) =
1
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−𝑥
2
/2𝜎
2

,
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𝐺 (𝑥) , (4)

where 𝜎 is the standard deviation of the Gaussian function.
After calculating the partial derivatives, the weak edges
response are eliminated by applying a nonmaximal suppres-
sion procedure and the orientation at each pixel is determined
by the expression in (3).

One portion (the red rectangle in Figure 3(a)) cropped
from T2 MRI image in Figure 2(b) was selected for gra-
dient calculation. Gaussian derivative appeared superior to
the gradient derivative (Figure 3). The gradient orientations
acquired by Gaussian derivative in the neighborhood area
were coherent and insensitive to local noise or intensity
changes. In addition, the gradient orientation by Gaussian
derivative was reliable and accurate as the derivative calcu-
lation was done in continuous rather than a discrete domain.

2.2. Magnitudes Weighted Orientation Histogram and Nor-
malization. In this work, the gradient magnitudes weighted
orientation histogram was devised to describe the global
orientation characteristic of images.Theweighted orientation
histogram is created with the weight of the gradient direction
at a pixel being the gradient magnitude at the pixel. The
orientation resolution is set to 1∘ to balance the accuracy
and the robustness of orientation histogram. In addition, the
process of histogram normalization eliminates the influence
of slightly scale difference or partial occlusion between
images.

The magnitudes weighted orientation histograms accu-
mulated from local gradients calculated by Gaussian deriva-
tive and gradient derivative were experimentally compared.
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Figure 1: Flowchart of the estimation of the rotational difference.

(a) (b) (c)

Figure 2: Test MR Brain images. (a) T1 MRI. (b) T2 MRI. (c) Rotate T2 MRI by 11.46∘.

(a) (b) (c)

Figure 3: Local gradient calculated by the Gaussian derivative and gradient derivative, respectively. (a) Original image and its portion shown
by the red rectangle. (b) Local gradient by Gaussian derivative. (c) Local gradient by gradient derivative. Note that the blue axis shows the
local gradient orientation at each pixel, and the length of the axis denotes the value of local gradient magnitude.

In Figure 4, twomagnitudes weighted orientation histograms
were generated for Brain T2 MR. The magnitudes weighted
orientation histogram by Gaussian derivatives distributed
more uniformly. However, the Magnitudes weighted ori-
entation histogram by gradient derivative generated large
peaks corresponding to 0∘, 90∘, 180∘, and 270∘. Comparatively,
Gaussian derivative was able to describe the local gradient
information, which represented the desired characteristics of
local areas.

In Figure 5, a test was shown to generate magnitudes
weighted orientation histograms with different orientation
bins for brain T2 MR as shown in Figure 2. Let 𝐾 denote
the number of bins for the orientation histogram. The
orientation bins 𝐾 were selected from 90, 180, and 360
to 720. Correspondingly, the orientation resolutions of the
histogramswere 4∘, 2∘, 1∘, and 0.5∘ (360/𝐾). To clearly observe
the accumulation of histograms in different orientation bins,
the type of bar was adopted for histogram presentation
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Figure 4: Magnitudes weighted orientation histograms accumulated from local gradients calculated by Gaussian derivative and gradient
derivative, respectively. (a) Local gradients calculated by Gaussian derivative. (b) Local gradients calculated by gradient derivative.
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Figure 5:Magnitudes weighted orientation histograms with different orientation bins. (a)𝐾 = 90, (b)𝐾 = 180, (c)𝐾 = 360, and (d)𝐾 = 720.

rather than using the conventional type of line. Magnitudes
weighted orientation histograms with different orientation
bins were created in Figure 5.

2.3. Histogram Matching. Since two images may not cover
exactly the same parts of anatomic structures, in order to
maximize the area of overlap between the two images, areas

within largest circular regions centered at the images are used
in the orientation histogram accumulation. To maximize
the area of overlap between the images, only areas within
largest circular regions centered at the images are used for
the accumulation. The orientation histogram of one image
is cyclically slided over the other orientation histogram from
the other image, and the position where the two histograms
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Figure 6: Cyclically histogram shift by Fourier shift theorem. (a) Original histogram. (b) Cyclically shift 𝑗 = 2. (c) Cyclically shift 𝑗 = 5.

best match is used to determine the rotational difference
between the images, assuming𝐻

𝐴
and𝐻

𝐵
are themagnitudes

weighted orientation histograms of the reference image and
the moving images, respectively. Histogram matching is to
determine the optimal translation that minimizes the cost
function 𝑇

𝐷
of two histograms 𝐻

𝐴
and 𝐻

𝐵
, that is, to find

𝑇
𝐷
(𝑗) = ∑

𝐾−1

𝑖=0
(|𝐻
𝐴
(𝑖) − 𝐻

𝐵
(𝑖 + 𝑗)|) for 𝑗 = 0, . . . , 𝐾 − 1. Then

find 𝐽 such that 𝑇
𝐷
(𝐽) = min(𝑇

𝐷
(𝑗)) for 𝑗 = 0, . . . , 𝐾 − 1,

where 𝐽 is the estimation of rotational difference between
two images and 𝐾 is the number of bins for the orientation
histogram. Note that this shift of histogrammatching is done
cyclically, so that if 𝑖 + 𝑗 > 𝐾 − 1, then 𝑖 + 𝑗 is replaced with
𝑖 + 𝑗 − (𝐾 − 1). The matching metric is L1 norm of 𝐻

𝐴
and

𝐻
𝐵
. In addition, L2 norm is also performed for the histogram

matching 𝑇
𝐷
(𝑗) = ∑

𝐾−1

𝑖=0
(|𝐻
𝐴
(𝑖) − 𝐻

𝐵
(𝑖 + 𝑗)|

2
).

Fourier transform based on Fourier shift theorem was
used to efficiently compute the sum of absolute difference
(L1 norm) or the sum of squared difference (L2 norm) for all
possible shifts cyclically for 𝑗 = 0, . . . , 𝐾− 1. Figure 6 showed
the process of cyclically shift of histograms by Fourier shift
theorem in the implementation. To better visualize the cycli-
cally shift of the histogram, orientation bins𝐾 was chosen as
9 to generate the magnitudes weighted orientation histogram
for orientation bins for brain T2 MR. The shift 𝑗 was
considered as 2 and 5, respectively. The histogram matching

values of𝑇
𝐷
with shift 𝑗 from0 to𝐾−1were recorded, and the

globalminimumvalue of𝑇
𝐷
was considered as the position of

the best match. In the implementation, a figure of 𝑇
𝐷
with all

shifts was plotted for better observation, where the horizontal
axis was the shift 𝑗 from 0 to 𝐾 − 1, and the vertical axis was
the histogram matching value 𝑇

𝐷
. In order to improve the

robustness of histogram matching and eliminate the noise in
orientation histograms, 1-dimensional Gaussian smoothing
with small standard deviation was performed for two his-
tograms before the matching process. Finally, interpolation
methods were used to improve the accuracy of orientation
difference estimation. The point which corresponded to the
global minimum value and its nearest neighborhood points
in the histogram of 𝑇

𝐷
were fitted as a curve to generate the

minimum in the continuous domain.
A synthetic example of determining the rotational dif-

ference between two brain T1 MRI and T2 MRI images
was presented to demonstrate the detailed performance of
the proposed algorithm in Figure 7. The synthetic rotational
difference between the two images Figures 2(a) and 2(c)
was 11.46∘. The detailed results of generated histograms and
matching were shown in Figure 7, and the comparison of L1
norm and L2 norm for histogram matching was also shown.
From the test results, the obtained result generated by the
proposedmethod was 11∘, which was very close to the desired
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Figure 7: Simulated orientation test by gradient magnitude weighted orientation histogrammatching of T1MRI (Figure 2(a)) and rotated T2
MRI (Figure 2(c)) images. (a) and (b) are the original images and the red circle which is largest centered at the images shows the area of overlap
for orientation histogram accumulation. (c) and (d) are magnitude weighted orientation histograms for (a) and (b), respectively. (e) and (f)
are the normalized histograms of (c) and (d), respectively. (g) shows the values of cost functions T of histogram (e) and (f) with shift 𝑗 for
𝑗 = 0, . . . , 𝐾 − 1. The similarity metric is tested by L1 and L2 norm, respectively. The minimum value of the cost function T corresponds to
𝐽 = 349 along the horizontal coordinate. The obtained orientation difference is 11∘, which is very close to its desired value.

value. In addition, both L1 norm and L2 norm achieved
similar performances.

3. Experiments

To demonstrate the accuracy and robustness of the proposed
method for global orientation difference estimation between
multimodality medical images, both synthetic and clinical

medical images were applied for the experiments. The per-
formance of the proposed method on synthetic images was
firstly tested as the ground truths of the rotational difference
were known. The gold-standard rigid-body rotational differ-
ence for each registration was set by rotating one image in
the image pair with respect to the other image. The proposed
method was compared with the edge-based method for
rotational estimation for challenging multimodality images.
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(a)

(b)

(c)

Figure 8: Image pairs used to evaluate the registration method. The first column and the second column were the original image pairs and
the third column was generated by rotating the first column image with fixed 17∘ clockwise. (a) Brain T1/T2 MRI with intensity and slight
scale difference. (b) Head CT/MR with significant differences. (c) Prostate MR with deformations and partial occlusions due to the surgery.

Finally, we incorporated the proposed orientation estimation
for preregistration of multimodality images.

3.1. Synthetic Test. The method was tested in three different
medical image processing scenarios: brain T1WI and T2WI
with scale difference (Figure 8(a)), head CT image to the T1
weighted MRI image in the “head” image pair (Figure 8(b)),
and MR prostrate image pair with large local and global
deformation (Figure 8(c)). It was assumed that the ground
truths of rotational differences between images were acquired
by computer generation, so the first image was rotated by

a fixed degree using the bicubic interpolation to generate the
third image. Hence, firstly the rotational difference between
the original image pairs was tested and then the result
between the generated image and the second imagewas tested
as well. Without loss of generality, the fixed degree of 17∘
clockwise was set for all cases and the generated third image
was shown in each case.

The test results of rotational differences between image
pairs shown in Figure 8 were reported in Table 1. The cross
correlation of gradient magnitudes weighted orientation his-
tograms for each image pair were also presented in Figure 9
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Figure 9: Cross correlation of gradient magnitudes weighted orientation histogram for each image pair.

Table 1: Test results of rotational differences between image pairs by the proposed method.

Image pair 1st column and
3rd column 𝛾 (∘)

1st column and
2nd column 𝛼 (∘)

2nd column and
3rd column 𝛽 (∘) Absolute value |𝛼 − 𝛽|

Brain T1/T2 MRI 17
Figure 9(a)

358 (or −2)
Figure 9(b)

340
Figure 9(c) 18

Head CT/MR 17
Figure 9(d)

357 (or −3)
Figure 9(e)

341 (or −19)
Figure 9(f) 16

Prostate MR 17
Figure 9(g)

7
Figure 9(h)

353 (or −7)
Figure 9(i) 14
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Table 2: Test results of rotational differences between image pairs by edge-map based method.

Image pair 1st column and
3rd column 𝛾 (∘)

1st column and
2nd column 𝛼 (∘)

2nd column and
3rd column 𝛽 (∘)

Absolute value |𝛼 − 𝛽|

Brain T1/T2 MRI 16.87
Figure 11(a)

120.23
Figure 11(b)

82.97
Figure 11(c)

27.26

Head CT/MR 16.87
Figure 11(d)

355.08
Figure 11(e)

46.40
Figure 11(f)

308.68

Prostate MR 16.87
Figure 11(g)

68.90
Figure 11(h)

22.50
Figure 11(i)

46.40

correspondingly. It was known that the third column was
generated by rotating the first column image with fixed 17∘
clockwise; the test results of the first column image and third
column image were also shown to demonstrate the accuracy
of the proposed method for monomodality images. Note
that the rotational differences between the original image
pairs (1st column and 2nd column) were slightly small from
the observation; the test results of orientation difference
estimation as shown in the Table 1 were consistent to the
observation, which were very close to the desired value. The
proposed method of rotational estimation was applicable to
multimodality images in Figures 9(a) and 9(b). Since the
proposed method did not require any feature extraction
or segmentation for preprocessing to acquire the rotational
difference between images, it was efficient and simple for
preregistration of both monomodality and multimodality
images. From the results of images in Figure 8(c), the pro-
posed method was robust to considerable global and local
deformations in medical images, which frequently appeared
in biomedical image applications.

Then, test results of image pairs in Figure 10 by the edge-
map based method [15] were tabulated in Table 2. In the
implementation of the edge-map based method, note that
phase correlation [26] was used to determine the rotation
between images rather than using the cross correlation
recommended in the original paper due to the fact that phase
correlation can generate the same results as cross correlation
but is more robust than cross correlation with respect to
partial occlusion [27]. As shown in Figure 11, the phase
correlation of the polar presentation of Fourier spectrum for
each image pair was displayed correspondingly. Since the
images of the 3rd column were generated by rotating the
images of the 1st column through the bicubic interpolation,
the edge-maps were very similar for these two image sets.
Therefore, the rotational differences between such two image
sets detected by the edge-map based method were very
accurate as shown in the Table 2. Specifically, their phase
correlation of the polar presentation of Fourier spectrums
had distinctive peaks in Figures 11(a), 11(d), and 11(g), which
corresponded to correct estimation of rotational differences.
However, the results of other cases were all incorrect. For
the brain T1/T2 MRI images, there was no distinctive peak
in the field of phase correlation due to the fact that there
were slight scale differences between two images. For the CT
and MR “head” image, their edge-maps were significantly
different, and therefore the detected results were incorrect

due to the lack of abundant similar edges. For the ProstateMR
images, the results were also incorrect due to the considerable
global and local deformations between images. Therefore, it
was experimentally verified that the edge-map based method
was extremely limited to acquire the rotational difference
between images. Comparatively, the proposed method was
based on the global similarity of local information in spatial
domain, which was very robust tomultimodality images with
respect to nonlinear deformation, slight scale differences, and
considerable dissimilarities.

In essence, the proposed method of rotational estimation
is a general technique for image registration with wide
ranges of rotational differences. In order to demonstrate the
sensitivity of the method to smaller rotations and larger
rotations, detailed simulation tests were presented with a
smaller range of rotations, including 1∘, 2∘, 3∘, . . . , 8∘. Mean-
while, larger rotations were also tested, including 40∘ or 70∘.
Three medical images were selected for the test including
brain T1 MRI, head CT, and prostate MR images as shown in
Figure 8. Rotating one test image with a synthetic rotational
angle by the bicubic interpolation would generate its rotated
image for the rotational estimation. The experimental results
were reported in Table 3. Note that the standard deviation
of Gaussian derivative 𝜎 should be relatively large (e.g.,
𝜎 = 5.0 in the test) in order to reduce the influence of
interpolation artifacts from the bicubic interpolation. From
the test results, the proposed method obtained promising
results when the rotational difference was larger than 3∘.
However, the proposed method was not much sensitive to
too small rotational differences, for example, <2∘. When the
rotational difference between two images was smaller than 2∘,
the obtained result was usually zero. Two reasons accounted
for it. One was that the orientation resolution of histograms
is 1∘ in the work, and it was so difficult to differentiate too
small rotational differences from the orientation histogram.
Another factor was that the precision was strongly related
to the interpolation method, which in the case was bicubic
interpolation. It was also very difficult to generate rotational
images precisely with very small known rotational differences
(e.g., 1 or 2∘) by the bicubic interpolation.Therefore, when the
rotational difference was very small (e.g., <3∘), the test result
may contain small errors (e.g., error < 2∘ experimentally).
But these results with such small rotation errors were mostly
accurate to guide the iterative optimization to obtain desired
values, because the estimated value was very close to the
desired value.
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Figure 10: Simulated orientation test by edge-map basedmethod of T1MRI (Figure 2(a)) and rotated T2MRI (Figure 2(c)) images. (a) Canny
edge map of Figure 2(a). (b) Canny edge-map of Figure 2(c). (c) Magnitude spectrum of edge map of (a) in frequency domain. (d)Magnitude
spectrum of edge map of (b) in frequency domain. (e) Log-polar resample of (c). (f) Log-polar resample of (d). (g) Phase-correlation between
(e) and (f). Note that the peak value corresponded to the rotational angle 11.25∘, which was also very close to the desired value.

3.2. Application in Clinical Image Registration. The proposed
orientation detection was experimentally incorporated
into the registration of CT/MR and T1/T2 MRI images.
Four clinical cases with multimodality images under
affine transformation were registered. The image registration
process was performed on a computer with CPU 3.3GHz and
4G RAM. The computation time of the registration process
with and without the proposed method was measured, and

the time consuming of the proposed technique was also
reported in Table 4. It was found that the consuming time
of optimization iteration was reduced significantly due to
the incorporation of the proposed orientation detection.
The consumed time of the proposed method was much less
than the time consumed by iteration optimization. Since the
initial value of orientation difference is accurately estimated
by the proposed method, the initial value for the iterative
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Figure 11: Phase correlation of the polar presentation of Fourier spectrum for each image pair.

Table 3: Rotational estimation results of image pairs with synthetic
rotational angles.

Synthetic angles Test image
Brain T1 Head CT Prostate MR

1∘ 0∘ 0∘ 0∘

2∘ 1∘ 2∘ 1∘

3∘ 3∘ 4∘ 3∘

4∘ 4∘ 4∘ 4∘

5∘ 5∘ 5∘ 5∘

6∘ 6∘ 6∘ 6∘

7∘ 7∘ 7∘ 7∘

8∘ 8∘ 8∘ 8∘

40∘ 40∘ 40∘ 40∘

70∘ 70∘ 70∘ 70∘

optimization becomes closer to the desired value. Therefore,
fewer times of iterations were required to approach the
global minimum for the iterative optimization. Therefore,

the utilization of the proposed scheme dramatically
decreased the time for iteration and speeded up the
registration process with the proposed orientation detection
as shown in Table 4.

An image pair is often aligned initially based on a rigid
or affine transformation before a nonrigid transformation
for deformable medical image registration. Therefore, reg-
istration results of clinical prostate images as shown in
Figure 8(c) were also shown to demonstrate the performance
of the proposed method for preregistration to deformable
image registration. In Figures 12 and 13, the preregistration
using affine transformation with the similarity metric of
squared sum of difference (SSD) [8] was performed for
the original prostrate images. The absolute difference image
between the sensed image and the reference image before
the registration was calculated as shown in Figure 12(a),
and also the difference image between the transformed
image and the reference images after the registration was
calculated. Regions with higher intensities in the difference
image showed larger difference between the two images in
corresponding regions, and a successful registration should
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Table 4: Comparison of the iteration time of optimization with and without the proposed method.

Iteration times of optimization without
the proposed method

Iteration times of optimization with
the proposed method

Consumed time of the proposed
method (second)

Case 1 46 times (15.69 seconds) 23 times (8.08 seconds) 0.504 seconds
Case 2 109 times (36.54 seconds) 26 times (8.31 seconds) 0.522 seconds
Case 3 226 times (75.56 seconds) 25 times (8.64 seconds) 0.566 seconds
Case 4 44 times (15.17 seconds) 24 times (8.23 seconds) 0.506 seconds

(a) (b) (c)

Figure 12: Experimental results of prostate image registration under affine transformationwithout prior information of orientation difference.
(a) Difference of sense image and reference image, SSD = 0.0314. (b) Transformed image. (c) Difference of transformed image and reference
image, SSD = 0.0302. Iteration times of optimization: 12 iterations.

(a) (b)

Figure 13: Experimental results of prostate image registration under affine transformationwith the proposed orientation detection. (a) Trans-
formed image. (b) Difference of transformed image and reference image, SSD = 0.0269. Iteration times of optimization: 120 iterations.

decrease intensity values of overlap areas in difference images.
It could be observed that the difference image between the
transformed image and the reference image as shown in
Figure 12(c) did not have much changes compared with the
difference image between the sensed image and the reference
image as shown in Figure 12(a). The evaluation metric SSD
of registration performance before and after the registration
also had very little changes due to the failed optimization.The
results from the optimization cannot converge to the global

minimum without any prior information of orientation, and
the iteration was stopped quickly because the initial value
was not near the desired value and easily fell into the local
minimum.

Figure 13 showed the registration results for the prostate
images with the orientation estimation by the proposed
method. The registration performance became much bet-
ter than before, since the SSD becomes relatively smaller.
Meanwhile, more regions in the difference image between
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the transformed image and the reference image as shown
in Figure 13(b) became black, and it also indicated that the
iteration of the optimization process attained the global
minimum due to the fact that the initial value was close to
the desired value with the known orientation difference in
advance. Experimental results from Figures 12 and 13 showed
that the proposed method could significantly improve the
chances of finding the global minimum of the registration.
Therefore, the proposed technique is directly applicable to
preregistration before deformation image registration and
makes the registration process more robust and reliable.

Since the goal of preregistration by the proposed method
is to reduce the search space of the iteration optimization
and increase the robustness of the process of the registration.
The purpose of using SSD in Figures 12 and 13 was to verify
that the proposed method could significantly improve the
chances of finding the global minimum of the registration. In
Figure 12, the iterative optimization stopped at a local min-
imum with 12 iterations because the initial value is far away
from the desired value. Conversely, the iterative optimization
can find the global minimum of registration with the aid of
the proposed method for initial estimation. The registration
results of the global minimum (SSD 0.0269) appeared to
be better than the local minimum (SSD 0.0302) from the
experiments. Therefore, experimental results demonstrated
that the proposed method could be incorporated into the
general image registration and improve the chances of finding
the global minimum of the registration (robustness).

3.3. Discussion. It is striking that the estimation of rotational
differences is accurate and robust for very dissimilar images
captured for the same scene. When there are large local
differences, illumination changes, scale or rotational changes,
the process of histogram matching generates promising
results. The main reason is that the proposed method is
computed based on the global distribution of local orienta-
tions weighted by gradient magnitudes, which seems to be
robust to considerable image changes for multimodalities.
The statistic orientation histogram matching is robust to
capture the rotational differences between images. Since no
high-level features in images are required in the process, the
proposed method is very simple and robust to determine
the rotational difference between two images. The proposed
method for orientation differences estimation is able to be
used for rigid registration directly. Since if the orientation
difference between two images is known, the prealignment
becomes significantly easier after eliminating the rotational
difference between two images.Thework left from translation
estimation is then determined by mutual information-based
[28], phase correlation [26, 27] based, or cross correlation
[29] based template matching. The proposed method can
also be used in the preregistration for deformation medical
image registration due to the fact that the robustness and
reliability of the method make it possible to register very
challenging and dissimilar images because the orientation
between images could be obtained in advance even for very
dissimilar images in multimodalities. The incorporation of
the prior information of orientation detection into general

medical image registration [30] also reduces the search
space of optimization and enhances the robustness of the
registration calculation.

The overlapping area between two unregistered images
is an important factor for general image registration. It is
often assumed that the overlapping area is larger than 50%
of the image area, and registration methods have to be
robust to partial occlusion. In clinical medical images, the
scan volumes to be registered often contain same anatomic
structures of the patient but are often scanned at different
time or in different scans. Therefore, it is assumed that the
unregistered two images are almost contain the same scene
in medical images, so the red circle in Figure 7 is set to be
the largest circular region of the image as the overlapping
area for accumulation in the proposed method. A further
test of partial occlusion for the proposed method was shown
in Figure 14. Two brain T1 MRI and rotated T2 MRI images
in Figures 7(a) and 7(b) were used for the test, but the
content of rotated T2 MRI was synthetically translated to
be the shifted T2 MRI image as shown in Figure 14(a). Red
circle showed the largest circular region for accumulation.
Nonoverlap area between T1 MRI image and shifted T2 MRI
image was relatively large. Figure 14(c) showed the values of
cost functions T of histogram correlation with shift 𝑗 for
𝑗 = 0, . . . , 𝐾 − 1. The global minimum value was 349 (or
11∘), which was same to the result in Figure 7.The experiment
result demonstrated that the proposed method was very
robust to partial occlusion.

Since the gradient orientations in a neighborhood of a
straight pattern have (on average) opposite directions, the
orientation histogram appears to be symmetric from 0 to
360∘ due to the fact that about half the gradient vectors have
an opposite direction (180∘) with respect to other halves for
straight patterns in images. Figure 15(a) showed the local
orientations of straight patterns in T1 MRI image, and pixels
on one side of the straight line have totally opposite directions
with respect to the pixels on the other side. Generally,medical
images contain complex patterns including both straight
patterns and curved patterns. Therefore, the accumulated
orientation histogram is usually asymmetric since the curved
patterns do not have an opposite direction as depicted
in Figure 15(b), and the global minimum of histogram
matching corresponds to the desired value experimentally.
When the orientation histogram is symmetric if there are
mainly straight patterns in images, there will be several local
minimums in the process of histogram matching. To make
sure that there is no systematic error for symmetric histogram
matching, both the global minimum 𝜃 and 𝜃 + 180∘ should be
considered for image registration. Since the rotational angle
for clinical medical images is often not too large, the global
minimum 𝜃 can be validated by this experience.

The major difference in the image registration with and
without the proposed method is the computation iterations
(efficiency) as well as the possibility of finding the globalmin-
imum of the optimization (robustness), rather than the accu-
racy.Thus, reducing the number of iterations of optimization
(time consuming) is one advantage of the proposed method.
More importantly, increasing the possibility of finding global
minimum of optimization of image registration (robustness)
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Figure 14: Simulated test result of partial occlusion. (a) Shifted T2 MRI image which was generated by synthetically shifting the content of
rotated T2 MRI. (b) Magnitude weighted orientation histogram of shifted T2 MRI image. (c) shows the values of histogram matching. The
similarity metric is tested by L1 and L2 norm, respectively. The minimum value of the cost function T corresponds to 𝐽 = 349 along the
horizontal coordinate. The obtained orientation difference is 11∘.

(a) (b)

Figure 15: Local orientations of patterns in T1 MRI (Figure 2(a)). (a) Straight pattern. (b) Curved pattern. Note that the blue arrow shows
the local gradient orientation at each pixel, and the length of the blue arrow denotes the value of local gradient magnitude.
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is another advantage of the proposed method. Certainly,
accuracy of registration is known to be most important
in image registration, but the robustness and efficiency of
registration are very important as well. Modern computers
with more powerful performances may make the process
of time reducing meaningless. However, the success rate
of the registration (robustness) cannot be improved with
powerful computers. Experiments have demonstrated that
the proposedmethod canmake the registrationmore reliable
in the process of iterative optimization and reduced the
chances of registration failure.

This application is expected to straightforwardly extend
to 3D volumetric images, in which the local orientation is
estimated based on the smoothed structure tensor [31] in a
voxel wisemanner, followed by separating a vector of the local
orientation 𝑉 in 3D into three components 𝑉 = {𝜃, Ψ, 𝛾},
where 𝜃,Ψ, and 𝛾 are the angles between the vector and the 𝑥,
𝑦, and 𝑧 coordinate, respectively.Theorientation difference in
3D is thus converted to the histogrammatchings with respect
to 𝜃, Ψ, and 𝛾, from which the final orientation difference
between two 3D volumetric images is defined by synthesizing
Δ𝜃, ΔΨ and Δ𝛾 in the 𝑥-𝑦-𝑧 coordinate system. Without loss
of generality, the case of 2D image registration has been fully
considered for explanation in the work.

4. Conclusion

In this work, a very simple and robust method was pro-
posed to compute the rotational difference between two
multimodality images and very dissimilar monomodality
images. The proposed method is superior to the existed
edge-map based method from the experimental comparison.
Experimental results have demonstrated that orientation
detection between images is reliable and robust to consid-
erable deformations, slightly scale differences, and dissimilar
image contents. Experimental results have also demonstrated
that the incorporation of this method into image registration
both enhances the robustness of registration and significantly
speeds up the registration calculation. It is worthwhile to
note that the proposed method of orientation detection is
appropriate to be applied for image registration with rigid
transformation and nonrigid transformation, which has very
broad applications in medical image registration and other
applications in general image registration.
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