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Imaging through diffuse media 
using multi‑mode vortex beams 
and deep learning
Ganesh M. Balasubramaniam  *, Netanel Biton   & Shlomi Arnon 

Optical imaging through diffuse media is a challenging issue and has attracted applications in 
many fields such as biomedical imaging, non-destructive testing, and computer-assisted surgery. 
However, light interaction with diffuse media leads to multiple scattering of the photons in the 
angular and spatial domain, severely degrading the image reconstruction process. In this article, 
a novel method to image through diffuse media using multiple modes of vortex beams and a new 
deep learning network named “LGDiffNet” is derived. A proof-of-concept numerical simulation is 
conducted using this method, and the results are experimentally verified. In this technique, the 
multiple modes of Gaussian and Laguerre-Gaussian beams illuminate the displayed digits dataset 
number, and the beams are then propagated through the diffuser before being captured on the beam 
profiler. Furthermore, we investigated whether imaging through diffuse media using multiple modes 
of vortex beams instead of Gaussian beams improves the imaging system’s imaging capability and 
enhances the network’s reconstruction ability. Our results show that illuminating the diffuser using 
vortex beams and employing the “LGDiffNet” network provides enhanced image reconstruction 
compared to existing modalities. When employing vortex beams for image reconstruction, the best 
NPCC is − 0.9850. However, when using Gaussian beams for imaging acquisition, the best NPCC is 
− 0.9837. An enhancement of 0.62 dB, in terms of PSNR, is achieved using this method when a highly 
scattering diffuser of grit 220 and width 2 mm (7.11 times the mean free path) is used. No additional 
optimizations or reference beams were used in the imaging system, revealing the robustness of the 
“LGDiffNet” network and the adaptability of the imaging system for practical applications in medical 
imaging.

The interaction of light with matter is often characterized by manifold scattering and absorption events. The 
effects of light scattering in media manifest as low visibility during foggy conditions, blurring in images, and 
loss of information in medical imaging, to name a few examples. The amount of scattering in any given medium 
depends on the light source structure, intensity and wavelength, and the medium’s optical properties. The amount 
of scattering can be measured. These measurements offer deep insight into the properties of the medium and the 
behavior of light propagating through it. Such studies have led to optical detection using visible and infrared light, 
which has become hugely popular in biomedicine due to its robustness and tremendous advances in computer 
science1–9. Compared to other classical biomedical techniques like X-ray imaging10, optical imaging using vis-
ible and near-infrared (NIR) light is non-ionizing. It causes no harm to the samples during screening. It is also 
cheaper to implement than conventional biomedical imaging techniques such as magnetic resonance imaging 
(MRI)11. However, optical imaging systems that use visible and NIR light suffer from optical blurring and photon 
noise phenomena12–14. Primarily caused by the interaction of light with tissue and their subsequent propaga-
tion, these effects often contribute to the image’s degradation, affecting its resolution and the characterization of 
edges15. Absorption and multiple scattering in all directions also lead to loss of information in light that does not 
reach the beam profiler’s aperture16. The reconstruction of displayed objects in tissues from the images obtained 
by the beam profiler is also made difficult, time-consuming, and cumbersome due to the complex mathematical 
models involved in image reconstruction calculations17,18. Hence, an optical imaging system needs to retrieve 
complete information about the displayed object, improve resolution, and reduce the complexity of analytical 
models to reconstruct the displayed object. The former two objectives can be achieved using structured light 
sources, and the latter can be addressed by implementing deep learning algorithms with sufficient training. Stud-
ies have shown that imparting a topological charge to beams used for optical imaging enhances optical imaging 
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systems19–22 and improves the beams’ penetration depth5,23–25. It has also been demonstrated that vortex beams 
have more transmissivity through scattering media than Gaussian beams22,23,25,26.

Moreover, recent studies indicate that optical imaging is improved through deep learning algorithms27–33. 
This article proposes a proof-of-concept simulation model and provides experimental verification to enhance 
imaging through diffuse media using multiple modes of vortex beams and convolution neural networks. The use 
of vortex beams, coupled with a deep learning algorithm, allows us to gain significant insight into the potential 
impact of vortex beams to enhance the image reconstruction quality and their potential applications in imaging 
through diffuse media. These applications include biomedical imaging, imaging through a fog, non-destructive 
testing, computer-assisted surgery, and autonomous vehicular systems23,26,34. In this article, we investigate imag-
ing through diffuse media by means of numerical simulations and experiments. The setup includes a light 
source (vortex beams), the test object, a diffuser, and a beam profiler or beam profiler. The light from the source 
is propagated and reflected from the object displayed at the SLM. The reflected light is propagated through the 
diffuser and received by the beam profiler, as shown in Fig. 1.

The structure of the paper is as follows: “Orbital angular momentum of light and imaging using vortex beams” 
section describes the theory of vortex beams. “Imaging through scattering media: multi-mode scanning mecha-
nism using vortex beams section describes the optical imaging mechanism. Section explains the “Simulations”. 
“LGDiffNet: Deep learning architecture for image reconstruction section describes the “LGDiffNet” convoluted 
neural network (CNN) used in conjunction with the imaging system. The performance analysis of the “LGDif-
fNet” is shown in “Image reconstruction using “LGDiffNet” CNN architecture” section. The experimental veri-
fication and results are shown in “Experimental verification, results, and discussions” section, and we finish with 
the conclusions in “Conclusions” section.

Theory and setup design
The theory about vortex beams and the multi-mode scanning mechanism using vortex beams are described in 
this section.

Orbital angular momentum of light and imaging using vortex beams..  Conventional laser beams 
usually have a spherical wavefront where the azimuthal phase or topological charge (l) is l = 0. However, it is pos-
sible to change the wavefront of laser beams by imparting a topological charge. Any beam carrying a topological 

Figure 1.   Concept of the imaging setup.
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charge is said to possess orbital angular momentum (OAM). Beams containing OAM have a helical wavefront 
and are called vortex beams. The Laguerre-Gaussian (LG) are the most common examples of light beams car-
rying OAM. They are mathematically obtained by solving the paraxial wave equation in the circular cylindrical 
coordinates35–38. Compared to the traditional Gaussian beam, vortex beams in an imaging system show signifi-
cant improvement in image quality. This is due to the object’s selective illumination by non-overlapping modes 
of the vortex beams used, which enhances specific parts of the sample, combined digitally to give a complete 
sample image. Different modes of OAM beams do not interfere with each other in free space propagation. How-
ever, it has to be noted that when OAM beams enter diffuse media, the scattering photons move into photons’ 
propagation paths from different modes. Increasing the width of the media or even the scattering phase and 
amplitude function of the scatterer reduces the number of ballistic and snake photons that reach the beam pro-
filer, which is essential for a beam to hold its shape. At some point, the output pattern no longer resembles the 
original mode39.

The mathematical expression which describes the complex amplitude of the LG beams is given by:

Here k is the wavenumber, R is the radius of curvature of the phase front, w is the beam waist of the Gaussian 
term, m, and n are quantum numbers (Such that n = m + l and n + m = 2p + l = N. l, N, and p are the topological 
charge, degree, and order respectively). The LG modes are the most accessible type of vortex beams to generate 
in a laboratory setting. Excellent reviews exist on the theoretical explanation of OAM, generation of LG beams, 
and applications using LG beams40,41. An extensive study of the vortex beams has found ample applications in 
the field of communications and optical imaging, among others34,38,42–49.

Imaging through scattering media: multi‑mode scanning mechanism using vortex 
beams.  This section presents the Gaussian beam and Laguerre-Gaussian beam, which will later be used in 
our simulation and analysis. The diffuser is designed such that the impulse response of the diffuser to the input 
light field is given as16:

where IOut(i,j) is the intensity recorded on the beam profiler, F is the impulse response of the diffuser to the 
field containing the information about the object, which is a function of the input power, the wavelength of 
light used, and the phase response of the diffuser and object.Iin(i,j) is the input field which is the Gaussian or the 
Laguerre-Gaussian modes, Aobj is the phase response of the object behind the diffuser to the input light field, 
varied between 0 to 2π, and Pscat (i,j) is the phase response of the diffuser which interacts with the field. Here, i 
and j are the pixel number values in the x and y-direction, respectively.�(= 632.8 nm) is the wavelength of light 
used and z(= 2 ∗ 10−2 m) is the propagation distance.

For each different mode of the beam, the beam profiler captures a 512 × 512 image. Three modes of vortex 
beams are used in this article. When the three different beams scan each object, the images captured on the beam 
profiler were assigned to a 512 × 512 × 3 3-dimensional matrix (see Fig. 2). Therefore, virtually every channel 
contains information captured for a scan order. In other words, channel 1 contains a scan of the smallest Gaussian 
beam; channel 2 contains the scan of a second-order LG beam (or a twin Gaussian beam). Channel 3 contains 
the scan of a fourth-order LG beam (or a twin Gaussian beam). Using this technique, we build a multi-mode 
image, which visually sees how the information is captured on the beam profiler for each mode. As we can see 
in Fig. 2A,C), increasing the size of the Gaussian beam reduces the power per unit area of the energy center, so 
when we increase the mode of the Gaussian beams, we distribute the energy to larger areas of the SLM and the 
diffuser, significantly reducing the amount of light that is transmitted. Therefore, we get a more blurred image. 
The main idea here is to find a new way to distribute the energy such that we can illuminate the whole object 
without the need to use a more powerful laser or extra optical components. So that even after increasing the 
mode of the beam (size of the beam), enough ballistic and snake photons can be collected at the beam profiler, 
significantly improving the quality of the image.

Simulation and experiments
The simulation and the experimental setup used in this study and the proposed imaging methodology are as fol-
lows: The input beams have a spot size of 1.26 mm and an input power of 5 mW. � = 632.8 nm is the wavelength 
of light used and z = 2 ∗ 10−2 m is the propagation distance. The Gaussian (three different beams of varying 
spot sizes corresponding to the LG mode) and L-G beams are generated using a MATLAB code and first SLM. 
The generated beams are then passed through a phase screen containing the displayed object generated by the 
second SLM. The output light from the phase screen, which includes information on the displayed object, which 
is a number from the digits number dataset46, is passed through a simulated diffuser of grit 220, which causes 
the beams to scatter and create a distorted image on the beam profiler.

Simulations.  The input beams are propagated using the split-step Fourier method50. This operation, which 
is easily executable in MATLAB, is used to numerically solve complicated partial differential equations for which 
it is difficult to ascertain a general solution. The imaging is performed separately for each different mode of the 
vortex beams. The three beams are then combined to create the complete pattern containing all the number’s 
information. The same is repeated using three Gaussian beams with corresponding spot sizes to LG beam modes 
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0, 2, and 4. Equation 3 gives the spot size of the Gaussian beam corresponding to the vortex beam carrying 
topological charge (l)51:

where w0 is the waist size of the beams used.

(3)w0(Laguerre−Gaussian) = w0(Gaussian)

√

(1+ l)

Figure 2.   (A) Shows the intensity of each simulated LG mode (solid lines) and their corresponding Gaussian 
beam modes (dotted lines) with respect to the pixel values. (B) and (C) Show the intensity profile of the LG 
modes and the corresponding Gaussian beam modes used in the simulations.
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After considering different combinations of modes used to image the test object, we use LG beams consisting 
of three topological charges l = (0, 2, 4) to avoid overlapping modes and reduce the aberrations arising due to it. 
The imaging system also uses three Gaussian beams with spot sizes calculated according to Eq. (3) to compare 
the imaging system’s performance with the two types of beams.

LGDiffNet: Deep learning architecture for image reconstruction.  We use a convolution-based 
neural network to classify and reconstruct the displayed numbers from the pattern obtained in the beam pro-
filer. The LGDiffNet learns from images to identify the image that has been inserted before the diffuser. The 
CNN architecture is based on the encoder-decoder idea of UNet architecture52. Although initially, this archi-
tecture was used for a segmentation problem, recent studies have shown that this architecture is very efficient 
for the required restoration16,53,54. However, several changes have been made to the original architecture. Firstly, 
the image input enters three convolution layers, with eight kernels of the size 5 × 5. One layer is dilated equally 
to 2, and another layer is dilated equally to 3. The three feature maps obtained are connected to get one feature 
map. The resulting feature maps enter the down sample layer (average-pooling 2 × 2). From this position, the 
process repeats itself five times in the encoder. The feature map information enters a transition layer consists of 
batch normalization (BN) layer followed by the ReLU activation layer, then convolution with 24+i kernels of size 
5 × 5, where i indicates the step number. The feature maps then enter the dense block consisting of 4 convolu-
tion layers with 16 kernels of size 5 × 5. Between each of the two convolution layers, there is a BN layer and a 
ReLU activation layer. In addition, at the entrance to each convolution layer in the block, connections are made 
with the feature maps at the exit from the previous convolution layers in the block and the feature maps at the 
entrance to the block via skip connections. At the end of each stage, the feature maps enter into a sample layer 
(max-pooling 2 × 2). The bottleneck consists of one transition layer and one dense block. Now, the decoder part 
starts with five steps corresponding to the five that were in the encoder. The output from the bottleneck then 
enters the up-sample layer (Transpose convolution 2 × 2). To preserve the information, skip connections are 
performed with the feature maps obtained at the end of the corresponding phase in the encoder with the feature 
maps obtained after the up-sample layer. This feature map is then mapped to the transition layer and from there 
to the dense block (dense block and transition layer are the same as the decoding phase). The CNN also performs 
an up-sample once more and completes another convolution operation to obtain the network output. It has been 
recently shown that using a dilated convolution layer and convolution layer with a wide kernel allows better 
information extraction from images16. Additionally, the dense-net method has been shown to improve network 
performance for better convergence55.

Since the network solves a regression problem, adjusting the regression problem’s loss is essential for optimal 
network performance. Although Mean Square Error (MSE) and Mean average error (MAE) loss functions are 
typical for the regression problem, studies have shown that they are less suitable for the problem as the input 
images do not offer a perfect resemblance to the ground truth. We, therefore, chose to use the Negative Pearson 
Correlation Coefficient (NPCC) loss function, which is effective for this type of problem16,32,56–58:

W and H are the respective comparator image’s width and height, G is the ground truth, and Y is the CNN 
output. G̃ and Ỹ  are the mean values of ground truth and CNN output, respectively. The CNN was built and 
trained on a computer with an i9 series 9900 k processor, two NVIDIA GeForce RTX 2080Ti graphics processors. 
Each GPU has a VRAM of 11 GB, and an NVlink is provided between the two GPUs. The network was trained 
for 40 epochs by Adam Optimizer with an initial learning rate of 0.0001, which reduces by half after ten epochs. 
The network was trained two times, once for the beam-profiler recorded images for the Gaussian beams and 
once for the beam profiler-recorded pictures for the different modes of LG beams.

Supervised convoluted learning requires a lot of labeled data to train the learning parameters well; thus, we 
used a data set containing an extensive collection of different images. To train and examine the network, we 
used a Digits data set containing 10,000 images of handwritten numbers from 0 to 9 (1000 for each number), 
where a certain angle rotates each image59. Each image is of the size 28 × 28 pixels, containing pixel values from 
0 to 255. Each image is resized to a 512 × 512 pixel resolution to match the image resolution to the beam profiler 
resolution. We rescaled the pixel values according to the phase change value that each pixel contributed to the 
beam. The original image was used as ground truth labels for training purposes. Our simulation gives us the 
images recorded in a 512 × 512 resolution beam profiler. In this simulation, the beam profiler’s pixel size and the 
number’s images are 6.45 µm. Due to computational limitations, the images captured on the beam profiler have 
been downsampled to 256 × 256 pixels, leading to loss of information as the downsample algorithm averages 
2 × 2 neighboring pixels. Figure 3 shows the network structure used in the manuscript.

Image reconstruction using “LGDiffNet” CNN architecture.  In this section, we present the training 
and validation of the CNN algorithm detailed in the "LGDiffNet: Deep learning architecture for image recon-
struction" section. As described in “Orbital angular momentum of light and imaging using vortex beams” sec-
tion, a diffuser of grit = 220 is used to simulate the beam propagation in a diffuse media, and the images are 
obtained for the three modes of vortex beams. The CNN is trained for 40 epochs in each iteration. The NPCC 
loss function is used in the algorithm. With each passing epoch, the algorithm learns more from the image 
training set, which is comprised of 90% of all the images obtained. From the training set, 10% of the images are 
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randomly selected for validation. 10% of all the images are used for testing the algorithm. The training results 
and tests are shown in Figs. 4 and 5.

Figure 4 shows the training graphs for the convergence of the NPCC function with each epoch for a diffuser 
of grit = 220. Comparatively, the LG beams perform much better in terms of image resolution of reconstructed 
images. This high-performance by the CNN when vortex beams are used can be attributed to the orthogonality 
of the different LG modes and also the distribution of the intensity patterns in the vortex beams with respect to 

Figure 3.   Block diagram of the LGDiffNet network architecture.
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the Gaussian beams. The mean squared errors for the image reconstruction are 0.0008 when Gaussian beams 
are used as compared to 0.0006 when vortex beams are employed. The training and validation processes are also 
considerably smoother and more robust when vortex beams are used, which can be observed from the training 
and validation graphs shown in Fig. 4.

The patterns obtained from the simulations and the computational image reconstruction using the LGDif-
fNet convolution neural network are shown in Fig. 5. The NPCC for image reconstruction using vortex beams 
is − 0.9956 compared to the NPCC of − 0.9942 when Gaussian beams are used for imaging acquisition. The 
Sørensen-Dice score is also applied to the reconstructed images to check for the validity of the image reconstruc-
tion algorithm and the imaging system itself60. The vortex beams still show an enhancement in the reconstructed 
images in this regard. The calculated peak signal-to-noise ratio (PSNR) increases by ~ 1 dB when vortex beams 
are used. The images reconstructed when the image is obtained using vortex beams have a PSNR of 80.34 dB 
compared to 79.09 dB when the images are reconstructed using images from the Gaussian beams.

The results shown here are, however, theoretically simulated. To check for the actual enhancement caused by 
vortex beams compared to Gaussian beams, we conduct an experiment to verify the results obtained by simula-
tions. The experimental procedure and the corresponding results are described in the next section.

Experimental verification, results, and discussions.  The experimental imaging setup is shown in 
Fig. 6A. A laser beam of λ = 632.8 nm provides illumination. The beam is emitted from a Melles-Griot 05-LHP-
123–496 He–Ne laser system. The input beam power is measured to be 5 mW, and the laser beam has a spot 

Figure 4.   Shows the training and validation convergence graphs for the CNN used in the study. The 
convergence of the NPCC function for the image reconstruction process for both the vortex beams (A,B) and 
Gaussian beams (C,D) is shown. The reduction in the mean squared error (MSE) with each epoch is also shown.
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size of 1 mm. The beam is then passed through a polarizer and directed towards the SLM’s (HOLOEYE PLUTO 
2.1) center using an aluminum mirror. The SLM, which has a resolution of 1920 × 1080, pixel size of 8 µm, and 
a frame rate of 60 Hz, displays a fork pattern that imparts orbital angular momentum to the input laser beam 
and also shifts the beam upwards in the y-direction (see Fig. 6B). The laser beam carrying OAM is then passed 
through a 50:50 beam splitter (BS) with the help of another mirror. Half of the emitted beam from the BS is 
collected at the beam dump, and the other half is incident on another SLM (Jasper LCoS) that contains the 
displayed digits dataset number (see Fig. 6C). The Jasper SLM has a resolution of 1920 × 1080, a pixel size of 
6.45 µm, and a frame rate of 60 Hz.

The reflected beam from the second SLM is then passed through a diffuser of grit 220 (Thorlabs DG05-220) 
via an analyzer. Diffusers are optical windows that scatter light and produce a diffusive speckle pattern. The scat-
tering of light passing through diffusers is caused due to the correlation between the incident field and the diffuser 
surface’s hills and valleys61.The Optical depth and the optical mean free path of the diffuser are calculated using 
the reference62, and described in the supplemental document.From the experimental calculations, we determine 
that the diffuser of width 2 mm is 7.11 times the optical mean free path of the sample.

A beam profiler (uEYE UI-2210-C, 640 × 480 pixels with a pixel size of 10 µm) then collects the resultant 
pattern caused due to the diffuser, with the help of a telescopic lens. Since the diffuse media emits light in all 
directions, the beam profiler was placed as close as possible (~ 2 cm) to the diffuser. The images are acquired for 
modes l = 0(channel 1), 2(channel 2), 4(channel 3), and they are digitally combined to provide a complete pattern. 
The modes are also given a color-coding in the computer to identify them in the images. The same is repeated 
for three corresponding Gaussian beams (as shown in “Orbital angular momentum of light and imaging using 
vortex beams” section). However, in this case, a 4-f lens setup is introduced before the beam splitter to attain 
magnifications to the beam, which are approximately corresponding to the spot sizes of LG modes (see Eq. 3.). 
The photo of the experimental setup is shown in Fig. 7.

The acquired images (see Fig. 8) are sent to the LGDiffNet CNN algorithm, and the results are shown in Fig. 9. 
Like the simulation results, the imaging system using multiple vortex beam modes outperforms the imaging 
system using various Gaussian beams corresponding to the LG mode. The best NPCC for image reconstruc-
tion using vortex beams is − 0.9850 compared to the best NPCC of − 0.9837 when Gaussian beams are used for 

Figure 5.   The patterns from the vortex beams and the Gaussian beams and the reconstructed images using the 
CNN are shown.
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imaging acquisition. The vortex beams also show an enhancement in terms of the Dice coefficient, where the 
images reconstructed using data acquired from vortex beams have a score of 94.7% compared to 94.27% when 
data from the Gaussian beam are used. The calculated peak signal-to-noise ratio (PSNR) also increases by 0.62 
dB when vortex beams are used. The images reconstructed when the image is obtained using vortex beams have 
a PSNR of 76.50 dB compared to 75.88 dB when the images are reconstructed using images from the Gaussian 
beams. Figure 10 shows the training graphs for the convergence of the NPCC function with each epoch when 
adiffuser of grit = 220 is used.

Having shown the experimental results, we find that they agree well with the theory and numerical simula-
tions. Several parameters like the NPCC and MSE are used to test the validity of the experiment and simulations. 
The PSNR is subsequently calculated from the MSE. Firstly, in terms of the parameters shown in Table 1, we see 
that there is < 1% deviation in calculated values for the theory and experiments. They show that the experimental 
and simulated results are in accordance with each other. The minor deviations may be caused due to many factors, 
including imperfections in the optics and the sample, the loss of beam power and shape due to its interactions 
with the optics. Secondly, the enhancement shown by the calculations suggests that there is always an increment 
in the PSNR and other calculated parameters when three channels of vortex beams are used in imaging instead 
of three channels of Gaussian beams. Finally, the high values of PSNR demonstrate the incredible robustness 

Figure 6.   (A) Experimental setup used to verify the enhancement caused by illuminating the diffuser with 
different modes of vortex beams. (B) Propagation of the vortex beams through the beam splitter. (C) Imparting 
the topological charge to the Gaussian beams along with the tilt using a forked hologram to cause a shift in the 
propagation axis.
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Figure 7.   (A) and (B) Show the imaging setup of the imaging with multiple vortex modes and their 
corresponding Gaussian modes, respectively. (C) Shows the SLM displaying the digits dataset numbers63 and the 
image acquisition setup.

Figure 8.   (A) and (B) Show the multimodal images captured by the beam profiler of the LG modes and the 
corresponding Gaussian beam modes in the experiment. The changes in the contrast of the images as compared 
to the simulated images is due to the difference in the colorbar and exposure settings of the beam profiler.
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and adaptability of the LGDiffNet CNN architecture, which is significant because no additional optimization 
methods or reference beams are used. However, it should be noted that the performance of the proposed neu-
ral network depends heavily on the initialization of the hyperparameters used in the training phase. Since the 
training batches are always selected at random from the training data, variations are to be expected in the valida-
tion results, depending on the weights and biases acquired from the training process and the training dataset. 
Moreover, different types of neural networks and datasets using the same optical method could greatly vary the 
results depending on the complexity of the neural network and the datasets.

Conclusions
In this article, we investigated whether illuminating diffuse media using multiple modes of vortex beams instead 
of Gaussian beams improves the imaging capability of the imaging system and enhances the reconstruction ability 
of the CNN. A novel CNN architecture called “LGDiffNet” is also developed in this study for image reconstruc-
tion. Both numerical and experimental analyses are performed. The results, which have a < 1% deviation between 
simulation and experiment, show that illuminating diffusers using multiple modes of vortex beams enhances 

Figure 9.   The experimental patterns from the vortex beams and the Gaussian beams and the reconstructed 
images using the CNN are shown. The changes in the contrast of the images as compared to the simulated 
images is due to the difference in the colorbar and exposure settings of the beam profiler.
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the imaging system and improves the reconstruction ability of the CNN architecture. The various parameters 
used to check for the improvement, and the enhancement shown in these parameters when vortex beams are 
used, are shown in Table 1.

In conclusion, a robust and computationally efficient imaging system using multiple modes of vortex beams 
and the “LGDiffNet” architecture is developed. The results suggest that the imaging system that uses beams car-
rying topological charges, combined with a CNN to reconstruct the images, has numerous medical imaging and 
microscopy applications, among others34,50,64–66.

Figure 10.   Shows the training and validation convergence graphs for the CNN used in the study. The 
convergence of the NPCC function for the image reconstruction process for both the vortex beams (A,B) and 
Gaussian beams (C,D) is shown. The reduction in the mean squared error (MSE) with each epoch is also shown.

Table 1.   Image enhancement using vortex beams and deep learning.

Parameters Imaging using Gaussian beams Imaging using vortex beams

MSE
Simulation: 0.0008 Simulation: 0.0006

Experiment: 0.0018 Experiment: 0.0016

PSNR (dB)
Simulation: 79.09 dB Simulation: 80.34 dB

Experiment: 75.88 Experiment: 76.50

NPCC
Simulation: − 0.9942 Simulation: − 0.9959

Experiment: 0.9837 Experiment: 0.9850

Sørensen-Dice coefficient
Simulation: 0.961 Simulation: 0.970

Experiment: 0.9429 Experiment: 0.9477
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Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained 
from the authors upon reasonable request.
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