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into multiorgan system perturbations
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Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have
indicated perturbations in the circulating metabolome linked to COVID-19 severity.
However, several questions pertain with respect to the metabolome in COVID-19. We
performed an in-depth assessment of 1129 unique metabolites in 27 hospitalized
COVID-19 patients and integrated results with large-scale proteomic and immunology
data to capturemultiorgan system perturbations.More than half of the detectedmetabolic
alterations in COVID-19 were driven by patient-specific confounding factors ranging from
comorbidities to xenobiotic substances. Systematically adjusting for this, a COVID-19-
specific metabolic imprint was defined which, over time, underwent a switch in response
to severe acute respiratory syndrome coronavirus-2 seroconversion. Integration of the
COVID-19 metabolome with clinical, cellular, molecular, and immunological severity
scales further revealed a network of metabolic trajectories aligned with multiple path-
ways for immune activation, and organ damage including neurological inflammation and
damage. Altogether, this resource refines our understanding of the multiorgan system
perturbations in severe COVID-19 patients.
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� Additional supporting information may be found online in the Supporting Information section
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Introduction

Severe corona disease 2019 (COVID-19) affects not only the
lungs but many other organ systems including the central
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nervous system (CNS) [1, 2]. Similarly, long-term sequelae of
COVID-19 also involve multiple peripheral tissues including the
CNS [3]. While sampling from the respiratory microenvironment
through bronchiolar lavage has facilitated our understanding
of local processes in the lung during severe COVID-19 [4, 5],
less is known with regard to other organ systems. Such studies
often rely on analysis of autopsy tissue material [6] but have
nevertheless recently yielded insights into possible local patho-
physiological mechanisms including the CNS [7]. An alternative
approach, assessment of circulating immune cells, and/or soluble
factors often fails to adequately provide information on events
occurring in local microenvironments. In this regard, large-scale
in-depth metabolomics and proteomics approaches might be
detailed enough to reveal specific imprints from affected tissues
[6]. Indeed, since circulating metabolomics provides a functional
readout of cellular processes [8, 9], it is not surprising that
changes in serum metabolites associate with COVID-19 severity
[10–12]. However, drawbacks with many of these studies involve
not correcting for underlying confounding factors such as comor-
bidities, which indirectly might affect the metabolome of an
individual, as well as administered drugs and other xenobiotics,
which more directly affect deep and sensitive metabolomic mea-
surements [13]. Additionally, it has been challenging for multi-
omics approaches integrating metabolomics with other large
data quantities to associate alterations in the circulation with
events occurring in tissue microenvironments. To address these
outstanding questions, we here performed a deep metabolomic
assessment in hospitalized moderate and severe COVID-19
patients and integrated the results with large-scale proteomic and
flow cytometry data to capture multisystem perturbations.

Results and discussion

Massive remodeling of the circulating metabolome in
COVID-19 and association with known confounders

We performed a deep untargeted metabolomic profiling of serum
from hospitalized moderate and severe COVID-19 patients (n =
27) and healthy donors (n = 17, matched for age and sex), using
four parallel pipelines (Fig. 1a). This strategy allowed us to quan-
tify more than 1100 metabolites from which 42% were lipids,
20% amino acids, and 20% xenobiotics (Fig. 1b and Supporting
Information Table S1). In line with previous reports [10–12],
46%–75% of all metabolites, depending on the type, were signif-
icantly altered (FDR corrected p-value) in hospitalized COVID-19
patients as compared with healthy donors (Fig. 1c and Support-
ing Information Table S2). Detected compounds increased or
decreased in most groups of metabolites, which was not surpris-
ing, given the complex therapeutic schemes of the patients. On the
other hand, most xenobiotic substances measured were present
at considerably higher concentrations in COVID-19 patients as
compared with controls (Fig. 1c and Supporting Information
Table S2). Since this suggested that a part of the observed dif-

ferences between patients and controls were not directly caused
by the infection and the ensuing inflammatory immune response,
but rather by external factors such as administered drugs, we
next analyzed the relationship between xenobiotic metabolites
and other metabolites. Indeed, 486 highly significant interde-
pendences were found (Fig. 1d and Supporting Information
Table S3) primarily linked to 106 specific xenobiotic compounds
co-varying with another 186 metabolites (Supporting Information
Table S4).

To further decipher variations in the circulating metabolome in
hospitalized COVID-19 patients associated with other confound-
ing factors, metabolome alterations were characterized in rela-
tion to comorbidities and patient management factors (Fig. 1e).
In the here studied COVID-19 cohort, age, sex, body mass index,
presence of diabetes, and smoking all affected the metabolome
(Fig. 1e and Supporting Information Table S5). Similarly, days
between admission to hospital (to a regular ward or intensive care
unit) and blood sampling for serum metabolomics had an impact
on the serum metabolome. However, the most dramatic effect on
the metabolome was seen by corticosteroid treatment (adminis-
tered to 14 of 27 patients) prior to sampling. When aggregat-
ing significantly different metabolites (Fig. 1e), between 36%
and 55% of the total metabolome was influenced by the above-
mentioned cofactors and all types of metabolites were affected
(Fig. 1f). Most of the alterations observed were specific to a single
cofactor and not shared between several confounders (Fig. 1f and
Supporting Information Table S6). Altogether, this shows that the
circulating metabolome was considerably altered in hospitalized
COVID-19 patients but that up to half of these alterations could
be attributed to the confounding factors tested.

Integrating correction for confounding factors into
general metabolomic measurement

By excluding xenobiotics and metabolites affected by con-
founders, a corrected metabolome for hospitalized COVID-19
patients was defined (Supporting Information Table S7). To eval-
uate the impact of such correction for biological interpretation,
three proof-of-concept case studies were performed (Fig. 2a–c).

First, a COVID-19 metabolic phylogeny was defined using mul-
tidimensional reduction to allow for interpretation of similarities
and differences in the high-dimensional dataset. A noncorrected
metabolome overestimated the Euclidean distance differences
between healthy donors and hospitalized COVID-19 patients as
well as impacted the detailed order of each patient (Fig. 2a).

Second, independent group comparisons are often used to
reconstruct “pseudotime” and emphasize temporal transitions in
cross-sectional designs. Here, we tested this approach to evaluate
metabolic switches happening at the transitions between healthy
and the initial infectious replicative phase (severe acute respi-
ratory syndrome coronavirus-2 [SARS-CoV-2] serum viremia),
and the subsequent seroconversion phase (anti-SARS-CoV-2 IgG
positive). When analyzing these transitions using a noncorrected
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Figure 1. Remodeling of all metabolic compartments in COVID-19 and identification of confounding factors. (a) Study design. Cohort and key char-
acteristics are described as well as the pipeline of ultraperformance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS) electro-
spray ionization (ESI) used for metabolomics characterization of serum. (b) Landscape of quantifiedmetabolites. Relative proportions of superpath-
ways and the most common sub-pathways are depicted (number of metabolites identified). (c) Differences in metabolite concentrations between
healthy donors (HD, n = 17) and hospitalized COVID-19 patients (n = 27). Each dot represents a single metabolite, FDR, false discovery rate; cir-
cular diagrams depict in blue the proportion of each superpathway significantly affected (q < 0.05). (d) Schematic view of the identification of
xenobiotic-metabolite interdependencies. R, Spearman coefficient of correlation, the thinner circular diagram depicts the number of highly signif-
icant correlations between all metabolites while the thicker circular diagrams show the main xenobiotic-metabolite interdependencies and the
related superpathways involved. (e) Impact of confounding factors on the metabolic landscape in hospitalized COVID-19 patients. Differences in
metabolite concentrations between patients with or without the indicated confounding factors (y-axis) and healthy donors (x-axis). Each dot rep-
resents a single metabolite. The number of most variable metabolites (>fold change of 2, blue) and most significant (FDR corrected “q,” or not “p”)
are indicated above each graph. (f) Distinct and shared effects of confounders on the metabolic landscape in hospitalized COVID-19 patients. Bar
graphs show the number and the composition (superpathways, colored in the bars) of the metabolites affected (most variable on the top, most
significant on the bottom plot) by the corresponding confounders (color-coded) indicated on the left. Circular diagrams show the proportion of
the metabolome affected by confounders (including all xenobiotics). Pie charts display the proportion of metabolites affected by one or several
confounders with single or shared effects displayed inside the upsets plots with connected dots under the bars.
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Figure 2. SARS-CoV-2-specific metabolic imprint across COVID-19 severities and multidimensional map of subclinical phenotypes. (a) Phy-
logeny deduced from serum metabolic assessment of healthy donors (#1-17) and COVID-19 patients (#18-44) using the corrected and noncor-
rected metabolome. Euclidian distances are calculated in the multidimensional reduced metabolic space (all principal components) and clustered
using Ward’s method. (b) Analysis of metabolic switches across pseudotime of early COVID-19 using the corrected and noncorrected metabolome.
Metabolite concentrations are compared using Mann–Whitney test between healthy donors (n = 17) and hospitalized serum PCR positive/IgG neg-
ative (n = 5) or serum PCR negative/IgG positive (n = 12) COVID-19 patients at the time of sampling. Pie charts show the overlap between the top
100 significant changes found using corrected and noncorrected metabolome. Waterfall plots display the magnitude of changes identified using
the corrected metabolome. Each bar represents a single metabolite. (c) Identification of predictive models distinguishing COVID-19 developing fatal
cases using the corrected and noncorrected metabolome. Results from the best identified models using logistic regressions (0.05 as significance for
entry and stay in the model, Akaike information criterion [AIC]) run either with the corrected or the noncorrected metabolome. (d) Schematic view
of the structure and content of the Munsell chart of COVID-19 severities containing 69 composite severity scales across layers of the pathophysio-
logical spectrum. (e) Correlation-based metabolic trajectories across the 69 composite severity scales of the Munsell chart. R, Pearson’s coefficient
of correlation. Combined clustering (using Ward’s method) of severity scales and metabolites based on the three highest and three lowest Pearson
correlation coefficients identified for each scale. (f) Correlations between single metabolites and selected serum proteome-defined neurological
severity scales. Indicated p-values shown for linear regression calculations. (g) Map of the pathophysiological landscape of COVID-19 based on
principal component (PC) analysis.
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versus a corrected metabolome and selecting the top 100 most
significant changes, only a minority of the identified metabolites
overlapped (violet pie chart, Fig. 2b). Instead, these transitions
were driven by xenobiotic metabolites and a distinct lipid profile
for the noncorrected metabolome (Fig. 2b). To gain insight
into these metabolic switches, a resource using the corrected
metabolome describing sequential up and downregulation of
metabolite types upon viral replicative and seroconversion
transitions was generated (Supporting Information Table S8).

Third, multivariate regression analysis is often used to build
predictions models and is a basis for machine learning algo-
rithms. Thus, the approach to distinguish hospitalized COVID-
19 patients with an in hospital fatal outcome compared to those
that recovered was tested (Fig. 2c and Supporting Information
Table S9). Xenobiotic metabolites drove the best identified model
(4-methylcatechol sulfate, benzoate metabolism) and the per-
ceived effect of a common metabolite (6-bromotryptophane, -
144 vs. -197) for both models was impacted by correcting the
metabolome. Although containing almost only half of the metabo-
lites, a metabolome corrected for confounding factors might still
provide relevant models to predict outcome (Fig. 2c and Support-
ing Information Table S9).

Metabolomic profiling of serum is a powerful tool to capture
fine biological perturbations and provide mechanistic insights in
multiorgan diseases [8, 9]. However, many confounders need
to be considered to uncover relevant signatures [13]. Here,
we estimate that a considerable fraction (one-third to half) of
the detectable metabolome in hospitalized COVID-19 patients
is affected by associated risk factors and patient management.
Metabolomics is a sensitive approach that can be influenced by
food consumption, physical activity, administered treatments, or
comorbidities such as obesity and diabetes. All these not only
differ in hospitalized COVID-19 patients compared with healthy
donors, but also within COVID-19 patients with moderate to
severe forms of disease. Consequently, prediction models using
metabolomics might be influenced by such confounders since
more severely ill patients will be mostly older males with comor-
bidities, immobilized for longer periods of time in the hospital
while receiving parenteral nutrition and various drug treatments
such as corticosteroids.

Furthermore, the confounders have a cumulative effect, mean-
ing that correcting for only a few of them (such as age, sex, and
body mass index) might not be sufficient. Thus, previous stud-
ies on the metabolomic profile of COVID-19 should be considered
in this context. For instance, in one prior report, more than 80%
of the severe COVID-19 patients studied had received corticos-
teroids and immunoglobulins while few of the nonsevere patients
had been given a similar treatment [12]. Similarly, in a second
study comparing the metabolome of mild and severe COVID-19
patients, underlying comorbidities were three times more com-
mon in the severe group and 60% of those patients had also
received corticosteroids while none of the patients with mild dis-
ease had [10]. To both provide useful mechanistic insights and
surrogate markers, we here provide a resource of a COVID-19
metabolic imprint corrected for these confounders.

In summary, correcting the metabolome for confounders in
COVID-19 impacted a broad range of statistical models and is crit-
ical for biological interpretations.

Establishment of proteomic and flow cytometry-based
severity scales

In searching for metabolic fingerprints of key pathophysiological
mechanisms in hospitalized COVID-19 patients, an independent
proteomic dataset was generated on the same patients. Among
1472 serum proteins quantified, biological- and organ-specific
signatures were defined based on pathway analysis and organ-
specific gene expression patterns [14] (Supporting Information
Tables S10 and S11 and Fig. S1). In addition, high-dimensional
flow cytometry analysis was performed on matched peripheral
blood immune cells to establish cell-specific immune activation
signatures (Supporting Information Table S10). These signatures
defined composite severity scales that were significantly altered
in hospitalized COVID-19 patients as compared to healthy donors
(Supporting Information Fig. S2). Overall, a Munsell chart of
COVID-19 severities containing 69 composite scales allowing the
dissection of specific aspects of a wide pathophysiological spec-
trum from clinical phenotypes to biological mechanisms was gen-
erated (Fig. 2d, Supporting Information Table S10 and Fig. S2).

Association between metabolic imprint in COVID-19
and CNS damage

Using correlation analysis between the corrected metabolome
and the generated severity scales, common and distinct metabolic
trajectories across layers of the pathophysiological spectrum were
identified (Fig. 2e and Supporting Information Fig. 3). This pro-
vided a metabolic atlas to deconvolute pathophysiological events
in COVID-19. Some trajectories, such as group 1, were dominated
by a narrow modification of the lipid profile with acyl-carnitin
derivatives representing four out of 12 metabolites of the group,
associating with brain and carbonate dehydratase severity scales
(cluster II). Others retained a much diverse composition (such as
group 3) and associated with clinical scales of severity (cluster
V). The largest common metabolic imprint was detected in
group 6 that also contained 6-acyl-carnitine derivatives positively
correlated with a large range of biological, cellular, molecular,
and organ damage severities including lung damage (cluster
I). On the other hand, metabolic group 6 presented negative
correlations with immune-related severity scales (clusters VI, VII,
IX, and X), suggesting a distinct immune-metabolic trajectory.
Finally, liver and kidney damage (cluster IV) shared similar
metabolic signatures distinct from intestine and brain damage
(cluster II) but both showing positive correlations with the
acyl-carnitine derivatives from the group 1. Across this metabolic
atlas of severity scales, using MetaboAnalyst 5.0 identified ranges
of single nucleotide polymorphisms associated with metabolic
traits including carnitine derivatives (Supporting Information
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Table S12) including rs6886262 targeting actin-binding LIM
protein 3 (ABLIM) expressed in muscle, liver, parathyroid gland,
and brain with potential functional relevance [15]. Moreover,
the concentration of palmitoylcarnitine was correlated with
severity scales of axon, glutamatergic synapse, and brain damage
(Fig. 2e and Supporting Information Fig. S3), which was of
particular interest given that single nucleotide polymorphisms
in the gene encoding carnitine palmitoyltransferase II were
previously described as a predisposing factor for encephalopathy
in influenza and other infections [16]. As an example, we further
illustrated how metabolic trajectories reflecting neurological scale
severities could identify potential surrogate markers to assess
subclinical pathological mechanisms in patients (Fig. 2f).

Beyond linking the metabolic imprint in COVID-19 to CNS
damage, these results also raised the possibility that certain
metabolic features associated with COVID-19 pathogenesis are
genetically influenced.

Integrated multidimensional analysis of proteomic
and immune-related severity scales in COVID-19

To gain a deeper insight into common and distinct pathophys-
iological mechanisms in COVID-19, a dimensionality reduction
based on all biological severity scales was performed (Fig. 2g and
Supporting Information Table S13). Principal component 1 (PC1)
identified a major role for hormone response and neuronal death
in driving the heterogeneity of patients, although most scales con-
tributed to this component, thus identifying the common global
pathway of alterations in hospitalized COVID-19 patients. Other
components offered possibilities to identify distinct independent
phenotypes within the multidimensional pathobiological contin-
uum. First, activation of the monocyte compartment appeared
confined to different patients as those presenting with elevated
carbonate dehydratase and BM signatures (PC2). Second, robust
neutrophil activation and parathyroid signatures were opposite to
increased platelet and neurotrophin signatures (PC3). Third, neu-
roinflammatory response together with regulation of IL6 produc-
tion was opposed to activation of non-naïve CD4 T cell, mucosal
invariant associated T cells, and intestinal damage (PC4). Thus,
we here mapped the pathophysiological landscape of COVID-19
identifying common and distinct phenotypes that reveals a role of
the neuroendocrine system.

Although the immunopathology of COVID-19 has been rela-
tively well characterized [17], its immunometabolism remains
largely unexplored despite both a high pathophysiological and
clinical relevance [18, 19]. We here show that metabolite
concentrations correlating with immune activation are distinct
from those reflecting clinical gradings and organ damage. As
an exception, we found that the metabolic trajectory correlating
with eosinophils activation clustered tightly with severity scales
of multiple pathways and organ damage (including lung, cluster
I). Also, the activation of type 2 innate lymphoid cells (cluster
IX) appeared to be linked to relatively specific features, such as
positive correlations with the level of bilirubin derivatives (group

3). Whether these metabolic signatures are the cause or conse-
quence of the immune activation and organs damage cannot be
assessed in our cross-sectional setting. However, speculatively,
these data could indicate a peculiar role for type-2 immunity
involving type 2 innate lymphoid cells and eosinophils [20] in
COVID-19.

Limitations of this study are important to consider for inter-
pretation of the current results and design of future studies. First,
the current sample size precludes definitive conclusions to be
drawn and raises the need for validation in larger cohorts and
longitudinal settings. In addition, the establishment of a corrected
metabolome, although key to unravel COVID-19 specific features,
is likely to mask clinically and biologically relevant results con-
cerning specific subgroups of patients such as individuals present-
ing with one or a specific combination of comorbidities. Finally,
the specificity and confidence in the pathogenic events detected
need to be carefully considered. We have relied on groups of pro-
teins, datasets from the Human Protein Atlas, and pathway anal-
ysis with the aim to map distinct human organs or biologically
relevant mechanisms with high specificity probably ensuring high
accuracy and biological relevance. However, we anticipate detect-
ing subclinical pathogenic events that might be difficult to validate
experimentally in local tissues in humans.

Concluding remarks

Beside the immune system, we mapped the relationship in-
between COVID-19 phenotypes that suggested a contribution of
the neuroendocrine system in driving patient heterogeneity. As
many hospitalized COVID-19 patients present with a large spec-
trum of neurological symptoms, including acute encephalopa-
thy, there is an urgent need to better understand and detect
pathophysiological events related to the CNS [3, 21]. Current
knowledge mainly stems from autopsy studies of fatal COVID-
19 cases and suggests that SARS-CoV-2 can penetrate the brain
where it has been associated described with neuroinflammation,
microthrombus, and tissue damage [1, 2, 7]. Our data suggest
that diverse forms of neuropathies might be present since neu-
ron death associated with viral entry into host cells, response to
hormone and hypoxia, but did not co-occur with neuroinflamma-
tion, platelet activation, or neurotrophin signaling. Thus, these
might either be temporally distinct events or distinct pathophys-
iological pathways. Since large-scale personalized proteomics is
not yet a realistic approach in clinical diagnostics, the assessment
of a single (or a few) metabolite as surrogate marker might be an
alternative cost-effective approach rapidly implementable in clin-
ical routine. In such a context, the provided scales and the associ-
ated correlated metabolites might allow to detect various immune
activators, poor metabolic trajectories, organ damage before clini-
cal deterioration, or activation of various signaling pathways with
implications for patient monitoring and targeted therapies with
high specificity. Overall, we here provide a metabolic atlas across
COVID-19 severities and an insight into system level pathogene-
sis, including CNS damage.
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Materials and methods

Characteristics of patients and controls

SARS-CoV-2 RNA+ patients with moderate (n = 10) or severe
(n = 17) COVID-19 were recruited to the study and sampled 0–
8 days after being admitted to hospital. Healthy controls were
SARS-CoV-2 IgG seronegative at time of inclusion. The study
was approved by the Swedish Ethical Review Authority and all
patients gave informed consent. More details are available on
www.covid19cellatlas.com.

Sample preparation and deep metabolomics

All serum samples were processed within 4 h from them being
taken, frozen, and maintained at –80°C until processed. Sam-
ples were prepared using the automated MicroLab STAR® sys-
tem (Hamilton Company). The resulting extract was divided into
fractions: two for analysis by two separate reverse phase/UPLC-
MS/MS methods with positive ion mode electrospray ionization
(ESI), one for analysis by reverse phase/UPLC-MS/MS with neg-
ative ion mode ESI, and one for analysis by HILIC/UPLC-MS/MS
with negative ion mode ESI.

Defining a corrected metabolome

To distinguish the metabolome specifically associated with
COVID-19 rather than with clinical risk factors and/or clinical
management, metabolites that varied according to a range of risk
factors and management criteria were censored from the global
metabolome.

Targeted proteomic

Serum proteomics was performed using the Proximity Extension
Assay technology (Olink Explore 1536) were 1472 proteins and
48 controls were measured in each sample.

Pathogenic biological events and tissue-specific
damage

Organ damage scores were defined based on serum proteins sig-
nificantly different in COVID-19 that also mapped specifically to
an individual human tissue (Supporting Information Fig. S1 and
Table S10). Pathway analysis was based on several sets of serum
proteins significantly associated with specific biological events
that at the same time were significantly altered in COVID-19
patients (Supporting Information Fig. S2).

Flow cytometry

PBMC were stained fresh for flow cytometry and acquired on a
BD LSR Symphony. More details on flow cytometry panels used
are available on https://covid19cellatlas.com. Absolute counts
from the different samples were obtained using BD TrucountTM

tubes.

Statistics

If not specified, Mann–Whitney U-test and Spearman’ rank coef-
ficient were used to analyze differences between groups and cor-
relations, respectively. False discovery rate was applied to correct
for multiple comparisons when mentioned. Clustering was based
on Euclidian distances and Wards’ method. More details on the
statistical methods are provided in the Supporting Information.
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