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Simple Summary: Chemotherapy-induced peripheral neuropathy (CIPN) is a common debilitating
complication of treatment with platinum-based compounds and taxanes. CIPN is predominantly a
sensory symptom, causing numbness, tingling, and pain in the hands and/or feet. We performed a
genome-wide association study on two independent study groups (N08Cx comprised of NCCTG
clinical trial participants in the N08C1, N08CA, and N08CB studies; and Mayo Clinic Breast Disease
Registry (MCBDR)) to find genetic variants that are associated with sensory symptoms during or
after paclitaxel, paclitaxel and carboplatin, or oxaliplatin receipt. A genetic variant (single nucleotide
polymorphism, SNP) rs56360211 near PDE6C had a very strong association with CIPN in N08Cx
but not in the MCBDR, while the variant rs113807868 near TMEM150C was significantly associated
with CIPN in the MCBDR but not in N08Cx. This lack of replication suggests that neither is actually
strongly associated with CIPN.

Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a common and potentially per-
manent adverse effect of chemotherapeutic agents including taxanes such as paclitaxel and platinum-
based compounds such as oxaliplatin and carboplatin. Previous studies have suggested that genetics
may impact the risk of CIPN. We conducted genome-wide association studies (GWASs) for CIPN in
two independent populations who had completed European Organisation for Research and Treat-
ment of Cancer Quality of Life Questionnaire (EORTC QLQ)-CIPN20 assessments (a CIPN-specific
20-item questionnaire which includes three scales that evaluate sensory, autonomic, and motor
symptoms). The study population N08Cx included 692 participants from three clinical trials (North
Central Cancer Treatment Group (NCCTG) N08C1, N08CA, and N08CB) who had been treated with
paclitaxel, paclitaxel plus carboplatin, or oxaliplatin. The primary endpoint for the GWAS was the
change from pre-chemotherapy CIPN20 sensory score to the worse score over the following 18 weeks.
Study population The Mayo Clinic Breast Disease Registry (MCBDR) consisted of 381 Mayo Clinic
Breast Disease Registry enrollees who had been treated with taxane or platinum-based chemotherapy.
The primary endpoint for the GWAS assessed was the earliest CIPN20 sensory score available after
the completion of chemotherapy. In multivariate model analyses, chemotherapy regimen (p = 3.0
× 10−8) and genetic ancestry (p = 0.007) were significantly associated with CIPN in the N08Cx
population. Only age (p = 0.0004) was significantly associated with CIPN in the MCBDR population.
The SNP most associated with CIPN was rs56360211 near PDE6C (p =7.92 × 10−8) in N08Cx and
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rs113807868 near TMEM150C in the MCBDR (p = 1.27 × 10−8). Due to a lack of replication, we cannot
conclude that we identified any genetic predictors of CIPN.

Keywords: chemotherapy-induced peripheral neuropathy; genome-wide associated study; toxicity

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a common debilitating clin-
ical complication that arises from some common anticancer agents including taxanes,
platinum compounds, and vinca alkaloids. CIPN ranks among the most common non-
hematological dose-limiting toxicities of the platinum and taxane compounds. CIPN
is often a sensory-predominant symptom associated with numbness, tingling, and neu-
ropathic pain, especially in the hands and feet [1–4]. CIPN can occur acutely during
chemotherapy and may require a reduction in drug dosage or even the premature stoppage
of a planned treatment course, potentially impairing the efficacy of oncological treatment
and survival [5,6]. Acute CIPN often resolves after the completion of chemotherapy, but
it can sometimes persist for years, impairing quality of life over the long-term [2,5]. The
National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE)
facilitate the standardized clinician reporting of adverse events [2,7], but patient-reported
outcomes have been demonstrated to be more accurate and sensitive than CTCAE mea-
sures for understanding cancer treatment outcomes in general and true CIPN burden
specifically [8–15]. The European Organisation for Research and Treatment of Cancer
Quality of Life Questionnaire (EORTC QLQ) CIPN20 is a questionnaire used to assess
patient-reported severity of CIPN [2,16,17]. The prevalence of CIPN varies between differ-
ent chemotherapy agents including platinum compounds and taxanes (two of the most
commonly used classes of chemotherapy drugs); incidence rates range from 19 to 85% [7].
Reports have indicated that after the cessation of chemotherapy, CIPN is observed in nearly
70% of patients in the first month, in 60% at three months, and in 30% of patients at six
months; as such, the concern that CIPN may cause long-lasting debility is a common
reason for chemotherapy cessation or drug dose reduction [1,2,5,7,18]. Wide variations in
CIPN severity between individuals receiving identical chemotherapy regimens suggest
that genetic predisposition may play a role [1].

Pharmacogenomics research to identify genetic variation associated with CIPN, in-
cluding markers specific to paclitaxel-induced peripheral neuropathy (PIPN) or oxaliplatin-
induced peripheral neuropathy (OIPN), have been reported through candidate gene
and genome-wide association studies (GWASs) [1,2,18–33]. Polymorphisms including
rs7349683 in EPHA5 [21,26], rs10509681 and rs11572080 in CYP2C8 [34], and rs3213619 in
ABCB1 [19] have been reported to be associated with the risk of PIPN. Other studies have
not been able to validate some of these associations for SNPs (single nucleotide polymor-
phism) in ABCG2, ACYP2, BTG4, CCNH, FARS2, and FOXC1 with OIPN [25,30,33,35].

The rs9657362 and rs17683288 genetic variants in a Charcot–Marie–Tooth disease
(CMT) gene, ARHGEF10, were found to be associated with protection against PIPN, while a
risk effect was associated with SNP rs2294039. These SNPs were found through the targeted
DNA sequencing of patients with an extreme phenotypes for PIPN (extremely severe
versus extremely little PIPN) in two North Central Cancer Treatment Group (NCCTG)
trials, N08C1 and N08CA [36,37]. A recent study with oxaliplatin-treated patients, N08CB,
failed to associate any CMT-related genetic polymorphisms with OIPN susceptibility [38].

The present study assessed patient-reported CIPN data from patients who had re-
ceived a taxane (paclitaxel), platinum compound (oxaliplatin), or both drug classes (pacli-
taxel and carboplatin), and it performed two separate GWAS analyses—one on a clinical
trial population and the other on a clinical cohort population. The aim of the study was to
identify genetic variants that influence CIPN from paclitaxel and platinum-based therapy.
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2. Materials and Methods
2.1. Patient Population

The clinical trial population, herein referred to as N08Cx, comprised participants
in the N08C1 (paclitaxel and carboplatin treatment), N08CA (paclitaxel treatment), and
N08CB (oxaliplatin treatment) NCCTG clinical trials for whom serial patient-reported
neuropathy assessments had been obtained using the CIPN20 [39–41]. NCCTG is now part
of the Alliance for Clinical Trials in Oncology. The NCCTG N08C1 study, as described
previously [36,41,42], was designed to study the natural history of paclitaxel neuropathy
and to test some genetic correlatives in patients with various cancers including breast,
ovarian, and lung. The 284 patients on study were treated with paclitaxel at a dose of
70–90 mg/m2 weekly or 175 mg/m2 every 3 weeks, with or without carboplatin. The
N08CA study, as previously described [37,39,43], included 185 patients who received
carboplatin (CBDCA) at area under the curve (AUC) = 5–7 every 21 or 28 days for at least
12 weeks with paclitaxel given either 150–200 mg/m2 every 21–28 days or 80 mg/m2

weekly for at least 12 weeks. Patients were also randomly assigned to receive 1.5 g/m2

of glutathione or placebo (100 mL of 0.9% NaCl) intravenously prior to chemotherapy
for the possible prevention of paclitaxel/carboplatin-induced peripheral neuropathy. The
third clinical trial, N08CB, studied intravenous calcium (Ca) and magnesium (Mg) for the
prevention of oxaliplatin-induced neurotoxicity in colon cancer patients [38,40,43,44]. In
this randomized trial, 353 patients with colon cancer were randomly assigned to one of
three arms: (1) Ca/Mg before and after oxaliplatin-containing chemotherapy, (2) Ca/Mg
before and placebo after oxaliplatin-containing chemotherapy, or (3) placebo before and
after oxaliplatin-containing chemotherapy [40]. In all three trials, patients were at least
18 years old and were excluded if they had a pre-existing history of peripheral neuropathy
(except Grade 1 baseline CIPN was allowed in N08CA), other medical conditions that
could have interfered with study participation, prior treatment with paclitaxel and/or
carboplatin, or the concurrent use of agents for neuropathy prevention.

A separate clinical observational cohort was made up of breast cancer patients from
the Mayo Clinic Breast Disease Registry (MCBDR), an ongoing longitudinal cohort that
enrolls patients diagnosed with breast cancer within the prior year. Participants completed
questionnaires at baseline and during follow-up, approximately annually (by mail), and al-
lowed for reviews of their medical records and access to tumor tissue when available. More
than 8000 patients have consented to participate in the MCBDR since 2003, with accrual
rates currently approximating 600/year (70–80% of those approached). Patients with prior
cancers, ductal carcinoma in situ (DCIS)/stage 0, stage-4/metastatic breast cancer, and
self-reported diabetes were excluded from the GWAS analysis, and the patients included
in the analyses were those who returned at least one follow-up questionnaire that included
EORTC QLQ-CIPN20, who had received a paclitaxel and platinum compound, and for
whom genotyping had been performed (Figure 1). All the participants in these studies
signed an Institutional Review Board (IRB)-approved informed consent, in accordance
with federal and institutional guidelines.

2.2. Measurement of Chemotherapy-Induced Peripheral Neuropathy (CIPN) Symptoms

CIPN was measured on all studies using the QLQ-CIPN20 questionnaire [39–42].
This 20-item questionnaire includes three scales that evaluate sensory, autonomic, and
motor symptoms. Patients rate their experience for each aspect of CIPN using scores
from 1 (not at all) to 4 (very much). The questionnaire has been tested in cancer patients
receiving a variety of chemotherapy agents and has been shown to have internally con-
sistent reliability [42,43,45]. While the autonomic and motor subscales have been found
to suboptimally correlate with changes in CIPN symptoms, the sensory subscale is highly
correlated [16,43]. For N08Cx, the QLQ-CIPN20 was completed by patients prior to each
dose of chemotherapy. The primary outcome of the N08Cx GWAS was chosen as the
change in the CIPN20 sensory score from baseline to the worst score (representing the
most severe symptoms) reported within 18 weeks of baseline, with only those patients
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who had at least two post-baseline score measurements included. For the MCBDR, no
CIPN20 data were collected before chemotherapy because the CIPN20 instrument was
not included in the baseline survey and also because patients may enroll in that cohort
study up to a year after diagnosis. Because pre-chemotherapy CIPN20 scores were not
routinely collected, it was not possible to assess change in scores to mimic the N08Cx
primary outcome. The CIPN20 instrument was also not part of every follow-up ques-
tionnaire, and some participants did not respond to every questionnaire. Therefore, the
primary endpoint for the MCBDR GWAS was not based on any score change over time,
but rather on the earliest available CIPN20 sensory score during follow-up after receipt of
chemotherapy. We re-scaled the CIPN20 scores in both populations so that 0 represented
the most severe symptoms and 100 represented no symptoms, as specified in the analysis
plan of the N08CX trials protocols [39,40,46] and similar to scaling used previously [46].
Hence, a negative change from baseline in N08Cx corresponded to worsening of symptoms,
and a lower score corresponded to worse symptoms in both N08Cx and the MCBDR.

Figure 1. Breast registry flow diagram. DCIS: ductal carcinoma in situ; GWAS: genome-wide
association study; CIPN: chemotherapy-induced peripheral neuropathy; MCBCS: Mayo Clinic Breast
Cancer survey; iCOGS: Illumina iSelect genotyping array, designed as part of the Collaborative
Oncological Gene-Environment Study (COGS).

2.3. DNA Extraction, Genotyping and Quality Control

Genomic DNA was extracted from blood samples collected as part of the clinical trial
(N08Cx) and as part of the registry (MCBDR). Genotyping for the N08Cx study samples
was performed on Illumina’s Infinium Human OmniExpress (https://www.illumina.com)
at the Mayo Clinic Medical Genome Facility. The MCBDR samples were genotyped on
either of two platforms, the Illumina Infinium Onco Array (https://www.illumina.com) or
the Illumina iSelect genotyping array (iCOGS) chip—a platform specifically designed to
evaluate genetic variants associated with the risk of breast, ovarian, and prostate cancer
(http://www.cogseu.org/) [47–49]. All of the genotype data were received 1 April 2020.

For quality control purposes, the genotype data were cleaned to remove unmapped
SNPs, duplicate samples, samples with inconsistency between reported sex and genetic

https://www.illumina.com
https://www.illumina.com
http://www.cogseu.org/
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data or closely related kinship (within first degree relatives) according to KING [50], and
SNPs with call rates <98%. SNPs with a minor allele frequency <5% were removed because
of limited statistical power for such SNPs. The STRUCTURE software [51] was used
to determine the genetic ancestry admixture for the patients of the study and reference
samples (n = 585) of known ancestry from the 1000 Genome database that served as
population anchors. A single primary ancestry category (African, Asian, or Caucasian)
was predicted for each study sample. Principal component analysis was utilized to assess
and correct for population stratification. To increase the genome coverage, genotypes
(allele dosages) were imputed by the University of Michigan imputation server [52]. SNPs
with an imputation r2 < 0.3 were excluded. For the MCBDR GWAS, only SNPs common
to the OncoArray- and iCOGS-derived datasets (after other data processing steps) were
considered.

2.4. Candidate Gene SNPs

Several reviews on studies testing associations between SNPs from candidate genes
and neuropathy have been published [19,21,22,26,28,33,36,37,51–54]. In these studies,
CIPN severity has been graded mostly by the NCI-CTCAE, by Functional Assessment of
cancer therapy (FACT)-Taxane or Total Neuropathy Score (TNS), or by EORTC-CIPN20
scores [2,20,55]. To validate previously reported associations, we examined those SNPs
(from previous candidate gene studies) with changes in baseline CIPN20 scores (N08Cx)
and with the absolute earliest CIPN score at follow-up (MCBDR).

2.5. Statistical Analysis

Linear regression was used to determine potential covariates to be adjusted for in
analyses, as well as to test the association between each SNP and the trait of interest,
adjusted for selected covariates (p < 0.1). SNP genotypes were represented by the dose of
the minor (alternate) allele with an additive model for the allele effect, and genome-wide
significance was defined as p < 5 × 10−8 [56,57]. Quantile–quantile (Q–Q) plots were
used to visually evaluate whether population stratification was controlled by plotting the
distribution of observed p-values versus the distribution expected under a null hypothesis
of no SNP associations. Manhattan plots were used to plot p-values for all SNP associations
across chromosomes, and regional association plots (LocusZoom) [58] were used to provide
detail on genetic regions of interest, providing gene annotations and pairwise correlations
between the surrounding SNPs and the SNP of interest.

3. Results
3.1. Patient Characteristics

Table 1 shows the demographics of 692 patients who were enrolled in the GWAS for
N08Cx with at least two post-baseline CIPN20 scores and genetic samples that passed
quality control. There were 71.1% women and 28.9% men; the mean age was 57.6 years.
Most patients (85.7%) self-reported their race as White, while 10.5% self-reported as Black
or African American, and 2.6% self-reported as Asian. The self-reported race data generally
agreed with the genetic-based ancestry category with a few exceptions mainly amongst
those who reported themselves to be non-White. Nine patients (including five American
Indian/Alaska Native, two African American, and two Asian by self-reporting) were
categorized as having primarily Caucasian genetic ancestry. Only 2.5% of N08Cx patients
reported a Grade 1 baseline neuropathy (asymptomatic; loss of deep tendon reflexes or
paresthesia, NCI CTCAE v4). The mean CIPN20 sensory score in N08Cx at baseline
was 97.1 (on a scale of 0–100, where lower scores corresponded to worse symptoms and
higher scores corresponded to less severe symptoms). Diabetes status was only reported
in the N08CA study, while body mass index (BMI) was only reported in the N08CA and
N08CB studies. The primary outcome of the N08Cx study was a change from baseline
to worst post-baseline score within 18 weeks of baseline. We considered the following
as potential covariates: patient sex, age, baseline Eastern Cooperative Oncology Group
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(ECOG) performance status, chemotherapy regimen, genetic ancestry category, and the
first five principal components of the genetic data.

Table 1. Baseline characteristics of the N08Cx study cohort.

Characteristic Study (Participants a)

N08C1 (246) N08CA (150) N08CB (296) Total (692)

Age Mean (SD) 56.5 (11.4) 61.0 (10.4) 56.7 (11.3) 57.6 (11.3)

Median (Q1, Q3) 56.0 (48.2, 64.0) 61.5 (55.0, 68.0) 56.0 (50.0, 65.0) 57.0 (50.0, 65.2)

Range 23.0–85.0 28.0–85.0 24.0–83.0 23.0–85.0

Sex (%) Female 213 (86.6%) 122 (81.3%) 157 (53.0%) 492 (71.1%)
Male 33 (13.4%) 28 (18.7%) 139 (47.0%) 200 (28.9%)

Race (%)

White 202 (82.1%) 139 (92.7%) 252 (85.1%) 593 (85.7%)
Black/African American 30 (12.2%) 9 (6.0%) 34 (11.5%) 73 (10.5%)

Native Hawaiian or Other Pacific
Islander 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Asian 11 (4.5%) 2 (1.3%) 5 (1.7%) 18 (2.6%)
American Indian or Alaska

Native 1 (0.4%) 0 (0.0%) 3 (1.0%) 4 (0.6%)

Not Reported 2 (0.8%) 0 (0.0%) 1 (0.3%) 3 (0.4%)
Unknown 0 (0.0%) 0 (0.0%) 1 (0.3%) 1 (0.1%)

Body Mass Index

Missing data b 246 0 1 247
Mean (SD) NA 27.7 (8.0) 28.9 (7.1) 28.5 (7.4)

Median (Q1, Q3) NA 25.5 (22.2, 30.5) 27.6 (24.4, 31.9) 26.9 (23.6, 31.8)
Range NA 16.7–62.5 15.3–64.8 15.3–64.8

ECOG Performance
Status (PS), (%)

0 152 (61.8%) 70 (46.7%) 195 (65.9%) 417 (60.3%)
1 94 (38.2%) 70 (46.7%) 98 (33.1%) 262 (37.9%)
2 0 (0.0%) 10 (6.7%) 3 (1.0%) 13 (1.9%)

Baseline Neuropathy-
National Cancer

Institute Common
Terminology Criteria
for Adverse Events

(NCI CTCAE) v4 (%)

None 246 (100.0%) 133 (88.7%) 296 (100.0%) 675 (97.5%)

Grade 1 0 (0.0%) 17 (11.3%) 0 (0.0%) 17 (2.5%)

Baseline CIPN20
Sensory Score

Mean (SD) 97.3 (5.1) 94.7 (8.7) 98.1 (5.0) 97.1 (6.2)
Median (Q1, Q3) 100.0 (96.3, 100.0) 100.0 (92.6, 100.0) 100.0 (100.0, 100.0) 100.0 (96.3, 100.0)

Range 70.4–100.0 33.3–100.0 44.4–100.0 33.3–100.0

Cancer Type (%)

Breast 143 (58.1%) ND 0 ND
Lung 38 (15.4%) 43 (28.7%) 0 81 (11.7%)

c Ovarian 36 (14.6%) 54 (36.0%) 0 90 (13.0%)
d Colorectal ND ND 296 (100.0%) ND

Other 29 (11.8%) 39 (26.0%) 0 ND
Not reported 0 14 (9.3%) 0 14 (2.0%)

a Demographics for 692 patients on study with GWAS and CIPN20 sensory data; b body Mass is not reported for N08C1 study; c ovarian:
includes peritoneal and fallopian cancers; d colorectal: includes adenocarcinoma of the colon or rectum; NA: not applicable; ND: not
determined; ECOG: Eastern Cooperative Oncology Group; CIPN20: CIPN-specific 20-item questionnaire.

The factors most strongly associated with the primary outcome and selected as covari-
ates were sex, chemotherapy regimen, and genetic ancestry. In the multivariate analysis
(Table 2), oxaliplatin treatment was used as the comparator and the severity of CIPN
(coefficient estimate (CE), standard error (SE), and p-value (p)) was observed to be worse
in the biweekly paclitaxel treatment arm (CE = −15.32, SE = 3.93, and p = 0.0001) than in
the weekly paclitaxel alone (CE = −9.01, SE = 2.55, and p = 0.0004) or every three weeks
paclitaxel/carboplatin combination (CE = −8.26, SE = 1.82, and p = 6.77 × 10−6). Overall,
the chemotherapy regimen was significantly associated with CIPN (p = 3.0 × 10−8).
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Table 2. Multivariate linear regression analysis.

Clinical Feature Covariate
Coefficient p-Value Overall

p-ValueEstimate SE

Sex
Female (reference) - - - -

Male 3.29 1.77 0.06

Chemotherapy
Regimen

Oxaliplatin 2 wk
(reference) - - -

3.0 × 10−8
Pac Only 1 wk −9.01 2.55 0.0004
Pac Only 2 wk −15.32 3.94 0.0001
Pac Only 3 wk −7.23 6.02 0.23

Pac and Carb 1 wk 3.71 2.66 0.16
Pac and Carb 3 wk −8.26 1.82 6.77 × 10−6

Genetic Ancestry
European (reference) - - -

0.007African −7.63 2.43 0.002
Asian 0.98 4.86 0.84

Factors associated with CIPN20 (N08Cx study population) measured as change from baseline to minimum
CIPN20 sensory score (corresponding to most severe symptoms) within 18 weeks of baseline, Overall p-value
derived from Wald significance test, Pac: paclitaxel; Carb: carboplatin; SE: standard error.

Furthermore, genetic ancestry, specifically African American ancestry, was also signifi-
cantly associated with CIPN change from baseline (CE = −7.63, SE = 2.43, and p < 0.002)
with an overall significance of p = 0.007, while sex was only borderline significant (CE = 3.29,
SE = 1.77, and p = 0.06), Table 2.

At the time of this study, 8317 patients had consented to participate in the MCBDR
(Figure 1). After the exclusion of subjects without genotyping data (n = 4901), those not
returning at least one follow-up questionnaire that included CIPN20 (n = 1129), those who
had been diagnosed with cancer previously (and therefore might have received additional
treatments, n = 352), those with DCIS/stage 0 (n = 329) or stage 4/metastatic disease
(n = 38 as previously described in Section 2.1), those who reported having diabetes (n = 43),
and those who did not return a questionnaire with a complete CIPN20 (n = 385), a total of
1140 patients remained (Figure 1).

Out of this number, 381 had undergone paclitaxel, paclitaxel and carboplatin, or
oxaliplatin treatment and had CIPN20 data scores (Figure 1 and Table 3) and were included
in the GWAS. The CIPN20 was collected on two follow-up questionnaires, one sent approx-
imately three years after initial cancer diagnosis and another sent between 1 and 17 years
after initial cancer diagnosis (depending on when the patient enrolled in the MCBDR).
Patients included in our GWAS completed the CIPN20 a median of 7.1 years after diagnosis
(range: 1.8–15.7). As potential covariates, we considered the following: patient age, years
since cancer diagnosis (as a proxy for years since treatment), treatment with a platinum
agent, genotyping platform (OncoArray or iCOGS), and the first five genetic principal
components. Patient sex and ancestry category were not considered because only one
patient was male, and all were categorized as Caucasian.
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Table 3. Baseline characteristics of the Mayo Clinic Breast Disease Registry (MCBDR) GWAS cohort.

Characteristics of Participants (n = 381)

Cancer Diagnosis CIPN Reported

Age

Mean (SD) 48.4 (9.5) 55.5 (10.8)

Median (SD) 48.4 (42.2–53.8) 56.0 (48.8–62.4)

Range 24.9–82.7 28.6–87.6

Sex (Gender)
Female 380 (99.7%)

Male 1 (0.3%)

Race
White 374 (98.2%)

Non-white, unknown, or undisclosed 7 (1.8%)

Body Mass Index (N)

Missing data 32

Mean (SD) 27.9 (5.7)

Median (Q1, Q3) 27.0 (23.9, 31.1)

Range 15.8–46.0

Years from Cancer Diagnosis to
CIPN20

Mean (SD) 7.1 (3.7)

Median (Q1, Q3) 7.2 (3.2, 10.0)

Range 1.8–15.7

Treatment
Taxane only 342 (89.8%)

Taxane and platin 39 (10.2%)

Genotyping Platform OncoArray 233 (61.2%)

iCOGS 148 (38.8%)

We used all of the candidate covariates in the analysis except for the non-significant
principal components in the GWAS. Only older age was statistically significantly associated
with worse CIPN20 scores in the multivariate model (p = 0.0004); see Table 4.

Table 4. Multivariate linear regression.

Clinical Feature Covariate Coefficient
p-Value

Estimate SE

Age (Years) −0.31 0.09 0.0004

Years from Cancer Diagnosis to CIPN20 0.33 0.35 0.34

Treatment
Taxane only - - -

Taxane and platin −1.28 2.7 0.64

Genotyping Platform
OncoArray - - -

iCOGS −1.15 2.24 0.64
Factors associated with CIPN20 (MCBDR cohort population). SE: standard error.

3.2. Genome-Wide Association Study (GWAS) Results

The Manhattan and Q–Q plots for the N08Cx GWAS study are shown in Figures 2 and 3,
respectively. Though no SNPs achieved genome-wide significance (p < 5.0 × 10−8), the
rs5636021 SNP on chromosome 10 near the PDE6C gene approached this level of signifi-
cance (p = 7.92 × 10−8).
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Figure 2. Manhattan plot for the N08Cx study.

Figure 3. Q–Q plot for N08Cx study.

The SNPs with p < 1.0 × 10−6 are shown in Table 5. One SNP on chromosome 11
(rs10769096), two SNPs on the X chromosome (rs4969675 and rs73538805), and 11 SNPs lo-
cated within the same intergenic 2q22 chromosome region (a gene desert) had p-values < 1.0
× 10−6. Using LDlink [59,60], a suite of web-based applications designed to easily and
efficiently interrogate linkage disequilibrium in population groups, all of the chromosome
2 SNPs were determined to be in strong linkage disequilibrium (LD) (r2 = 0.913–1.0 and
D’ = 0.977–1.0), as observed from the Caucasian population. D’ (D prime) values range
from 0 to 1 with higher values indicating tight linkage of alleles.
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Table 5. SNPs with p-value < 1 × 10−6 associated with change in CIPN20 sensory in the N08Cx study population.

RSID 1 Gene Chr
Position

(bp)

Allele Sample numbers (Genotype)
Minor

Allele Freq
(alt.freq)

Coefficient

p-value p-value in
MCBDRRef -Major Alt -Minor Major

-ref/ref

Hetero-
zygous
-ref/alt

Variant
-alt/alt Estimate SE

rs56360211 PDE6C 10 95374453 T G 623 66 3 0.054 −12.92 2.38 7.92 × 10−8 0.34
rs1515252 - 2 146779243 G A 314 302 76 0.328 −5.96 1.11 1.18 × 10−7 0.07

rs10769096 TSPAN18 11 44943260 G A 479 180 33 0.174 −7.74 1.46 1.65 × 10−7 0.82
rs16825861 - 2 146742030 G A 318 301 73 0.323 −5.87 1.12 2.32 × 10−7 0.11
rs13026986 - 2 146753902 T G 318 301 73 0.321 −5.91 1.13 2.36 × 10−7 0.11
rs1606806 - 2 146758685 C T 317 302 73 0.322 −5.91 1.13 2.39 × 10−7 0.10

rs34053477 - 2 146742600 G A 318 301 73 0.321 −5.90 1.13 2.43 × 10−7 0.11
rs16825916 - 2 146768842 A G 317 301 74 0.322 −5.88 1.13 2.56 × 10−7 0.10
rs7583107 - 2 146819721 C T 71 325 296 0.663 5.74 1.12 3.91 × 10−7 0.04
rs4662450 - 2 146806610 A C 71 325 296 0.659 5.77 1.13 3.92 × 10−7 0.05
rs7565993 - 2 146803053 A G 71 325 296 0.659 5.77 1.13 3.97 × 10−7 0.05
rs4969675 - X 95803439 T C 15 244 433 0.788 13.27 2.62 5.16 × 10−7 -
rs36049952 - 2 146839632 T C 346 286 60 0.292 −5.84 1.18 9.25 × 10−7 0.04
rs12991309 - 2 146822623 G A 346 286 60 0.292 −5.83 1.18 9.38 × 10−7 0.04
rs73538805 - X 97724436 T C 486 186 20 0.162 7.02 1.42 9.42 × 10−7 -

1 PDE6C: phosphodiesterase 6C gene; TSPAN18: tetraspanin 18 gene. All chromosome 2 SNPS are in linkage disequilibrium; Chr: chromosome, SE: standard error; Freq: frequency. SNP positions on chromosome
were based on the GRCh37 (Genome Reference Consortium Human Build 37) assembly in National Center for Biotechnology Information (NCBI); RSID: Reference SNP cluster ID; SNP: single nucleotide
polymorphism.
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The Manhattan plot for the MCBDR GWAS study is shown in Figure 4, with the
corresponding Q–Q plot shown in Figure 5. The strongest association with CIPN was with
SNP rs113807868 (p = 1.27 × 10−8) on chromosome 4 near the TMEM150C gene.

Figure 4. Manhattan plot for the MCBDR study.

Figure 5. Q–Q plot for the MCBDR study.

Another SNP near this gene (rs2868379) showed evidence of association (p = 7.54 × 10−7).
Additional SNPs with p < 1.0 × 10−6 are shown in Table 6. Two SNPs on chromosome 5
and eight other SNPs on chromosome 12 were also associated with CIPN at a marginal
significance level of p < 1.0 × 10−6. In the Caucasian population, all the chromosome
12 SNPs (Table 6) were found to be in strong LD with one another (r2 and D’ = 1) [59,60].
SNP positions on chromosomes were based on the GRCh37 (Genome Reference Consortium
Human Build 37) assembly in National Center for Biotechnology Information (NCBI).
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Table 6. SNPs with p-value < 1 × 10−6 associated with CIPN in the MCBDR cohort population.

RSID 1 Gene Chr
Position

(bp)

Allele Sample Numbers (Genotype)
Minor

Allele Freq
(alt.freq)

Coefficient

p-Value
p-Value in

N08CxRef
-Major

Alt
-Minor

Major
-ref/ref

Hetero-
zygous
-ref/alt

Variant
-alt/alt Estimate SE

rs113807868 TMEM150C 4 83439324 G A 346 32 3 0.068 −16.18 2.78 1.27 × 10−8 0.77

rs78825864 - 12 98169501 C A 316 60 5 0.093 −9.76 1.92 5.84 × 10−7 0.18

rs77885228 - 12 98174620 A G 315 61 5 0.095 −9.67 1.91 6.05 × 10−7 0.10

rs77880756 - 5 124192458 G A 280 96 5 0.143 −9.08 1.79 6.54 × 10−7 0.54

rs76151599 - 12 98169090 T C 315 61 5 0.095 −9.64 1.91 6.65 × 10−7 0.10

rs76505485 - 12 98169019 A C 315 61 5 0.095 −9.64 1.91 6.65 × 10−7 0.10

rs76175313 - 12 98167034 C T 315 61 5 0.095 −9.64 1.91 6.67 × 10−7 0.11

s75111732 - 12 98161392 T C 315 61 5 0.095 −9.65 1.91 6.88 × 10−7 0.11

rs11109196 - 12 98155827 A G 315 61 5 0.095 −9.65 1.91 7.25 × 10−7 0.09

rs2868379 TMEM150C 4 83438645 T C 325 52 4 0.104 −11.35 2.26 7.54 × 10−7 0.61

rs4331859 LOC105377763 5 179094108 A C 266 106 9 0.163 −7.55 1.51 9.17 × 10−7 0.04

rs12317534 LOC643711 12 98139760 A C 312 64 5 0.098 −9.55 1.91 9.31 × 10−7 0.07
1 TMEM150C: transmembrane protein 150C. All the chromosome 12 SNPS are in linkage disequilibrium. Chr: chromosome; SE: standard error; Freq.: frequency. SNP positions on chromosome were based on the
GRCh37 (Genome Reference Consortium Human Build 37) assembly in National Center for Biotechnology Information (NCBI), RSID: Reference SNP cluster ID.
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3.3. Candidate SNP Analysis

Based on prior studies, we performed focused analyses of candidate SNPs that have
been reported to be associated with CIPN among patients treated with either paclitaxel or
platinum-based drugs. The results in Tables 7 and 8 showed that none of the candidate
SNPs were statistically significantly associated with CIPN in either of the two cohorts
(with a Bonferroni adjusted significance threshold of approximately = 0.001). Out of the
74 statistical tests presented in Tables 7 and 8, four had p-values < 0.05, as would be
expected by random chance.

Table 7. Candidate SNPs associated with CIPN from paclitaxel-based treatment in previous studies.

RSID Gene Chr BP

Allele MCBDR cohort N08Cx cohort
Cited

ArticlesRef Alt Freq. Beta/Effect SE p-
Value Freq. Beta/Effect SE. p-

Value

rs1056836 CYP1B1 2 38298203 C G 0.596 −1.00 1.15 0.38 0.541 −2.08 1.12 0.06 [19]
rs10771973 FGD4 12 32792974 G A 0.283 −0.15 1.22 0.90 0.313 2.44 1.10 0.03 [21]
rs8187710 ABCC2 10 101611294 G A 0.062 −3.34 2.46 0.17 0.067 −1.79 2.16 0.41 [19]
rs4141404 LIMK2 22 31675185 A C 0.697 −0.21 1.24 0.87 0.734 2.45 1.18 0.04 [26]
rs11572080 CYP2C8 10 96827030 C T 0.112 0.00 1.77 1.00 0.095 −2.81 1.83 0.13 [54,55]
rs17222723 ABCC2 10 101595996 T A 0.062 −3.31 2.46 0.18 0.055 −0.38 2.32 0.87 [19]
rs17781082 GRIP1/CAND1 12 67476327 C T 0.409 0.38 1.31 0.77 0.384 1.12 1.12 0.32 [21]
rs10509681 CYP2C8 10 96798749 T C 0.114 0.23 1.72 0.90 0.095 −2.73 1.83 0.14 [54,55]
rs4737264 XKR4 8 56111322 A C 0.223 2.82 1.47 0.06 0.213 −0.98 1.30 0.45 [21,26]
rs1903216 BCL6 3 187629503 A G 0.510 −0.10 1.25 0.93 0.546 −0.75 1.08 0.49 [21]
rs2233335 NDRG1 8 134261065 T G 0.363 0.19 1.27 0.88 0.341 0.69 1.12 0.54 [21]

rs7001034 MIR4288
-FZD3 8 28363378 A G 0.603 −0.59 1.15 0.61 0.563 −0.04 1.07 0.97 [21]

rs16916932 CACNB2 10 18476276 C T 0.079 −1.57 2.07 0.45 0.063 2.75 2.15 0.20 [21]
rs8110536 C19orf21 19 756985 T G 0.162 −1.66 2.18 0.45 0.150 0.21 1.47 0.89 [26]
rs10932374 ERBB4 2 212244403 G A 0.231 0.18 1.36 0.90 0.248 −0.56 1.20 0.64 [26]
rs17683288 ARHGEF10 8 1877480 T G 0.063 −4.55 3.02 0.13 0.059 1.62 2.15 0.45 [36,37]
rs7833751 FZD3 8 28362792 T G 0.598 −0.81 1.15 0.48 0.539 0.31 1.04 0.77 [21]
rs2032582 ABCB1 7 87160618 A C 0.556 −0.64 1.20 0.59 0.589 0.89 1.09 0.41 [19]
rs7349683 EPHA5 4 66197804 C T 0.345 0.25 1.30 0.85 0.329 −0.53 1.12 0.64 [21,26]
rs9657362 ARHGEF10 8 1833801 G C 0.147 −3.24 1.96 0.10 0.138 1.66 1.53 0.28 [36,37]
rs1045642 ABCB1 7 87138645 A G 0.470 0.20 1.16 0.86 0.502 −0.05 1.05 0.96 [19]

Chr: chromosome; SE: standard error; Freq: frequency. SNP positions on chromosome were based on the GRCh37 (Genome Reference
Consortium Human Build 37) assembly in National Center for Biotechnology Information (NCBI), RSID: Reference SNP cluster ID.

Table 8. Candidate SNPs associated with CIPN from oxaliplatin-based treatment in previous studies.

RSID Gene Chr BP

Allele MCBDR Cohort N08Cx Cohort
Cited

ArticlesRef Alt Freq. Beta/Effect SE p-
Value Freq. Beta/Effect SE. p-

Value

rs34116584 AGXT 2 241808314 C T 0.190 1.65 1.54 0.29 0.179 3.03 1.38 0.03 [61]

rs797519 DLEU7 13 51231132 G C 0.417 −1.45 1.26 0.25 0.392 −1.60 1.10 0.15 [33]

rs4936453 BTG4 11 111300782 T G 0.339 −2.55 1.27 0.04 0.326 −0.50 1.16 0.67 [33]

rs1695 GSTP1 11 67352689 A G 0.374 −1.04 1.17 0.38 0.358 −1.54 1.12 0.17 [62]

rs843748 ACYP2 2 54502912 G A 0.508 0.12 1.15 0.92 0.426 2.04 1.07 0.06 [33]

rs6924717 FARS2 6 5304851 C T 0.156 0.07 1.61 0.97 0.140 2.57 1.52 0.09 [33]

rs2338 FOXC1 6 1573613 G A 0.278 2.33 1.44 0.11 0.280 0.21 1.18 0.86 [33]

rs3212986 ERCC1 19 45912736 C A 0.264 0.67 1.29 0.61 0.258 1.33 1.21 0.27 [63]

rs1138272 GSTP1 11 67353579 C T 0.102 −2.08 1.89 0.27 0.075 −0.53 2.07 0.80 [64]

rs12632942 SCN10A 3 38764998 A G 0.258 0.65 1.37 0.63 0.255 0.85 1.20 0.48 [53]

rs2302237 SCN4A 17 62048707 C T 0.400 −1.12 1.33 0.40 0.363 1.76 1.14 0.12 [53]

rs25487 XRCC1 19 44055726 T C 0.643 −1.89 1.18 0.11 0.659 0.72 1.11 0.52 [65]

rs10486003 TAC1 7 97229778 C T 0.102 0.05 2.35 0.98 0.086 −1.34 1.79 0.45 [33]

rs2230641 CCNH 5 86695274 A G 0.232 −1.48 1.41 0.30 0.200 0.36 1.36 0.79 [22]

rs3114018 ABCG2 4 89064581 A C 0.557 0.85 1.22 0.49 0.487 −0.13 1.09 0.90 [22]

rs17140129 FARS2 6 5298362 A G 0.151 0.72 1.62 0.66 0.128 −0.39 1.61 0.81 [33]

Freq: frequency; Chr: chromosome; SE: standard error; Freq: frequency. SNP positions on chromosome were based on the GRCh37
(Genome Reference Consortium Human Build 37) assembly in National Center for Biotechnology Information (NCBI), RSID: Reference
SNP cluster ID.
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4. Discussion

Chemotherapy-induced peripheral neuropathy can lead to early treatment discon-
tinuation, potentially reducing treatment efficacy and the quality of life. To date, several
genetic studies have linked SNP markers to risk of CIPN. Independent studies are critical to
replicate these findings before they are used to inform cancer treatment decisions. Several
studies have identified genetic polymorphisms associated with neuropathy during the
receipt of taxane or platinum-based chemotherapies, but larger replication studies have
often failed to confirm these associations. In this study, we performed a GWAS to identify
genetic variants that are associated with CIPN in two independent study populations—one
was a combined group of patients from three clinical trials (N08Cx) who were treated with
paclitaxel and carboplatin (N08C1), paclitaxel and carboplatin (N08CA), or oxaliplatin
(N08CB), and the second was a cohort of patients participating in a longitudinal MCBDR.

In the N08Cx study, we observed that chemotherapy regimen, particularly the combi-
nation therapy of paclitaxel and carboplatin and how often the chemotherapy was given
(treatment scheduled), were significantly associated with worse CIPN, as was African
ancestry. In the MCBDR cohort, older age was associated with worse CIPN. These results
confirmed previous findings from other studies [66–68]. One SNP, rs113807868, was associ-
ated with CIPN at genome-wide significance only in the MCBDR population. No common
SNP was identified between N08Cx and the MCBDR for association with CIPN. The SNP
with strongest association with CIPN in the N08Cx study was rs56360211 (p = 7.92 × 10−8),
an intron variant in PDE6C, a phosphodiesterase 6C gene that encodes a subunit of cone
phosphodiesterase. This SNP is located on chromosome 10, and mutations in PDE6C
have been linked to cone dystrophy type 4 (CODA) and achromatopsia, conditions that
result from a loss of cone function characterized by low visual acuity, a lack of color dis-
crimination, and excessive sensitivity to light with a sensation of discomfort or pain in
the eyes [69]. The other SNP that was linked to CIPN in the N08Cx study is rs10769096,
located in TSPAN18 (tetraspanin 18 gene), a gene that encodes a member of membrane
proteins with four transmembrane (tetraspanin) domains that are involved in cellular pen-
etration, adhesion, motility, and signal conduction [70–72]. Polymorphisms in TSPAN18
have been associated with schizophrenia, but these associations have not been consistently
replicated [73–76]. The SNP identified to be associated with CIPN with genome-wide sig-
nificance in the MCBDR population, rs113807868, is located in TMEM150C on chromosome
4, a gene that encodes a transmembrane protein component of a mechanosensitive ion
channel that is activated by mechanical stimuli in various cell types and confers slowly
adapting, mechanically activated currents in dorsal root ganglion neurons. Mechanically
activated ion channels are sensors that are critical for hearing, touch, pain, and blood pres-
sure regulation, and the absence of this gene in mice has been found to be associated with
muscle weakness and a loss of motor coordination [77]. Though TMEM150C has not been
previously identified to be associated with CIPN, it is biologically plausible that its impact
on ion channels and pain could mediate neuropathy. Taxane treatment has been reported
to affect the dorsal root ganglion and neuron cell bodies of peripheral nerves [78,79].

We did not find any of the previously reported candidate SNPs to be strongly linked to
the sensory subdomain of CIPN from paclitaxel or platinum [19,21,22,26,33,36,37,53,61–65]
in either the N08Cx or MCBDR GWAS analyses.

We also explored the heritability of the traits (results not shown) by using all SNPs
and found the estimated heritability for both the CIPN20 sensory change from baseline in
the N08Cx study and the CIPN20 sensory at follow-up in the MCBDR study to be 0%. This
suggested that there is little evidence that either of these traits has strong genetic etiology.
However, there are limitations in these estimated heritabilities. First, our sample sizes did
not provide precise estimates of heritability, with a 95% upper confidence limit of 53%
for the heritability in the N08Cx study and a nearly 100% heritability upper limit for the
MCBDR study. Second, heritability based on GWAS assumes there are a large number of
causal variants, each of small effect. If in fact there were just one or a few causal variants,
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then the estimated heritability would likely be near 0% because the majority of SNPs used
in the calculations would drown out the signal from a few variants.

The limitations of this study included the heterogeneity of time points for the assess-
ment of CIPN and the treatments received. Though the CIPN20 sensory tool was used
to measure CIPN for both studies, the N08Cx populations had CIPN scores derived from
worse change in baseline within 18 weeks of treatment and the MCBDR population had
the CIPN score measured long after treatment in many cases (and received treatments
were very variable, as occurs outside of clinical trials). This was because CIPN20 was not
collected before, during, or shortly after receipt of chemotherapy in the MCBDR for most
participants. The MCBDR is a longitudinal cohort study that intermittently surveys patients
over time (generally no more often than annually and sometimes not before treatment
starts because patients can be enrolled up to a year after their breast cancer diagnosis). This
contrasts with the N08Cx assessments, which occurred before and during chemotherapy
because they were critical to the primary endpoint of these three trials. In addition, the
autonomic and the motor subscales of the EORTC-CIPN20 were not used in this study, but
they may have produced different results, as might other measures of CIPN, including
single-item measures that have been demonstrated to be more global and sensitive to
change and related to numerous genetic variables with replication [12,80,81]. In addition,
we were limited by the small sample sizes (which limit statistical power to detect small or
moderate genetic effects) of the available N08Cx and MCBDR GWAS populations; this is a
common issue in pharmacogenomics studies [76,82].

5. Conclusions

In summary, we performed separate CIPN GWAS studies in two independent patient
populations treated with paclitaxel and carboplatin or oxaliplatin chemotherapy, and we
identified one genome-wide significant SNP in one of the two populations. This SNP has
not been previously reported to be associated with CIPN. Because of a lack of replication
between the two populations (N08Cx and MCBDR) and a failure to achieve genome-wide
significance (i.e., p < 5.0 × 10−8) for all but one SNP, we conclude that we have not identified
any SNPs that are definitively associated with CIPN.
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