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Abstract

Background: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate,
but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that
were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were
sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study
to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a
Genetically Improved Farmed Tilapia population.

Results: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements
(BW1 till BW5), of which six, located between 1948 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for
body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later
growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region
suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic
environment. Well-known hypoxia-regulated genes such as igfirb, rora, efna3 and aurk were also associated with
growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique
significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A
meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a
shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous
system development and organ growth in the early stage, and oocyte maturation in the later stage.

Conclusions: There are clear genotype-growth associations in both normoxic and hypoxic environments, although
genome architecture involved changed over the growing period, indicating a transition in metabolism along the
way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-
by-environment interaction, in which MAPK and VEGF signalling are important components.
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Background
Tilapia is one of the most important species in aquacul-
ture noted for their relative ease of culture and rapid
growth. Tilapia is currently cultured in over 120 coun-
tries, mainly in the tropics and sub-tropics, with a pro-
duction from 0.3 million tonnes in 1987 to closely 7
million tonnes in 2018, which makes it the second lar-
gest aquaculture species in the world [1]. Tilapia is a
valuable protein source in developing and emerging
economies. Due to its wide range of culturing condi-
tions, tilapia is also an excellent model to study adaptive
responses to environmental stresses [2]. One of the most
important non-commercial breeding programs is the
Genetically Improved Farmed Tilapia (GIFT), executed
by WorldFish in Malaysia. It has sustained genetic gains
for growth and body trait more than 10% per generation
for more than six generations [3]. However, rapid
growth potentially exacerbates existing limitations in the
production environment. In non-aerated ponds, high
stocking density can lead to an extreme hypoxic envir-
onment, especially at the end of the night (nocturnal
hypoxia), when algae have higher rate of oxygen con-
sumption than oxygen production. The extreme hypoxic
environment can lead to lower feed intake, stagnated
growth, and susceptibility to disease [4, 5]. The result is
a higher mortality and lower yield than what could po-
tentially be achieved [6]. The effects can be mitigated
through mechanical aeration of ponds, but a daily fluctu-
ation in oxygen availability is nevertheless inevitable.

Response to hypoxia is a highly complicated biological
process that has received considerable scientific atten-
tion, both in fishes and in land vertebrates (e.g. high-
altitude adaptation studies). Most of these response pro-
cesses happen very early at the onset of hypoxia through
the activation of pathways depending on proteins that
are already present [7]. But in the longer term, adaptive
responses to hypoxia are leading to different expression
of genes. In mammals, studies in the past decades
pointed to an essential role of the Hypoxia-inducible fac-
tors (HIF) for gene expression regulation during hypoxia
[8]. Other genes such as tyrosine hydroxylase (TH), phos-
phoglycerate kinase 1 (PGK1) and vascular endothelial
growth factor (VEGF) are also important key actors [9].
Recent studies have described that fish have homologs of
HIF-a and -, which may show similar function to those
in mammals in the hypoxic environment [9, 10]. Several
other hypoxia-related proteins and signal pathways have
been reported, such as AMP-activated protein kinase
(AMPK), reactive oxygen species (ROS), mitogen-
activated protein kinase (MAPK) and IGF-1/PI3K/AKT
signalling, which have been reported to to be involved in
hypoxia adaptation of some fish species [11, 12].

Genetic adaptation to hypoxia is important for survival
in many aquatic species, since variation in oxygen
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availability in water can vary far more, and far more rap-
idly, than in terrestrial ecosystems. Hypoxia is an im-
portant cause of economic losses in aquaculture.
Understanding the genomic architecture of hypoxia
adaptation could help to improve resilience through
breeding programs for economically important species.
So far, hypoxia tolerance has been studied in a limited
number of fish species, including catfish [13, 14], Atlan-
tic salmon [15], and tilapia [16], with the aim to identify
QTLs for hypoxia-tolerant traits. Genome-wide associ-
ation study (GWAS) has been regarded as a powerful
tool to identify genetic markers associated with target
traits, and a more complete gene network will provide
the knowledge bases required for the aquaculture indus-
try to make improvements [17]. In hybrid catfish, Zhong
et al. [13] revealed in total nine SNPs associated with
dissolved oxygen (DO) level using a 250 K SNP array.
Analysis of the genes overlapping or close to those SNPs
suggested that many of those genes were involved in the
PI3K/AKT and VEGF pathways. In another study, Bren-
nan et al. [18] aimed to identify population differences
in hypoxia tolerance by calculating the amount of time
for Killifish to lose equilibrium using GWAS. They
found that variation in Hyaluronan synthase 1 (haslI) in-
fluenced the production of hyaluronan, which can dir-
ectly effect on hypoxia tolerance.

There are only a few studies that focused on genetic
bases of either hypoxia tolerance or growth in Nile til-
apia [16, 19], however, none of these investigated how
hypoxia influences growth in Nile tilapia. The main
objective of this study was to unravel the genomic archi-
tecture associated with phenotypic variation during
adaptation to hypoxia or normoxia, and to elucidate the
effect of hypoxia on the genetic regulation of growth.

Results

Phenotype statistics

Fish fry was produced from generation 15 of the GIFT
breeding program. The experiment was carried out in an
aerated (normoxic) and non-aerated (nocturnal hypoxic)
ponds, each producing 1026 and 1037 fish that were in-
volved in the analysis. Body weight of growing fish was
measured at five time points (Table 1). The data show
that the number of tilapia in both environments grad-
ually decreased. This effect was more pronounced in the
hypoxic environment, with a total loss from stocking to
harvest of 23% of the initial number of individuals, com-
pared to 14% in the normoxic environment. The average
body weight at five time points in the normoxic environ-
ment was significantly higher than those in the hypoxic
environment, with the exception of the first time point
(BW1). Interestingly, the coefficient of variation in body
weight (CV) at each time point in the two separate envi-
ronments decreased.
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Table 1 Summary statistics of body weight across the whole growth period in Nile tilapia

Trait Days Environments No. Mean Max Min SD CV(%) P value

BW1 0 Hypoxia 1037 24.8 77.0 36 134 540 0.14
0 Normoxia 1026 254 771 29 13.1 51.7

BW2 55 Hypoxia 1037 144.3 3280 26.0 54.7 379 3.81E-07
56 Normoxia 1026 159.1 394.3 30.2 63.1 39.7

BW3 104 Hypoxia 907 2659 4983 70.5 733 276 4.17E-08
105 Normoxia 941 2894 650.5 63.3 92.5 320

BwW4 167 Hypoxia 885 4264 805.3 117.0 1189 279 2.20E-16
168 Normoxia 903 5336 1079.1 68.2 177.2 332

BW5 217 Hypoxia 799 579.6 10034 1355 1544 26.6 2.20E-16
218 Normoxia 885 780.9 1588.6 185.7 265.6 340

BW Body weight, days means the growing out days in either hypoxia or normoxia, No. The number of animals, Max Maximum, Min Minimum, SD Standard

deviation, CV% Coefficient of variation

The estimated phenotypic correlations for body weight
between different time points in the two environments
are shown in Table 2. Results show that phenotypic cor-
relation between time points in the hypoxic and
nomorxic environments was initially high (0.80 and 0.81
separately), but decreased with increasing time between
measurements.

SNP statistic and population structure

In total 27,090 SNPs that passed SNP minor allele fre-
quency, genotype and individuate call rate criteria, were
used for subsequent analysis. Those SNPs were found to
be randomly distributed across the genome with a dens-
ity of approximately 28 SNP per Mb. The highest num-
ber of SNPs (4344) on LG3 while LG11 had the lowest
number of SNPs (630) (Fig. 1a). A few windows on LG3
show a higher density of SNPs (Fig. 1b). Besides this ex-
ception, the distribution of SNPs is uniform with the
linkage group physical length of the Oreochromis niloti-
cus genome (GenBank accession GCF_001858045).

The PCA represents the genetic structure for individ-
uals from the hypoxic and normoxic environments, re-
spectively (Fig. 1c, d and Supplementary Figures 3 and
4). In the hypoxic environment, the first three principal
components (PCs) explain 47.0% of the total genotype-

Table 2 Phenotypic correlations of body weight across the
whole growth period in different environments

Trait BW1 BW2 BW3 BW4 BW5
BW1 - 0.81 061 032 0.22
BW2 0.80 - 0.77 044 0.32
BW3 0.59 0.80 - 0.66 0.52
BW4 0.29 046 0.68 - 0.83
BWS 0.15 0.31 0.56 0.85 -

The spearman’s rank correlation coefficient of body weight in hypoxia is
presented below diagonal, while the normoxia is above diagonal

based variation and separate samples according to their
family differences. PC1 accounts for 15.2% of the total
genotype variation and separates families in hapa3 with
other families. In the normoxic environment, the first
three components explain 39.8% of the total genotype
variation, while the first component accounts for 15.3%.
Moreover, the largest PC (PC1) of all samples separates
disperse cluster from families in hapa3 again.

These results indicated that there was clear genetic
variation caused by family differences in both environ-
ments. This was partially caused by the different distri-
bution of the number of fish from four rearing hapas
under the normoxic and hypoxic environments. Add-
itionally, the average body weight of fish in hapa3 was
larger than that of other hapas, especially the mean body
weight of male fish at the first time point was much
higher in the normoxic environment than the hypoxic
environment (Supplementary Figure 2), indicating that a
few families with high body weight dominated in one en-
vironment but not the other.

Single environmental GWAS at five different time points

Significant SNPs were detected with a univariate GWAS
by implementing a linear mixed model. We observed that
sex and hapa effects can explain part of the difference in
body weight. Thus, these were treated as fixed factors in
our analysis. Overall, five association analyses, one for
each time point where body weight was measured, were
performed for each environment. The Manhattan plots
for each of the five time points in the hypoxic and nor-
moxic environments are shown in Fig. 2a and b respect-
ively. In addition, Quantile-Quantile plots with genomic
inflation factors were created to aid in estimating the in-
fluence of population structure on single environmental
GWAS (shown in Supplementary Figures 5 and 6). The P
values of corrected thresholds for suggestive and genome-
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Fig. 1 SNP statistics with all individuals. a Histogram of SNPs distribution across all linkage groups. b SNP density plots across all linkage groups. ¢
and d 3D PC plot for origin of tilapia at BW1 in the hypoxic (c) and normoxic (d) environments using all SNPs that passed filtering, where each
dot represents one individual

wide significant levels were 4.22 (-log;o(1/16504)) and LG1 overlapped with BW4 and BWS5, further confirming
5.52 (-log;(0.05/16504)), respectively. that there is a transition in genomic architecture associ-
In the hypoxic environment, the analyses showed 10 ated with growth over time.
significant and 26 suggestive SNPs associated with BW1 We also detected 2 significant and 27 suggestive SNPs
to BW5 (Supplementary Table 2). Among those, six across different growth stages in the normoxic environ-
SNPs between 19.48 Mb and 21.04 Mb on LG8 attained ment (Supplementary Table 3). The suggestive peak at
genome-wide significance for BW1 to BW3. However, BW1 covered the same genomic region as that found for
those SNPs were not significant for BW4 and BW5. Two  the hypoxic environment between 19.48 to 21.03 Mb on
SNPs (LG1: 30766342 and LG1:30766336) were signifi- LG8. However, similar to the hypoxic environment, the
cantly associated with BW3 to BWS5. Additionally, 16  significance of those SNPs declined from BW1 to BW3,
SNPs above the suggestive level as defined above for a pattern also seen for the SNPs located on LG18 and
BW1 to BW2 were found on LG8, LG18 and LG19, LG22. A few SNPs on LG7 and LG15 also showed a sig-
while 18 SNPs mostly located on LG1 and LG8, were nal near the suggestive level from BW3 to BW5, which
found for BW4 to BW5. Interestingly, at BW3, SNPs on  could be potentially interesting, although they did not
LG8 overlapped with BW1 and BW2, while SNPs on attain statistical significance.
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Fig. 3. In total 33 SNPs were detected to be significant

A meta-analysis GWAS that considered the effects of 27,
090 SNPs in common in the hypoxic and normoxic en-
vironments was performed, and the results are shown in

with five measurements of body weight during the whole
growth stage. Clusters of significant SNPs were mostly
found on LG8, LG18 and LG22 (Supplementary Table
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4). Interestingly, six SNPs located between 19.48 and
21.03 Mb on LG8, three SNPs between 12.44 and 27.32
Mb on LG18 and three SNPs within 1 kb at 35.25 Mb on
LG22, were all significantly associated with body weight
at time points BW1 and BW2. However, the P-values of
those SNPs decreased in subsequent growth periods.
Five SNPs between 30.54 and 31.19 Mb on LG1, and one
SNP on LG15 (LG15:23051993), were associated with
body weight from BW3 to BW5. Moreover, two SNPs
on LG8 (LG8:4319661, LG8: 11800435) were significant
at BW4 and BW5. Notably, those SNPs located on LG8
were found at a different region compared to SNPs on
the same LG in hypoxic GWAS. Hence, associations for
BW1 to BW2 were different from BW4 to BWS5, al-
though BW3 shows both overlap to early and late
growth stages, which could indicate that a transition in
the pathways involved occurred around this stage.

Functional annotation analysis

Based on the SNP association pattern for five measure-
ments across the whole growth stage, we defined the
early stage as BW1 and BW2, while the later stage is
BW3 to BW5. Through gene identification within the as-
sociated genomic regions, the functional processes and
pathways were subsequently enriched for single environ-
mental and across environmental GWAS, respectively.
Considering that BW3 is the transition point, SNPs that
overlapped with the early stage were excluded in the
functional annotation for the later stage. The candidate

genes derived from single environment and across envir-
onment GWAS are shown in Fig. 4a and b, where 15
and 25 genes from the BW1 to BW2 and BW3 to BW5
respectively, were uniquely associated with body weight
in the hypoxic environment while another 12 genes were
unique to growth in the normoxic environment. It is
also noteworthy that three genes (raraa, rarab, bahccl)
were significant for BW1 and BW2 for both single and
across environmental GWAS.

During the early growth stage in the hypoxic environ-
ment, 14 GO (Gene ontology) terms were found to be
significantly overrepresented (Supplementary Table 5),
including central nervous system development and ster-
oid hormone mediated signalling pathways. Six KEGG
pathways were found at later growth stage (Fig. 4c), in-
cluding MAPK and VEGF signalling pathways. Protein
interaction network analysis showed dock5, docklO,
dockll, baiap2a, baiap2b, aurka and aurkb strongly
interacting with rac1b and ppp3ca, which all are proteins
participating in MAPK and VEGF signalling (Fig. 4d).

For the early growth stage of the normoxic environ-
ment, retinoic acid receptor signalling pathway, apop-
totic signalling pathway, liver development, signal
transduction, steroid hormone mediated signalling path-
way and brain development biological processes (Supple-
mentary Table 6), were significantly enriched, while two
(retinoic acid receptor and steroid hormone mediated
signalling pathways) overlapped with the same growth
period in the hypoxia environment. However, in contrast
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to the hypoxic environment, we did not find significant
terms during the later growth stage in the normoxic
environment.

In the meta-analysis GWAS across the normoxic and
hypoxic environments, nine GO terms, including retin-
oic acid receptor signalling pathway and steroid hor-
mone mediated signalling pathway, were mostly
enriched in the early growth stage. During the later
growth stage, two pathways involved in oocyte meiosis
and progesterone-mediated oocyte maturation process.
Interestingly, none of hypoxia-related pathway was
enriched (Supplementary Table 7).

Discussion

Hypoxia is one of the major environmental factors in
fish. Hypoxia tolerance represents the ability of fish spe-
cies to tolerate low oxygen level and to maintain a sus-
tainable metabolic rate at lower dissolved oxygen levels
[20]. Growth is a key trait for aquaculture and can be
assessed by weight gain in order to examine the impact
of hypoxic condition on fish production. For more than
a half century, various and divergent claims have been

made regarding the interaction between body size and
hypoxia in teleost fish. Recent studies showed that small
individuals have the least hypoxia tolerance within some
fish species, such as Oscar cichlid [21, 22] and Red seab-
ream [23]. In contrast, small fish chose lower oxygen
levels more than large fish in Largemouth bass [24] and
Yellow perch [25], however, this behaviour was sug-
gested that the smaller fish utilize the hypoxic zone as
refuge protected from the bigger predators [26]. From
these studies it is clear that selection for low oxygen is
difficult to ascertain, indicating a clear added value of in-
vestigations into genetic consequences of selection, such
as the present study.

In general, metabolic rate is highly affected by dis-
solved oxygen in the rearing environment. Faster grow-
ing animals have a higher metabolic rate and therefore
require more oxygen. As a consequence, hypoxia is ex-
pected to adversely affect fish growth and feed utilization
[6]. On the other hand, large individuals have an obvious
advantage over small ones in severe hypoxic environ-
ments because small fish will use up their glycogen re-
serves and reach mortality levels much faster with a



Yu et al. BMC Genomics (2021) 22:426

higher metabolic rate [27]. Overall fish production de-
clines, and disease resistance decreases as a consequence
of hypoxia [28]. It has been observed that larger Nile til-
apia tolerated low DO levels better than small ones,
thought partially due to the fact that Nile tilapia immun-
ity was stronger in larger than smaller [29]. Regardless
of the complexity of the relationship between hypoxia
and growth, studies focused on the genomic basis of
hypoxia-growth interactions in Nile tilapia are sparse.

Our results suggest a number of genes and metabolic
pathways involved in the adaptation to differences in dis-
solved oxygen in Nile tilapia. In the hypoxic environment,
14 significantly enriched processes were associated
with the early growth stage, including nervous system de-
velopment and animal organ development. Rara gene
codes for the retinoic acid receptor alpha, a transcription
factor which regulates genes involved in cellular growth
and differentiation [30]. In addition, raraa and rarab play
a key role during development in zebrafish [31]. Mediator
of RNA polymerase II transcription subunit 24 (med24),
an orthologue also found in human, mouse and zebrafish,
participates in nervous system development [32]. How-
ever, these genes and associated molecular pathways do
not indicate a clear link with hypoxia when comparing to
other fish studies, and rather might reflect a relation to
general growth and developmental pathways.

During the later growth stage, the results of pathway
enrichment suggest that candidate regions are signifi-
cantly enriched for adherens junctions, oocyte meiosis,
MAPK signalling pathway, VEGF signalling pathway,
regulation of actin cytoskeleton and progesterone-
mediated oocyte maturation. Among these six pathways,
various studies in zebrafish, channel catfish, and sea bass
have shown MAPK to be involved in low oxygen toler-
ance in fish [14, 33, 34]. VEGF signalling was shown to
be essential for maintaining the vascular density and
oxygen supply in tissues [35]. Additionally, the VEGF
pathway is also one of the targets of HIF-Ia, which rap-
idly accumulates to activate genes involved in a series of
responses to hypoxia [8, 36]. The candidate gene igfira,
identified in this study, codes for IGF-1 receptor-a, a re-
ceptor of insulin-like growth factor that was reported to
be a primary mediator of growth hormones [37]. The
ephrin-A3 gene (efnna3) is shown as a key functional me-
diator of hypoxic microenvironment and is regarded as a
therapeutic target for hypoxia-specific disease [38]. Ret-
inoic acid receptor-related orphan receptor alpha (rora)
was demonstrated to be a key regulator of HIF-1a activ-
ities in human [39]. Finally, the aurora kinase A (aurka)
gene, a serine kinase in neuroblastoma related to cell
growth and migration, can up-regulate expression in hu-
man BE (2)-C cells under hypoxia [40]. Recently, Li et al.
[16] also found that several regions were significantly re-
lated with hypoxia tolerance, including LG3, 4, 11, 14
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and 22, especially two regions (LG4:15080000, LG11:
24255000) are found to be adjacent with the peak in the
hypoxic environment (BW5) of our study. Nevertheless,
our results suggest that hypoxia has a non-significant ef-
fect on growth during the early growth stage, while, con-
versely, faster growing tilapia have higher tolerance to
hypoxia in the later growing stage, reflected by survival
probability. Interestingly, it has been shown that tilapia
exposure to a nocturnal hypoxia for 9 weeks led to a bet-
ter growth performance than normoxia, which is related
with a compensatory appetite later in the day [41]. Add-
itionally, Roze et al. [42] has reported that fast growing
fish display a better ability to maintain balance to acute
hypoxia exposure than slow growing fish, by comparing
two genetically different growth strains of Rainbow
trout, suggesting a better hypoxia tolerance similar to
the findings presented in our study.

In the normoxic environment, six biological processes
were significantly enriched for BW1 and BW2, including
retinoic acid receptor signalling pathway, apoptotic sig-
nalling pathway, liver development, signal transduction,
steroid hormone mediated signalling pathway and brain
development. Steroid hormone mediated and retinoic
acid receptor signalling pathway overlapped with the
same stage in the hypoxia environment, which seems
mostly involved in general growth and development pro-
cesses. The overlap in the early growth stage between
normoxic and hypoxic environments may result
from shared conditions until the first time point. An-
other possibility is that hypoxia affected small fish less,
and there still was sufficient dissolved oxygen as a result
of lower overall demand. As fish grew bigger, the meta-
bolic impact of high growth on oxygen consumption
and availability may have become more pronounced
[43].

For the later growth stage, 12 suggestive SNPs tagging
regions containing 22 candidate genes were identified.
These included the gene coding for mitochondrial cal-
cium uniporter (mcu) that was reported to be a regulator
in skeletal muscle growth and homeostasis [44]. The
genes coding for oncoprotein-induced transcript 3 (0it3)
and MAP 6 domain containing 1 (map 3dI) were both
reported to be related with calcium ion binding activity
[45]. Yoshida et al. [19] performed the first genome-wide
association study to unravel the genetic architecture of
harvest weight in a Nile tilapia population derived from
a mixture of the 8th generation GIFT and the wild
strains from Egypt and Kenya. In that study, four regions
were identified that were significantly associated with
harvest weight in LG12, 15, 18 and 22, respectively.
However, the genes lying in these regions were not sig-
nificant in our study. One of the reasons could be that
the GIFT population has been selected on growth for
many generations and those regions have become fixed.
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This could also explain the limited number of significant
SNPs and candidate genes for growth observed in our
study. However, it is also likely the specific variants
found by Yoshida et al. were never present in our popu-
lation to begin with.

The results from the meta-analysis show that five
genes play a major role in growth and development dur-
ing the early growth stage, namely raraa, rarab, med24,
brmslla and prpf38b. Two of them (raraa, rarab) also
showed significance for single GWAS in the normoxic
and hypoxic environments, respectively. Prpf38b only
showed a major effect in the hypoxic environment. The
orthologues of this gene in human, zebrafish and mouse
have been shown to have a function in the central nerve
system [46]. Development related genes found in single
GWAS, such as raraa, rarab, and med24 were signifi-
cantly associated in the meta-analysis during the later
stages. Nucleotide-binding protein 2 (nump2) was re-
ported to be associated with both IGFI and IGFP3 in a
human GWA study [47]. Those results suggest that a
few major QTLs determine much of the growth rate.
Even though growth rate is known to be determined by
many genes [48], similarly in human [49] and cattle [50],
it was found that a few genes were exceptionally import-
ant in explaining genetic variance.

Moreover, no pathway related to hypoxia tolerance
was found in meta-analysis GWAS, which indicates
some genes affect body weight in the hypoxic environ-
ment while different subset of genes are important for
body weight under the normoxic environment (see in
Fig. 4a and b). This indicates genotype-by-environment
interaction (GxE). However, a GxE analysis for growth
rate in the normoxic versus hypoxic environment, based
on a quantitative genetic analysis using a genomic rela-
tionship matrix derived from the genotyping dataset,
showed that the genetic correlation was close to 0.8 [51].
This value suggests some degree of GxE and some
reranking of genotypes. Furthermore, there was a large
difference in body weight and its variance between envi-
ronments, which suggests scaling GxE. The genetic cor-
relation of 0.8 suggests that most fish that grow well in a
normoxic environment, are also able to grow well in an
environment where they experience nocturnal hypoxia.
After all, Nile tilapia is a fresh water fish species that has
evolved in environments where hypoxia (e.g. as a result
of high temperatures, algal blooms or drought) are noc-
turnal events. Natural selection would favour animals
that would be able to cope with these environments if
larger fish would have higher reproductive success.

Conclusions

Clear associations between genotype and growth were
found for both hypoxic and normoxic environments. The
associated SNPs, and hence the underlying genomic
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architecture, however, changed over the growing period.
Furthermore, the meta-analysis GWAS across two envi-
ronments suggested that growth was not under the con-
trol by the same genes compared to single environmental
GWAS, which we interpret as a genotype-by-environment
interaction. The functional annotation confirms that hyp-
oxic stress pathways such as MAPK signalling pathway
and VEGF signalling pathway play an important role dur-
ing the later growth stage in the hypoxic environment.
Our findings reveal the genetic complexity of body weight
gain under a variety of dissolved oxygen conditions in Nile
tilapia, and provide an essential insight into how hypoxia
affects body weight gain during the growth stage, which
will benefit future tilapia breeding programmes in the
context of genomic architecture.

Methods

Animal resource

The fish were derived from the Aquaculture Extension
Centre of the Malaysian Department of Fisheries at Jitra,
Kedah State, Malaysia (6°15'32°N; 100°25'47°E). Genet-
ically Improved Farmed Tilapia (GIFT) strain was used
in this experiment, and it had been selected for growth
based on estimating breeding value (EBV) of harvest
weight, with the genetic gain ranged from 5 to 15% per
generation. The mate allocation strategy has controlled
inbreeding and maintained effective population size [52].
The experimental fish were produced using 72 males
from 56 families and 200 females from 73 families (total
81 unique families) of selection line of GIFT generation
15. From each family, fish with EBV for growth that
were close to the family mean EBV were selected as a
breeder. The experimental fish were mass produced in
four hapas (net-enclosures, each 30m?) installed in a
500m? earthen pond, aerated by a paddlewheel. For each
hapa, 18 male and 50 female breeders were distributed
for stocking, and they were removed from mating hapa
after 15 days. Fry were reared in the same hapas for 60
days until they reached a taggable size. The fingerlings
from each rearing hapa were tagged and then trans-
ferred into two earthen ponds with an equal number.
Overall 1570 fish were reared in each pond with
stocking density of 3 fish/m2. We managed two
ponds with the same feeding management (i.e. feeding
frequency twice per day, feeding rate was adjusted
with fish number), while aeration was the only differ-
ent treatment between two ponds.

We measured DO every 2 h for 24 h with a total of 7
days during the different grow-out periods using Eco-
Sense® DO200A. The average DO measurements for aer-
ated pond (normoxia) and non-aerated pond (nocturnal
hypoxia) are shown in Supplementary Figure 1 and Sup-
plementary Table 1. Both ponds were normoxic (5 mg/
L) from 13:00 to 19:00. Non-aerated pond became
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hypoxic (under 3 mg/L) between 21:00 to next day 9:00.
Body weight was measured at five time points (stocking,
55/56 days, 104/105days, 167/168 days and 217/218
days) growing out in the hypoxic and normoxic environ-
ments, respectively. Fish were euthanized using clove oil
at a dose of 400 ppm after the experiment. Fin clips were
preserved in 95% ethanol and stored at —20°C until
DNA extraction. More details about this experiment can
be found in Mengistu et al. [51].

Genotyping, variant calling and quality control

DNA extraction and genotyping procedures were de-
scribed in previous study by Mengistu et al. [51]. In
short, we isolated genomic DNA from tilapia fin clips
using the DNeasy Blood and Tissue kit. DNA quality
was assessed by 260/280 and 260/230 ratios on Nano-
Drop 2000 spectrophotometer. DNA concentration was
measured with Qubit 2.0 Fluorometer. DNA samples
were digested with ApeKI, and polymerase chain reac-
tion (PCR) was used to amplify fragments varied from
170 to 350 bp. The prepared libraries were sequenced on
the Illumina HiSeq 2000 platform.

Raw sequence reads were trimmed for adaptors and
low quality bases with Sickle (https://github.com/
najoshi/sickle). The quality of each individual was evalu-
ated by FastQC (version 1.6) [53]. Sequence mapping for
2171 individuals was performed using bwa -mem algo-
rithm [54] aligning to the tilapia reference genome (Gen-
Bank accession GCF_001858045.1). Variant calling was
analysed with FreeBayes (version 1.0.2) [55] in a default
setting excepted these parameters: --min-base-quality
10, —-haplotype-length 0 and --ploidy 2. The SNP data
was further filtered by Plink (versionl.9) [56] with the
following exclusion criteria: Minor Allele Frequency <
2%, genotyping call-rate for SNPs < 80% and individual
rate < 70%. Finally, a total of 2063 individuals and 27,090
SNPs were used for subsequent analyses.

Statistic description, population structure and association
analysis

Basic statistics of phenotype data was analysed in R (ver-
sion 3.5.3). Body weight in our study is not completely
following a normal distribution as estimated by Shapiro-
Wilk test [57]. Therefore, we compare two paired groups
at five time point using the Wilcoxon test. The pheno-
typic correlation was calculated by spearman’s rank cor-
relation coefficient method. Then, body weight was
transformed to better fit the normal distribution by
square root method [58]. To estimate the influence of
factors such as hapa (early rearing environment) and sex
in our experiment, they were tested in a linear model
using Stepwise Algorithm [59] with the formula: y; = u
+a; + B + a;=f; + & while y is the body weight; u is
the population mean; a; is the effect of the i™ level of
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hapa; f3; is the effect of the i™ level of sex; € is the ran-
dom error effect. It suggested that hapa, sex and their
interaction were significant with body weight. Therefore,
residuals from the fixed effects model were used for the
subsequent association analysis [60].

A principal component analysis (PCA) was performed
to estimate population structure before GWAS in Plink
(version 1.9) [56]. The top five principal components were
added as covariates and included in the subsequent
GWAS model as fixed effect to account for the sample
structure in this association analysis. Considering the Bon-
ferroni method being overly conservative, we defined the
genome-wide significant using the SimpleM method [61].
In total 16,504 independent tests were calculated based on
LD (linkage disequilibrium) characteristics. The significant
and suggestive lines are 1 and 5% genome-wide significant
divided by the SNPs number of independent SNPs in the
association. Given the number of effective independent
tests, the thresholds for genome-wide and suggestive sig-
nificance P-value were evaluated as 3.03E-06 (0.05/16504)
and 6.06E-05 (1/16504), respectively.

A univariate GWAS was performed by implementing a
linear mixed model in GEMMA [62]:

y=Wa+axf+pu+e

In this equation, y is the a vector of observation on
body weight; W is a covariate matrix of fixed effects (in-
cluding top five PCs) used to adjust population struc-
ture; a is a vector of the corresponding coefficient
including the intercept; « is a vector of the marker geno-
types and B is the corresponding vector of marker effects
for the phenotypes; g is a vector of random effects and €
is the random residuals. We performed the Wald statis-
tic for each SNP which means we tested the alternative
hypothesis H;: § # 0 compared to null hypothesis Hy: 5=
0 for each SNP, which is one of common methods in
GWAS studies of quantitative traits [63].

Meta-analysis is powerful to detect shared genetic
architecture across traits and populations [64]. Thus, we
applied an inverse-variance weighted (IVW) method to
estimate the SNP effect and significance combined nor-
moxic and hypoxic environments through Meta (Version
1.7) [65, 66]. The weight (w;) for ith environment was
calculated by the following equation:

Wi =

Jﬂml Ju—

Here s is the standard error of the SNP effect in i envir-
onment GWAS. Then, the effect size and standard error for
i™ environment GWAS were estimated by the following:

2
Zi:lwiﬁi

b= 212:1Wi
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2 _ 1
212:1Wi

The statistical significance was estimated by a z-score
of IVW as bellow:

2

_ B _ > i Wi
s 2

2 i Wi

Z

Post-GWAS analysis

Manhattan and quantile-quantile (Q-Q) plots were gener-
ated through the “qqman” package (https://cran.r-project.
org/web/packages/qqman/). The inflation factor A was cal-
culated to indicate the influence of population structure in
the association analyses. Candidate regions were defined
as the genomic regions that located 20 kb upstream and
downstream of the genome-wide significant SNPs. In
order to identify candidate genes nearby the significant
SNPs, we used the Custom Annotations function to create
an annotation set with parameters (--distance 20,000
--gene_phenotype --symbol) in Ensembl Variant Effect
Predictor (VEP) [67]. All protein sequences of candidate
genes were extracted through reference protein sequence
with an inhouse python script, and were further used for
functional enrichment analysis in STRING V11.0 [68].
The false discovery rate (FDR) adjusted p-value of 0.05
was used to define significant enrichment.
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