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Decades of research have confirmed the beneficial and advantageous use of zebrafish

(Danio rerio) as a model of human disease in biomedical studies. Not only are 71%

of human genes shared with the zebrafish many of these genes are linked to human

diseases. Currently, numerous transgenic and mutant genetic zebrafish lines are now

widely available for use in research. Furthermore, zebrafish are relatively inexpensive to

maintain compared to rodents. However, a limiting factor to fully utilising adult zebrafish in

research is not the fish but the technological imaging tools available. In order to increase

the utilisation of adult zebrafish, which are not naturally transparent, requires new imaging

approaches. Therefore, this feasibility study: (1) presents an innovative designed PET/CT

adult zebrafish imaging platform, capable of maintaining normal aquatic physiology

during scanning; (2) assesses the practical aspects of adult zebrafish imaging; and (3)

set basic procedural guidelines for zebrafish imaging during a PET/CT acquisition.

Methods: With computer aided design (CAD) software an imaging platform was

developed for 3D printing. A 3D printed zebrafish model was created from a CT

acquisition of a zebrafish using the CAD software. This model and subsequently

euthanised zebrafish were imaged post-injection using different concentrations of the

radiotracer [18F]FDG with CT contrast.

Results: PET/CT imaging was successful, revealing levels as low as 0.01 MBq

could be detected in the fish. In the zebrafish imaging post-injection distribution of the

radiotracer was observed away from the injection site as well as tissue uptake. Potential

preliminary husbandry and welfare guidelines for the fish during and after PET/CT imaging

were determined.

Conclusion: Using PET/CT for adult zebrafish imaging as a viable non-invasive

technological tool is feasible. Adult zebrafish PET/CT imaging has the potential to be

a key imaging technique offering the possibilities of enhanced biomedical understanding

and new translational data sets.
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INTRODUCTION

With zebrafish (Danio rerio) as a well-established valuable model
to investigate human diseases, continued growth in this field
research is expected. In fact, 71% of human genes are associated
with one zebrafish orthologue, and of 3,176 human genes with
morbidity identification, 82% (2,601) are related to at least
one zebrafish orthologue (1). Furthermore, with advancements
in targeted genomic mutation tools, such as CRISPR/Cas9,
the zebrafish is increasingly utilised for high throughput
genotype-phenotypingmodelling of human disease has increased
(2–5). For example, various zebrafish transgenic lines expressing
cell-specific fluorophore markers are available for human
neurodegenerative and cardiovascular diseases research, amongst
others (6–9). However, most researchers use the embryonic or
larval stage where the zebrafish is fully transparent and can
be readily imaged using standard light microscope techniques.
The challenge arises in the adult where the skin is no longer
transparent and where more complex imaging techniques are
needed to study organ development or to assess impact of surgical
or genetic interventions. In vivo imaging of the adult zebrafish
is therefore a key topic for further research and development
(10, 11).

An important part of this challenge is the need for suitable

platforms capable of maintaining fish under physiological

conditions during image acquisition over time periods of several

hours. Such a platform may also facilitate sequential imaging

of the same fish thus allowing longer term assessment of
developmental or disease-repair mechanisms over months or
even years. Increasing use of the adult zebrafish means that new
imaging approaches need to be developed to help support novel
translatable research and bridge the imaging gap between existing
imaging techniques in the embryo across to the adult.

Positron emission tomography coupled with computed
tomography (PET/CT) could provide that bridge by
overcoming the hurdles of extending imaging beyond
the embryonic stages. Pre-clinical PET/CT is a powerful
non-invasive imaging tool already extensively used in
rodent pre-clinical research. It supports the investigations
and evaluations of underlying biological mechanisms, the
physiological processes in a healthy or diseased model.
Pre-clinical research areas such as cardiovascular or
neurodegenerative diseases, oncology and drug discovery
regularly take advantage of PET/CT’s fully quantitative
functionality (12–20).

This feasibility study addresses an unmet need for advanced
imaging in the adult zebrafish using PET/CT. Here, we
describe the development and early testing of an aquatic
imaging platform to maintain a stable physiological state in
adult zebrafish during PET/CT image acquisitions designed
to accommodate different commercial scanners with the
capability of screening drugs and radiotracers with a modestly
high-throughput. The development of non-invasive molecular
imaging of adult zebrafish has the potential to substantially
improve our understanding of biological pathways and ultimately
support the development of novel therapeutic strategies for
human disease.

MATERIALS AND METHODS

3D Printed Imaging Platform
Using the McNeel Rhinoceros version 5.3.2 (Seattle, WA USA)
3D computer aided design (CAD) modelling software an aquatic
zebrafish imaging platform, composed of a water chamber with
monitoring equipment and two separate holding tanks for dosing
and recovery has been designed. Designed concept includes
monitoring to ensure correct water flow levels, pressure, salinity,
oxygen, pH level, automatic dosing (chemical monitoring:
anaesthesia, CT contrast, radiotracers or therapeutics) and
temperature for zebrafish sustainability throughout imaging.
Multiple water chambers as well as inserts were designed. A
prototype of the water chamber was printed on a Stratasys
Objet 260 Connex 3D printer (Los Angeles, CA USA), using
the acrylic based photopolymer material Vero Clear. Imaging
chamber has dimensions of 50.0mm (length) and a 20.0mm
outer diameter, with internal and external sectioned designs.
Printed prototype contains a single outer sectioned for the
zebrafish placement. The imaging chamber system is an enclosed
flow compartment with environmental monitoring to ensure
stable physiology during scanning and a flow pump to circulate
water continuously through the system. Dosing and recovery
tanks are similarly constructed and environmentally monitored.
The dosing chamber is also designed to permit delivery of
anaesthetic, CT contrast, radiotracers or other therapeutics
within the circulating water. The imaging system includes a
designed “bed” holder allowing the platform to sit just beyond
the forefront of the scanner bed.

Zebrafish 3D Printed Model
A CT acquisition of an adult Zebrafish was exported into OsiriX
v.7.0 (Bernex, Switzerland). OsiriX’s 3D volume and surface
rendering tools were used on the FBP reconstructed images,
converted from DICOM to standard tessellation language (STL)
files and exported into Rhinoceros CAD software. The STL files
were then edited to include a simplistic vascular circulatory
system (hollow cylinder, radius 0.50mm), cleaning of unwanted
surfaces and artefacts. The prepared CAD files were 3D printed
using the Stratasys Objet 260 Connex 3D printer using material
Vero Clear. This phantom is dimensionally, geometrically an
adult zebrafish with a main simplistic representative circular
vascular system. The phantom replaces the use of animals used
in determining imaging methods/feasibility, compliant with the
National Centre for the Replacement, Refinement and Reduction
of Animals in Research (NC3Rs).

PET/CT Imaging
All images were acquired with the zebrafish imaging platform
placed just beyond the frontend of the scanner bed, positioned
inside the bore at the isocenter, aligning sagittal, axial and
coronal planes. Zebrafish and/or the 3D printed zebrafish models
were placed directly inside the water filled imaging platform.
CT acquisitions were acquired with the standard protocol (tube
voltage 50 kVp, 300ms, 360 projections) and reconstructed
using the filtered back projection (FBP) method with a Cosine
filter. Twenty-minute PET acquisitions were acquired in which
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images were reconstructed using ordered subsets expectation
maximisation (OSEM) method with 4 iterations and 6 subsets,
with scatter, normalisation and randoms corrections. All PET
and CT imaging was done on the Mediso nanoPET/CT
(Budapest, Hungary).

Preparation of Zebrafish 3D Printed Model
A concentration of 2ml of water with 0.75ml of CT contrast
agent Ominpaque was prepared for use. Prior to imaging,
measured radiotracer 18F-deoxyglucose, [18F]FDG (0.01–1MBq)
with the CT contrast concentration was injected directly into the
designed general simplistic vascular circulatory system using a
Hamilton 35-guage needle under a binocular microscope. The
phantom was imaged at different times for n= 4.

Preparation of Zebrafish (Adult Wild Type Wik)
In a series of pilot experiments, adult wild-type zebrafish were
first euthanised using Tricaine [Sigma Aldrich, Cat.# A-5040,
4.2%w/v (21)] and the brain destroyed by a modified pithing
method using a 15-gauge needle in compliance with the schedule
1 UK Animals (Scientific Procedures) Act 1986 (ASPA) prior
to placing the animal in the scanner. In this scenario the
heart continues to beat for 30–60min after brain death thus
maintaining circulation and the integrity of the fish tissue during
the imaging period (22, 23).

An initial activity concentration of 2mL of water, 65 MBq
of radiotracer [18F]FDG with 0.75mL of CT contrast agent
Ominpaque was prepared for use. Measured various amounts
(0.01–2 MBq) of the activity concentration was injected into the
hearts or pectoral cavity of the adult zebrafish using a Hamilton
35-gauge needle under binocular microscope guidance prior to
imaging. PET/CT imaging started 30 or 40-min post-injections.
Overall n= 12 euthanised zebrafish were imaged.

RESULTS

3D Printed Imaging Platform
Figure 1 displays the first digital design for the printed prototype
chamber used in testing the feasibility of PET/CT imaging
of adult zebrafish in a sustainable aquatic imaging platform.
This prototype was used in the image acquisition testing of
the 3D model zebrafish and for subsequent PET/CT imaging
of zebrafish.

Zebrafish 3D Printed Model
CT images of two euthanised adult zebrafish were acquired
for the designed 3D print a zebrafish model. Figure 2 shows
the results of developing the 3D printed zebrafish model; CT
acquisition, STL files, CAD preparation, including creating the
1mm diameter hollow elongated cylinder inside for the injection
of CT contrast and radiotracer and (4) the final Vero Clear 3D
printed zebrafish model.

PET/CT Imaging
The fundamental and vital principle of PET/CT imaging lies
in the scanner’s ability to detect the injected radiotracer.
Therefore, various levels of radiotracer where injected to
determine the lowest levels suitable for detection in zebrafish

imaging. Additionally, a crucial consideration when acquiring
pre-clinical PET/CT images is the well-being and welfare of the
animals. Establishing the foundations for standard procedures
in accordance with the National Centre for the Replacement,
Refinement and Reduction (NC3Rs) principles and the Animals
(Scientific Procedures) Act 1986 is a critical aspect of studying the
feasibility of adult zebrafish PET/CT imaging. At this stage and
in conjunction with radiotracer levels, imaging time as well as
required radioactive zebrafish recovery times where considered,
thus, allowing for the eventual proper fish transportation to the
aquatic facility.

Zebrafish 3D Printed Model
A 20-min PET/CT was acquired immediately after the zebrafish
3D model was injected with the CT contrast agent and 0.01 MBq
of [18F]FDG using the water filled zebrafish imaging platform.
Imaging data sets from the 3D printed model indicate that the
injected concentration of [18F]FDG can be detected within the
0.5mm radius elongated cylindrical cavity. Figure 3 displays the
detection of [18F]FDG in the 3D model PET image, though
the majority is seen at the injection sites. In Figure 4A the CT
contrast is clearly seen in the 3D model’s simplistic vascular
system. Additionally, in Figure 4B [18F]FDG is also detected
within the model’s vascular system. Figure 4 is a clear indication
that a mixture of CT contrast agent and the low level 0.05 MBq of
[18F]FDG is detectable.

Zebrafish (Adult Wild Type Wik)
PET/CT acquisitions of the adult zebrafish were imaged with
various amounts of [18F]FDG with CT contrast agent, which
ranged from 0.01 to 2 MBq. As noted, this was done to assess
the viability of the low levels of radiotracer detection as well
as determining recovery times for the radioactive zebrafish after
imaging for proper husbandry and transportation of the fish (i.e.,
radioactivity less than background).

A euthanised adult zebrafish, pectoral cavity post-injection
with CT contrast agent and 0.43 MBq of [18F]FDG, is shown
in Figure 5. As noted, all images were acquired as a 20-min
PET, a standard CT with the zebrafish placed inside the water
filled imaging platform. PET/CT image, shown in Figure 5A,
clearly reveals distribution and uptake of the [18F]FDG within
the zebrafish, with possible uptake in the liver. A full histological
analysis has yet to be performed. However, organs demonstrating
[18F]FDG uptake would be areas representing metabolically
active organs including the liver, gut, and heart. For a visual
comparison, Figure 5B shows a pectoral cavity post-injection
with CT contrast agent and 0.03 MBq of [18F]FDG which did not
circulate around the zebrafish in the same manner as the other.

DISCUSSION

We demonstrated that a commercial pre-clinical PET/CT is
capable of detecting the common PET radiotracer [18F]FDG at
low enough dose levels plausible for safe zebrafish imaging and
recovery. The lowest dose level detected was 0.01MBq, albeit
within the 1mm diameter 3D printed zebrafish model hollow
cylinder, “vascular system,” Figures 3, 4. In the pithed-zebrafish
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FIGURE 1 | (A) Rhinoceros CAD schematic of zebrafish imaging chamber platform prototype set to print for feasibility testing. Bed holder/slip was printed for use on

the Mediso nanoPET/CT. (B) Top view showing dimensions. (C) Displays the design for the environmental monitoring sensor cables and the water in/out flow channel,

which run below imaging platform. A reconstructed PET/CT acquisition is shown in (D) in which an adult zebrafish can be seen in the imaging platform.

FIGURE 2 | (A) CT zebrafish reconstructed images were exported into OsiriX and converted to STL files for exporting into the Rhinoceros CAD software. (B) Displays

the SLT file (top) and the prepared CAD file for 3D printing (bottom). (C) Shows a shaded top view of the CAD file with the fish dimensions (top) and the printed

zebrafish model using Vero Clear which included a 1mm diameter hollow elongated cylinder inside for the injection of CT contrast and radioactivity (bottom).

the lowest detectable [18F]FDG dose was 0.05 MBq (Figure 5)
which confirms that high doses of tracer are not required. A
cursory check of [18F]FDG uptake, shown in Figure 5, using the
maximum standard uptake value (SUV) revealed activity in those
selected areas. Extracting a SUV max from the zebrafish images
indicates PET quantitative analysis can be accomplished.

This study used the method of direct injection of radiotracer
by a Hamilton 35-gauge needle directly into the heart or

the pectoral cavity. Therefore, we have not yet tested the
method of introducing or treating zebrafish with anaesthesia, CT
contrast, radiotracers or therapeutics via the circulating water
in our physiological chamber. However, potential guidelines
for the welfare and recovery of live fish, especially critical
for longitudinal studies can be extrapolated from our results.
For example, this study would indicate that a dose of
0.5 MBq for a 20-min PET/CT would be sufficient for
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FIGURE 3 | Sagittal PET/CT image acquisition of the 3D printed zebrafish model post-injection of 0.01 MBq of [18F]FDG. [18F]FDG is seen within the 1mm simplistic

vascular system, though substantial amounts remained at the injection site (white arrows). Adjustments to the injection procedure were made allowing for improve

follow in the hollow plastic cavity.

FIGURE 4 | Axial, coronal, and sagittal PET/CT image acquisition of the 3D printed zebrafish model post-injection of 0.05 MBq of [18F]FDG. (A) CT image displays the

CT contrast (white line) withing the model’s vascular system. (B) PET image reveals [18F]FDG (coloured line) within the model’s vascular system. (C) Fused PET/CT

confirms CT contrast and [18F]FDG are within the model’s vascular system.

FIGURE 5 | PET acquisition of a euthanized zebrafish inside the imaging platform. (A) The mixture of CT contrast and [18F]FDG (0.5MBq) was injected into the

pectoral cavity immediately following confirmed death and allowed to circulate for 30min prior to imaging. Distribution and uptake of the activity can be seen away

from the injection site. The tracer distribution away from the injection site (red) areas will represent metabolically active organs such as the liver, gut or heart. (B) For

visual comparison of [18F]FDG uptake and distribution, radiotracer has remained at the injection site (pectoral cavity).

detection, thus requiring ∼4 h of recovery to reach a safe
level for transport back to the aquatic facility. It should
be noted, (1) radioactivity at background levels or below is
considered safe for transportation, based off the International
Atomic Energy Agency (IAEA) regulations, (2) the time frame
estimated is subject to change based on future work observing
the recovery of live zebrafish, adhering to ASPA and the
NC3Rs observational guidelines. The current time frame is

to establish an initial guideline, which was determined using
the decay time of 18F and post-measurements of the deceased
imaged fish.

In 2013 Koba et al. published proof of concept studies using
PET/CT for larger goldfish (40 g) research, thus supporting the
feasibility of this research avenue (17). More recently, in 2017
Merrifield et al. developed an aquatic flow cell system capable of
monitoring zebrafish during pre-clinical MRI acquisitions (24).
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In a similar fashion, the PET/CT imaging platform is designed to
contain future in/out water flow tubing with electronic sensors
for monitoring temperature, pressure, salinity, oxygen, and pH
level of the water. Unfortunately, though, routine in vivo imaging
of adult zebrafish has yet to be established. Now, with greater
insight as to the requirements, practicalities of maintaining a
suitable dosing, imaging and recovery systems the probability of
successfully imaging adult zebrafish increases. Furthermore, our
imaging platform design provides the ability for different scanner
bed holders/slips to be 3D printed, thus, adopting to different
scanners, Figure 1. This approach also allows for the zebrafish to
be imaged in the forefront of the scanner bed in order to reduce
potential scatter and void attenuation through a scanner bed.

Literature spanning three decades has validated the zebrafish
as an excellent model for researching human diseases and
drug development. For instance, atherosclerotic disease in
zebrafish using [18F]FDG, which is the mainstay radioligand
in PET imaging and consequently has been the most common
radioligand used in imaging studies of atherosclerosis (25, 26).
As noted, PET/CT plays a pivotal role in therapeutics and
radiotracer development, discovery or repurposing. Results in
this capacity have direct translational applications to clinical
research and patients. However, from start of research to
regulatory approval, a new therapeutic drug typically takes
10–15 years before it reaches the pharmacist. The ability to
incorporate live zebrafish PET/CT imaging has the potential
to immediately reduce that timescale, by a minimum of 2
years (27). Pre-clinical PET/CT imaging of live zebrafish will
assist expeditiously by statistical power/high throughput (large n
number). This will be achieved by enhancing our understanding
of the molecular pathogenesis of disease, increase confidence
and success rate when identifying the drug lead compound
for future development, and streamlining the validation of
the effectiveness of the compound (large n numbers for
reduced cost compared with alternative pre-clinical species).
Therefore, reducing attrition rate for drug candidate selection
and characterisation prior to expensive and lengthy human
studies, reducing the R&D timescale.

This imaging platform provides the zebrafish research
community access to a translatable molecular imaging modality.
Thus, shortening research translation time and increasing the
relevance of research findings to humans. Additionally, in a
cardiovascular context, this adult zebrafish imaging potentially
provides newer insights into vascular heart repair mechanisms.
Thus, allowing for new approaches to assess novel therapeutic
options that could improve recovery of heart function following
cardiac injury, such as myocardial infarction.

Researching models of hyperglycaemia in zebrafish, after
injecting 20 MBq of [18F]FDG in the pectoral cavity Dorsemans
et al. (28) successfully acquired a PET/CT noting a wide
distribution of [18F]FDG. Likewise, in 2017 for proof of concept
Snay et al. successfully imaged zebrafish with 0.74–1.29 MBq of
[18F]FDG, with 10min PET followed by a 10min CT acquisition
(29). Albeit, in both cases the zebrafish imaging was done with
the fish out of water, either in agar or wrapped in a tissue. More
recently, for proof of concept Nazario et al. (30) intraperitoneally
injected zebrafish with [18F]FDG, or 18F-NaF, (2–3 MBq) for

5min PET/CT imaging (30). Here they were able successfully
image with the fish placed in a water/tricaine solution filled
15mL tube. Though not imaged under favourable physiological
conditions these recent proof of concepts studies show promise
as well as the interest in zebrafish PET/CT imaging.

Nevertheless, continued small fish PET/CT protocol and
methodology imaging strategic research is needed in order to
fully develop imaging guidelines and best practise procedures.
For example, future work will include the use of live zebrafish
receiving a concentration of CT contrast, [18F]FDG and
anaesthetic via immersion (inhalation) and tail vein injections.
Additionally, recovery procedures will be expanded to include
zebrafish physical observations during recovery.

CONCLUSION

This pre-clinical PET/CT feasibility study successfully
demonstrates the possibility of adult zebrafish imaging using
[18F]FDG. The development of PET/CT imaging technology
to image adult zebrafish has the potential to enhance and
expand research in this highly versatile animal model system by
extending structural and functional imaging capabilities beyond
the embryo.
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