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Visual Abstract

Are task specific cognitive functions computed within well-localized brain regions or rather by distributed networks ?
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Power or network features: Which feature space can best identify language critical areas?

Finding: High-gamma power and coreness values of brain regions together provide the best feature space.

(s

This work quantifies the network phenomena of distributed cortical substrates supporting language. First,
estimated causality among brain regions was assessed with directed information (D). Second, a graph the-
oretic framework extracted task related dynamics from the causal estimates. Finally, we validated these
functionally defined networks against the gold standard for causal inference, behavioral disruption with di-
rect cortical stimulation (DCS). We demonstrate that the network measures combined with power have
greater predictive capability for identifying critical language regions than discrete, regional power analyses
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Canonical language models describe eloquent function as the product of a series of cognitive processes, typi-
cally characterized by the independent activation profiles of focal brain regions. In contrast, more recent work
has suggested that the interactions between these regions, the cortical networks of language, are critical for
understanding speech production. We investigated the cortical basis of picture naming (PN) with human intra-
cranial electrocorticography (ECoG) recordings and direct cortical stimulation (DCS), adjudicating between two
competing hypotheses: are task-specific cognitive functions discretely computed within well-localized brain re-
gions or rather by distributed networks? The time resolution of ECoG allows direct comparison of intraregional
activation measures [high gamma (h,) power] with graph theoretic measures of interregional dynamics. We de-
veloped an analysis framework, network dynamics using directed information (NetDl), using information and
graph theoretic tools to reveal spatiotemporal dynamics at multiple scales: coarse, intermediate, and fine.
Our analysis found novel relationships between the power profiles and network measures during the task.
Furthermore, validation using DCS indicates that such network parameters combined with h, power are
more predictive than h, power alone, for identifying critical language regions in the brain. NetDI reveals a
high-dimensional space of network dynamics supporting cortical language function, and to account for
disruptions to language function observed after neurosurgical resection, traumatic injury, and degenera-
tive disease.

Key words: directed cortical stimulation; directed information; dynamics; ECoG; graph theory; human language

Introduction

Historically, language has been studied in a localized
manner, to attribute specific roles to individual neural sub-
strates. This perspective is evidenced by activity in distinct
brain regions measured by the blood-oxygen level-de-
pendent responses of functional MRI (fMRI; Price, 2010) or
by high-y (h,) power (>60Hz) in electrocorticography
(ECoG) recordings (Crone et al.,, 2001; Edwards et al.,
2005; Towle et al., 2008; Cogan et al., 2014; Conner et al.,
2014; Flinker et al., 2015; Riés et al., 2017). Furthermore,
lesion studies have demonstrated that different brain le-
sions separably impair discrete aspects of the language
system (Geschwind, 1974; Hickok and Poeppel, 2007).
More recently, it is becoming obvious that linguistic proc-
esses are better characterized as network phenomena
(Fedorenko and Thompson-Schill, 2014; Braun et al., 2015;
Medaglia et al., 2015; Bassett et al., 2015; Blank et al,,
2016; Domenico, 2017; Herbet and Duffau, 2020), as it has
been theorized that network properties better explain the
complex and transient dynamics during linguistic cognition
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(Chai et al., 2016; Herbet and Duffau, 2020; Salehi et al.,
2020). We quantified network dynamics during a word gen-
eration task to evaluate the hypothesis that linguistic oper-
ations engaged during picture naming (PN) are better
explained by including the network properties and local ac-
tivity of specific cortical loci than the activity at each locus
itself. Further, we probe whether the critical nature of these
sites, evidenced by disruption by direct stimulation is re-
lated to their centrality measures within the language
network.

Intracranial electrodes in humans provide a unique op-
portunity to resolve this central debate by enabling direct
recordings of neural processes with sufficient temporal
resolution and spatial specificity to resolve transient net-
work dynamics. Furthermore, these electrodes can be
used to induce targeted transient dysfunction via electri-
cal stimulation, providing causal functional inference. We
used both modalities to directly compare regional activa-
tion measures (h, power) with network measures.

ECoG during PN (Fig. 1A) was recorded from subdural
grid electrodes implanted in the left language dominant
hemisphere of seven patients. We developed a holistic
framework, network dynamics using directed information
(NetDI), which extracts time-varying network dynamics
using information and graph theoretic tools.

DI (Massey, 1990; Kramer, 1998) was used to measure
directional information flow between time-series across
brain regions. DI measures are valuable in neuroscience
(Quinn et al., 2012; Malladi et al., 2016; Murin et al., 2016)
given its broad applicability to a wide range of electro-
physiological recordings, without model assumptions.
Traditional causality metrics like Granger causality (GC;
Seth et al., 2015) rely on data belonging to linear auto-re-
gressive models, which ignores nonlinear relationships
among brain signals (Kowalik et al., 1996; Stokes and
Purdon, 2017). Furthermore, DI is equivalent to GC
(Amblard and Michel, 2011, 2012) when the data are truly
linear and Gaussian, and it is closely related to Transfer
Entropy (Schreiber, 2000; Liu, 2012; Liu and Aviyente,
2012), under the Markov condition. The causality yielded
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Figure 1. A, Multiple (>200) trials of the PN task were performed. For each trial, an image from the Boston naming test (Kaplan et

al., 1983) was shown; patient articulated when the image was identified. B, The z scores of mean h,, power responses across trials
are shown for a patient in three time windows. B1, In the window 200-456 ms relative to stimulus onset, increased power in visual
cortex and decreased power in frontal regions compared with the baseline are observed. B2, The prearticulation window has multi-
ple electrodes with an increase in h,, power in frontal, motor, and temporal regions. B3, The postarticulation window has increase in
power in the auditory cortex, aligning with the task wherein the patient hears themselves speak.

by DI (in bits) is causal in the Wiener-Granger sense
(Bressler and Seth, 2011); crucially, no assumptions are im-
posed on the underlying probability distribution of the data.

This work proceeds in three stages. First, we measured
causality between brain regions and extracted task re-
lated dynamics from the calculated causality values, to re-
solve network measures at coarse, intermediate, and fine
scales. Second, we evaluated the relationship between
network measures and the local power responses. We an-
alyzed the relationships between node centrality, given by
“coreness of nodes,” which prior work has identified as a
good measure of a node’s influence in the network (Kitsak
et al., 2010; Pei et al., 2014; Shin et al., 2016) and h,
power. We also looked at relationships between fine scale
measures, in-degrees, out-degrees, and power. These
node metrics are the components behind the node cen-
trality measure and throw light on how they influence the
node centrality. Third, we evaluated the relationship be-
tween whether or not stimulation at a given cortical site
disrupted language and its corresponding network meas-
ures as estimated by NetDI. Various feature spaces were
compared, power feature, network features and com-
bined power and network feature spaces, to examine
which feature space has the best discriminability between
language positive and language negative areas, based on
ground truth data given by clinical functional mapping by
direct cortical stimulation (DCS).

January/February 2021, 8(1) ENEURO.0177-20.2020

Materials and Methods

Picture naming task

Patients performed a PN task, where they were shown
images from the Boston naming test (Kaplan et al., 1983).
Each trial consisted of an image being displayed on a
screen for 2 s, followed by a fixation cross for at three
more seconds. Multiple (>200) trials of the PN task were
performed for each patient. For each trial, an image from
the Boston naming test was shown; patient articulated
when the image was identified (details in Table 1). Figure
1A illustrates the experimental methodology.

Data and preprocessing

Intracranial electroencephalography (iEEG) data were
obtained from subdural grid electrodes implanted in left
hemisphere in patients before resective surgery for intrac-
table epilepsy. Electrodes that had close proximity to the
sites of seizure onset, interictal spikes or had >10-dB
noise in the 60-Hz band, were considered to be bad chan-
nels, and were excluded from the analysis. Also, data
from bad trials across all channels were excluded, if the
trials included epileptiform activity, or had technical er-
rors. The exclusion of bad electrodes and bad trials were
done similar to Conner et al. (2014) and Kadipasaoglu et
al. (2014, 2015). Seven patients were analyzed and details
of the number of electrodes and the number of trials used
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Table 1: Patient information

Patient # Age(gender) # Electrodes #trials  Grid side
1 42(M) 136 262 Left
2 23(M) 89 264 Left
3 34(F) 91 275 Left
4 23(M) 107 206 Left
5 45(F) 112 223 Left
6 51(F) 85 203 Left
7 24(M) 91 250 Left

for analysis are shown in Table 1, along with patient dem-
ographics. iIEEG data were preprocessed by first perform-
ing a common average reference, where the electrodes
within each subject were re-referenced by subtracting the
common average of all electrodes (Kadipasaoglu et al.,
2017); 60-Hz and higher harmonics were removed using
bandstop IIR butterworth filters of order 6. Zero phase fil-
tering was also performed, to ensure that the features in
the filtered waveforms were preserved exactly at the
same time locations as the unfiltered signals.

Analysis time windows

“Stimulus onset” refers to the time at which the picture
came on screen, and “articulation time” corresponds to
the speech onset time for the verbal response. Data anal-
ysis was done in 256-ms windows, and the window

0 ms: stimulus onset for all trials
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before stimulus onset was chosen as the baseline.
Windows were called stimulus aligned (SA) or articulation
aligned (AA) based on whether the trial data in the window
was aligned to the stimulus onset or articulation time,
respectively. Windows are denoted as SA/AA: <start
time > to <end time > in this article (Fig. 2). For example,
AA: —256 to 0 ms represents a window that starts 256 ms
before articulation. The 0-ms time has a dual meaning
based on the context. It is used to represent stimulus
onset in SA windows and articulation time in AA windows.
All analyses were done in W =52 windows, consisting of
11 SA (start times 0-320 ms, sliding by 32 ms) and 41 AA
(start times —480 to 768 ms, sliding by 32 ms) windows.

Power analysis

After data pre-processing, the time series from all elec-
trodes were filtered into the h,, band (60-150 Hz) using a
zero phase, order 6, IIR butterworth filter, to obtain a h,
signal. In a given SA or AA window, let us denote the raw
time-series as {X1,Xz,...,Xn}. The h, signal represented
as {g1,92,...,9n}, was obtained after filtering the raw
time-series, where N is the length of the h., time-series in
that window (N=256, since sampling frequency was
1 kHz). For each electrode’s recordings, power was cal-
culated in moving SA time windows over the trial duration,
to form a h., power time series for each trial. The instanta-
neous power series of h, power in window w, in a given

Articulation time

Stimulus
aligned (SA)

W windows

3
2

Trials

o on |AA256 | w [P
YN
\\_-.I'\.—
~~1l],6 Articulation
L. aligned (AA)
™1  windows
T~ s

< AA windows}

>

0 ms: articulation time for all trials

Figure 2. SA windows are aligned to stimulus onset, AA to onset of articulation. The last SA window did not overlap with the first
AA window, to ensure temporal continuity. 11 SA (start times 0-320 ms, sliding by 32 ms) and 41 AA (start times —480-768 ms, slid-

ing by 32 ms) windows were used in analysis.
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trial is given by {g?,g3, ...,g5}. The trial-averaged instanta-
neous power in window w is Gy (i) = {E[g?], E[g3],. ..,
FE[g2]}, where i = 1,2... N and E[.] is the mean across the
trials. The trial-averaged power series Gy, in window w were
converted into z scores Zy,, (w), using the mean and SD of
the power in the baseline window w,,. This resulted in normal-
ized z score power series for SA data. Similarly, z score of
power was calculated for AA data. To have responses in-
dexed to both stimulus-driven and articulation-related proc-
esses, we used a subset of both SA and AA windows, based
on whether we were analyzing data right after the stimulus
onset, or around articulation, respectively. Remark: Figure 1
shows power normalized to the trial window (not baseline)
solely for visualization purposes, to clearly discern the tempo-
ral location of the normalized power responses. For all data
analysis involving power, the power was normalized using the
baseline window, as described in Equation 1.

E[Gw] — E[Gw,]

Zny(W) = W7

M

where this [E[ ] is the time-average of the power series Gy, (i)
in the window, E[Gw, ] is the mean power in the baseline win-
dow w;,, and o[Gw, ] is the SD of the baseline power.

Directed Information

DI was estimated in a model free manner using the com-
putationally efficient Kraskov, Stogbauer, and Grassberger
(KSG) estimator (Kraskov et al., 2004; Gao et al., 2018),
which is based on a k-nearest neighbors (kNN) approach to
measuring mutual information (MI). DI was estimated be-
tween every pair of channels in each SA and AA time win-
dow in a data-driven manner. Every trial was considered to
be an independent sample path of an unknown underlying
random process, and pairwise DI was estimated using all
the trials in a given window. Given two raw time series from
a par of electrodes XY = {X1,Xz,..., Xy} and YV =
{Y1,Ya2,...,Yn}, where X, Y; € R, DI from XY to YV is de-
noted as /(XN — YN), and is defined as the followmg

N

XY — YNy = Z/ X0 YY)
1

)

hX, YY)
@)

where the right hand side of Equation 2 is the conditional
MI between time series X and single sample point Y;,
conditioned on the past i - 1 samples Y. DI can also be
expressed as sums of conditional differential entropies
given by h’s in Equation 2. By definition, differential en-
tropy h(2) of a continuous random variable Z with a proba-
bility density function f(z) is the following:

[
Mz

( X YD +h(YYET) —

[
—a

hZ) = —/ f(z)logf(z)dz
S
(where S is the support of the random variable Z). (©)]

Also, a conditional differential entropy term can be ex-
pressed as a difference of two differential entropies:

January/February 2021, 8(1) ENEURO.0177-20.2020
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h(Z|W)
h(Z|W) =

= —/f(z, w)logf(z|w) dde.
h(Z,W) —h(W)

“)

From Equations 2, 4, DI can be expanded as the
following:

N
IXN — vy :Z( X, Y +h(Y,, Vi)

i=1

—h(Y") = hXG YY), (5)

Each entropy term in Equation 5 was estimated using the
KSG estimator (Kraskov et al., 2004), which uses a kNN ap-
proach, similar to the methodology described in Murin
(2017). The implementation of DI was written in MATLAB
using the kNN tools from Trentool (Lindner, 2011; Lindner et
al., 2011). ECoG data were assumed to be Markovian of
order m, i.e., samples only depend on the past m samples.
Based on a non-parametric method of estimating memory
order for ECoG (Murin et al., 2019), and from other similar
work (Malladi et al., 2016; Murin et al., 2016), a memory
order of 150 ms was used, achieved by using downsamples
of the data for estimation. The final equation used for esti-
mation of Dl rate /(X,;, — Y, ) is given by:

Ao ~l1
1 = YY) = o Z A s Y i)+

I m-+1

Ao~ ~i A i1 A
h(yivyi—m) _h(yi—m) _h(X/ m+17YHY )] (6)
where m is the number of past samples, X and YAare the
downsampled versions of X and Y, respectively, h’ s are
the estimated differential entropies, and N is the length of

the downsampled signal.

Bootstrapping and bias-correction of DI estimate
The bias of the empirical estimation of Dl is defined as the
difference between the true value of DI and the estimated
value of DI. All estimators incur bias because of the amount
of data samples being finite. The KSG estimator is known to
have a negative bias for small sample sizes (Kraskov et al.,
2004). To allow for comparisons of DI values, bias-correc-
tion was performed for every DI estimate, analogous to de-
biasing in GC literature (Barrett et al., 2012; Barnett and
Seth, 2014). Bias-correction was performed by generating
multiple samples of “zero DI” under the null hypothesis by
multiple time shuffles of each trial, of one of the channels X,
similar to Diks and DeGoede (2001) and Malladi et al. (2016).
This ensured that all temporal dependencies were removed
between the two channels, and the estimated null DI was
denoted as /y(X! — YN). The average null DI estimate was
subtracted from the orlglnal estimated DI, to obtain the bias-
corrected estimate of the information flow from X to Y, de-
noted as the following:
L = YY) =1(X = V) —Efly (XY =YY, (@)
where [ is the expectation operator. Henceforth, all pair-
wise DI values under discussion refer to bias corrected
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values, denoted by /,, (XY — YV) to represent information
flow from channel X to channel Y, in time window w.

Multiscale graph theoretic framework

A graph theoretic framework (Bullmore and Sporns,
2009, 2012; Sporns, 2010) was used to evaluate connec-
tivity between brain regions. We construct a graph G,, =
(V,E) in time window w, where V is the set of M nodes in
the graph that represent brain electrodes, E is the set of
edges that denote connections between the nodes. The
(u,v)™ element of the adjacency matrix a, (u,v) is given
by the directed edge metric from node u to node v, de-
fined as the change in DI from the baseline window. Thus,
aw(u,v) =l (W) — Vi) — I, (U — vl), where b represents
the baseline window and N the length of the time window.
The edge metric captures the “change in DI from base-
line” and represents the changes occurring because of
the task dynamics. For each of the seven patients, a total
of W(=52) brain graphs were obtained from 52 time win-
dows (11 SA and 41 AA windows). To control for spurious
edges, the adjacency matrices were thresholded using a
combination of density thresholding and global threshold-
ing techniques (van Wijk et al., 2010). Density thresholding
for an adjacency matrix is a technique where the thresh-
old is chosen such that the resulting network has a certain
density of edges. Global thresholding for a group of
graphs uses a single threshold value (T), and retains all
the edges greater than the common threshold. In this
work, density thresholding is done in one time window, to
determine what T should be, and is then applied globally
for all the time windows. Density thresholding was done
on a graph corresponding to the window before articula-
tion (AA: =256 to 0 ms), by retaining only the top 5% of the
positive increases in DI values, among all pairs of nodes.
The cutoff value determined the patient-specific threshold
(T), which was then globally applied to all the remaining
W -1 windows. The window AA: -256 to 0 ms was chosen
because of its high density of connections, to be very
stringent and have a high value of threshold T. The results
were found to be largely independent of the window cho-
sen for density thresholding, as using a different window
only changed the value of T slightly, which affected a few
individual connections, but it was not sufficient to change
the subsequent graph theoretical metrics. After threshold-
ing, the elements of the adjacency matrix A, (u,v) for win-
dow w are given by

ay(u,v)

Aw(u,v) = {0

ifa,(u,v) >T ®)
ifay (u,v)<T ~

and the edges now represent “increase in DI from base-
line.” This thresholding technique retains values of DI that
are much greater than baseline, and discards “decreases
in DI from baseline.” This makes the adjacency matrices
positive, allowing for the use and interpretation of most
graph processing techniques. The final results are care-
fully interpreted within the framework of networks built
out of increased information flow among brain regions.
For each patient, the resulting time varying graphs were
analyzed using a multiscale analysis procedure (Fig. 3)

January/February 2021, 8(1) ENEURO.0177-20.2020
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using metrics that shed light on the underlying process at
various scales, coarse, intermediate, and fine (Fig. 4).

Coarse scale, connection density

A patient with M electrodes has W thresholded adja-
cency matrices A, for each window w, of size M x M.
The connection density of each matrix defined as the ratio
of the number of connections (non-zero values) in the ad-
jacency matrix, to the total number of possible connec-
tions M?-M. The results of one patient’s connection
density versus W time windows is shown in Figure 5A.

Intermediiate scale, coreness of nodes

K-cores analysis (Hagmann et al., 2008; Modha and
Singh, 2010) is an intermediate scale graph theoretic met-
ric, calculated using directed binarized graphs (Rubinov
and Sporns, 2010a,b). K-cores of a graph are a set of con-
nected components that remain, after all vertices of de-
gree less than k have been removed, in an iterative
manner. Coreness of node quantifies the highest k-core
network a given node belongs to (Fig. 3A). The coreness
values of the nodes were evaluated as follows (Shin et al.,
2016): First, the 1-core network was identified by finding
the isolated 0-degree nodes of the graph. These nodes
were given a coreness value of 0, and then deleted from
the network to reveal the 1-core network. Next, the 2-core
network was identified, and the nodes deleted at this step
were given the coreness value of 1. This process was re-
peated until every node was given a coreness value, until
the largest k-core subnetwork of each graph G,, was
found. The coreness of all nodes of a patient versus time
windows has been plotted as a heatmap, as shown in
Figure 5B. This revealed which set of nodes were involved
in highly connected subnetworks, and in which time win-
dows this occurred.

Intermediate scale, Louvain algorithm: maximizing
modularity

The Louvain algorithm (Reichardt and Bornholdt, 2006;
Blondel et al., 2008; Ronhovde and Nussinov, 2009; Sun
et al., 2009) is a fast, heuristic, agglomerative community
detection algorithm, that finds the optimal partition struc-
ture of the nodes into communities, by maximizing a mea-
sure of partition quality; the modularity index Q (Newman
and Girvan, 2004), example in Figure 3B. The Louvain al-
gorithm in this work used an adapted modularity index
suitable for directed weighted networks (Rubinov and
Sporns, 2010a,b, 2011). It uses a greedy optimization
phase which randomly selects the starting node, leads to
an inherent variability of the Louvain algorithm. To over-
come this, consensus clustering was done (Rubinov and
Sporns, 2011; Lancichinetti and Fortunato, 2012; Dwyer
et al., 2014), where the algorithm was run R = 100 times,
and an R x R module allegiance matrix (Bassett et al.,
2013, 2015) was created. The community detection algo-
rithm was then run for a second time on this module alle-
giance matrix, which revealed the most robust partition of
the data (Lancichinetti and Fortunato, 2012). The number
of communities in each graph was determined by the out-
put of the algorithm. The Louvain communities in three
windows for a patient are shown in Figure 5C.
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.. '@ Coreness = 1
How centrally connected is Coreness =2
a node in the network? ® Coreness = 3

B Louvain communities C

What is the optimum grouping of nodes into
communities that maximizes modularity?

In/out-degrees

o

in-degrees - sink strength of a node

>

out-degrees - source strength of a node

Figure 3. A, Coreness of a node is a measure of the node’s centrality in the network. While typically, a higher coreness value corre-
sponds to a higher node degree, it is not always the case. For example, both nodes P and Q have a degree of 6, yet node P has a
coreness value of 1, while node Q has a coreness value of 3. B, Louvain communities. C, Fine scale network measures given by in-

degrees and out-degrees.

Fine scale, in-degrees and out-degrees of nodes

For a node v € V, in-degrees In,(v) and out-degrees
Outy (v) provide a fine grained view of the graph struc-
ture, for time windows w = 1,2, ..., W. For weighted, di-
rected networks, in-degrees of a node is defined as the
sum of the weights of the edges entering that node.
Iny(v) = ZAW(V,U). Similarly, out-degrees of a node is

ueV
defined as the sum of the weights of the edges leaving
that node. Out, (v) =Y Au(u,v). In-degrees is a mea-
ueV

sure of the sink strength of the nodes, while out-degrees
measures source strength (Fig. 3C). The significant cor-
relations between in-degrees and power, and out-
degrees and power for all patients are shown in Figure 6
and Figure 7.

Relationship between network features and power

The relationship between network features (coreness of
nodes, in-degrees, and out-degrees) and power of each
was evaluated to understand how network features and
power could be related. We conducted the following anal-
yses, which are summarized in the results. We analyzed
positive and negative correlations of network features and
h, power, results shown in Figure 6. We evaluated corre-
lations between in-degrees, out-degrees with power in
five frequency bands (h,, v, B, «, and #), and demon-
strated the relationships between the frequencies and the
network features, results shown in Extended Data Figures
6-1, 6-2. An intuitive understanding of how in/out degrees
correlate with power is shown in Extended Data Figure
6-3. Evaluated correlations between coreness of nodes,
in-degrees, out-degrees with h, power, for all time win-
dows (SA + AA; results in Fig. 7). Evaluated correlations
between coreness of nodes, in-degrees, out-degrees with
h, power, for time windows SA and AA separately, since
the processes underlying SA and AA windows could be
different (results in Extended Data Fig. 7-1).
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With an understanding of how network features are re-
lated to power, we then evaluate whether network fea-
tures provide additional information to the language
process, compared with power alone, using data from
DCS.

Direct cortical stimulation

DCS was used to map brain function before surgeries,
wherein targeted transient dysfunction was induced via
electrical stimulation, providing causal functional infer-
ence. DCS revealed which node-pairs were PN positive
and language negative for brain regions, in the following
manner. In order to map brain function using DCS, a pa-
tient performed three tasks: a PN task, an auditory repeti-
tion task, and an auditory naming task. During each task,
a pair of electrodes (node-pair) were stimulated with an
electric current. If the stimulation disrupted the PN task,
then that node-pair was considered PN positive. Each
task was tested separately. If the current stimulation did
not disrupt any of the three language tasks tested individ-
ually, then that node-pair was considered to be language
negative. DCS caused a reversible temporary lesion, and
allowed the doctor to assess the importance of that node-
pair for brain resection. Note: The PN task for DCS is dif-
ferent from the PN task done for analysis using NetDI for
research purposes.

Comparison of network/power features using
classification of node-pairs

The DCS data labels: PN positive or language negative
for node-pairs were considered as ground truth. Using
standard machine-learning classifiers and a training and
testing paradigm, the accuracy of classification of node-
pairs were compared using various power and network
feature spaces, namely, (1) h,, power of the node-pairs, (2)
in-degrees, (3) out-degrees, (4) both in-out degrees (5)
coreness of nodes; and using a combined network and
power feature space: (6) in-degrees and power features,
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(7) out-degrees and power, (8) combined in/out degrees
and power feature space, and (9) combined coreness of
nodes and power. Multiple classifiers were used to elimi-
nate bias in the results because of a particular classifier. A
comparison of classification accuracy across these nine
feature spaces would reveal insight into which feature
space had higher discriminability to classify between the
PN positive and language negative node-pairs. The total
number of labeled node-pairs (n), and the length of each
feature space (p) together form an n x p matrix, (n < p),
which is used for classification. For example, the power
feature space was created by taking the power time series
(from 52 windows) for each node of the node-pair, con-
catenating them to produce a vector of length 104 for that
node-pair. Every DCS node-pair provided two data sam-
ples for classification, as features from node-pairs could
be concatenated in two ways. Specifically, each DCS
node-pair was used to generated another labeled node-
pair by reversing the order of the nodes in which the fea-
tures were concatenated, thus doubling our available la-
beled node-pairs. Thus, in this work, the effective n for
classification varied between 26 and 46 for the patients,
while p varied between 104 and 312, based on the feature
space considered. The number of labeled node-pairs
were sufficient to estimate classification accuracies with a
95% confidence interval. For each feature space, 5-fold
cross validation was performed, with repeated random
splits of the data (Varoquaux et al., 2017), keeping the
training and test sets stratified, to have a balanced split
among the two classes. The results are averaged over the
test sets. Remark: Our previous efforts with using the
original DCS node-pairs had insufficient samples for 5-
fold cross validation and confidence interval estimation.
Classification accuracies found using the leave-one-out
cross-validation methodology were similar to the results
and trends among feature spaces presented in this paper,
but did not have additional statistics provided here.

A brief note on notation: TP(FP) stands for true(false)
positives, TN(FN) for true(false) negatives. True positive
rate (TPR), also known as sensitivity or recall is given by

TP . .
TPR = IPLEN' True negative rate (TNR) is also called
specificity or selectivity is TNR:W. Precision is

given by For all patients, the number of PN posi-

T
TP+FP’
tive and language negative node-pairs were not equal, so
the balanced accuracy metric was used, by normalizing
true positive and true negative predictions. Balanced ac-
TPR+TNR

curacy = 5
Statistical analysis

Significance of network-based measures were eval-
uated using controls and statistical tests. The statistical
significance of the Louvain communities in each graph
was calculated using non-parametric permutation testing
(Park et al., 2009) by randomly permuting the community
labels assigned to the nodes 5000 times. The final com-
munities reported were Bonferroni corrected p <0.05.
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The network measures in-degrees, out-degrees, and
coreness of nodes were correlated with the power re-
sponses, the significant correlations, probability p < 0.05,
FDR corrected were reported. All comparisons of classifica-
tion accuracy among different feature spaces were reported
with statistical significance for p < 0.05, using t tests, also
FDR corrected for multiple comparisons, among feature
spaces.

Code and software

The NetDI analysis was performed in MATLAB 2014b,
while the DCS classification analysis was done using
Python’s Sci-kit learn machine learning toolbox (Pedregosa
et al., 2011) in Jupyter notebooks. Python version 3.7 was
used. Code used to develop the NetDI analysis and the clas-
sification analysis based on DCS are provided online at
https://github.com/ysudha/NetDlI.

Results

Multiscale network analysis

The brain processes span multiple resolutions, and
hence it was important to analyze the dynamics at multi-
ple scales. The first step of NetDI was to estimate causal
information flow between brain regions. Pairwise bias-
corrected DI (see Materials and Methods) between all
pairs of electrodes were calculated for each window
w=1,2...,W (Fig. 4A), followed by a baseline normaliza-
tion of DI (Fig. 4B) and thresholding (Fig. 4C). Each result-
ing DI matrix was interpreted as an adjacency matrix of a
graph, whose nodes are fixed electrodes, and the edges
between the nodes are based on the increase in DI be-
tween them. The second step of NetDI was to obtain spa-
tiotemporal dynamics from the resulting time-series of
graphs. Graph theoretic tools at coarse, intermediate, and
fine scales of resolutions (Fig. 3) were then used to ana-
lyze the graphs.

Connection density is a coarse scale metric, that
provided a single number per graph; the plot for pa-
tient 1 is shown in Figure 5A. The connection density
plot had a temporal pattern, with local temporal maxi-
ma (peaks). One peak occurred exactly at the window
immediately preceding articulation (AA: =256 to 0 ms).
The timing of the peak suggests that the connections
in that window represent “local decisions” being
made. By extension, the peak in the SA windows at
SA: 256 to 512 ms could relate to word identification,
and the peak after articulation at AA: 224 to 480 ms
may relate to a brain process that occurs while the pa-
tient is still speaking.

Coreness of nodes (Hagmann et al., 2008) is an inter-
mediate scale metric, that was plotted as a heatmap in
Figure 5B. It spatially identified the nodes that belonged
to the higher cores, and were thus more central to the net-
work, quantified by their coreness values. The Louvain
community detection algorithm (Newman and Girvan,
2004; Blondel et al., 2008; Rubinov and Sporns, 2011) op-
timally partitioned the graph into communities or clusters
of nodes, in each time window, revealing insight into in-
terconnectivity among brain regions and dynamical
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Figure 4. A, DI matrix in a window; x- and y-axes are the electrodes and the (i,j)th element represents DI from the ji" to the /" elec-
trode. B, The DI matrix relative to the baseline (“change in DI” matrix) is obtained by subtracting the baseline DI matrix from the DI
matrix of that window. C, The thresholded DI matrix, which only retains the top positive increases in DI, based on a threshold value
T (described in Materials and Methods). D, W=52 “increase in DI” matrices were generated per patient. E, Multiscale graph

analysis.

properties of these connectivity. The communities in
the temporal peaks identified by the coarse scale metric
are shown in Figure 5C, and the brain regions most con-
nected in each local decision were identified.

Fine scale granular information about the graph were
obtained at the node level. The in-degrees and out-de-
grees revealed the sink and source strength of the nodes,
in each window.

Correlations between h, power and network features
of nodes

To understand the network correlates of the power, we
investigated relationships between the network meas-
ures: coreness values, in-degrees, out-degrees, and the
local power responses. Across multiple nodes, all three
network features were found to be correlated with the h,,
power. Brain regions with positive, and negative signifi-
cant correlations were found, example nodes are shown
in Figure 6A,B, while Extended Data Figure 6-3 shows the
evolution of the in-degrees and out-degrees to obtain an
intuitive understanding of these correlations. Many nega-
tive correlations, especially those in the frontal brain re-
gions, were dominated by sharp decreases in h,, power in
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the SA windows that coincided with an increase in the
node’s coreness value.

Figure 7 illustrates the locations of the statistically sig-
nificant Spearman’s correlations between the three net-
work measures and the h, power, with 49% of nodes
showing correlations with coreness, 43.3% with in-de-
grees and 34.9% with out-degrees. Most electrodes
showed correlations in the “same direction” for all three
network features, except for a total of 5 electrodes out of
711 total electrodes for all patients. This analysis was also
repeated considering just the SA, and AA windows sepa-
rately, as different processes govern these two time win-
dows (Extended Data Fig. 7-1). As expected, some brain
regions do show opposite directions of correlations in
these windows, yet, the overall trend of maximum number
of correlations with coreness feature space remains the
same.

Finally, we examined the correlation of network features
with other narrowband frequency power spectrums, as it
is well known that powers in different bands are them-
selves correlated. The results of correlation of the network
features with powers in other bands, particularly the 6
(4-8 Hz), « (8-13 Hz), B (13-30 Hz), and y (30-60 Hz)
bands in addition to the h,, band (h,: 60-150 Hz; details in

eNeuro.org
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Figure 5. A, Connection densities vary smoothly across time windows, with a local maximum occurring before
articulation. B, Coreness of nodes heatmap identifies sets of nodes in the brain related to changes in connection density.
The average coreness across nodes (shown in red below the heatmap), provides the same information as the coarse
scale metric (in blue). C, The first row shows the maximal k-core network in windows where peaks were found in the
coarse metric. Connections are shown in black lines. The max k-core network is a very strongly interconnected core of
the graph. The second row shows the results of the Louvain analysis. The colors of directed lines only indicate that
the nodes belong to the same community. Significant communities, Bonferroni corrected p < 0.05 are shown.
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Figure 6. A, An inf-frontal gyrus pars opercularis electrode from patient 1, that shows positive correlation between h, power
and the network features. B, A negatively correlated orbital frontal cortex from patient 6. The coreness of nodes can be
seen as a combined effect of in and out degrees. A detailed figure that shows the correlation coefficient of in/out degrees
with other frequency bands is shown in Extended Data Figures 6-1, 6-2. A pictorial understanding of how in/out degrees
correlates with power is shown in Extended Data Figure 6-3. R represents the correlation coefficient.
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Figure 7. Every three-ring electrode on the brain denotes the correlation coefficient value of three feature spaces with power. The
significant correlation coefficient of in-degrees and h, power time-series are shown in the innermost circle, the correlation coeffi-
cient of out-degrees with power is denoted by the color of the middle ring, while the outer ring for each electrode’s color denotes
the correlation coefficient of coreness of nodes with power. The absence of color in the outer ring, or the absence of either the mid-
dle or inner ring, denotes the lack of significant correlation in that electrode, with that feature space. This figure denotes the correla-
tion coefficient calculated using the entire time-series, SA and AA time windows considered separately are shown in Extended Data
Figure 7-1. The bar plot to the right shows the average percentage of electrodes that showed significant correlation for each feature
space, after correcting for multiple comparisons (FDR, p < 0.05 for each feature space, per patient). It can be noted that most elec-
trodes’ feature spaces show correlation in the same direction. Across patients, more electrodes have significant correlation of core-
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ness of nodes feature space with power, than the other two feature spaces.

Extended Data Figs. 6-1, 6-2), reveal that it is indeed the
case that powers in different frequency bands are them-
selves related. The electrodes that showed strong posi-
tive correlations with h, power, also showed strong
negative correlations with 8, «, and B power. The signifi-
cantly correlated electrodes were mostly in pars opercula-
ris and triangularis regions of the left inferior frontal gyrus,
also called Broca’s region; as well as motor cortex and
superior temporal gyrus (STG) regions.

The results of the correlation analysis indicate that the
centrality of a node given by its coreness value is related
to the power responses of the node. The results indicate
that both increases and decreases in power seem related
to how central the node is in the network.

DCS data

DCS is the current gold standard in mapping brain func-
tion onto the cortex, before brain resection surgeries.
DCS informs the neurosurgeon of language critical areas,
to estimate the risk, and potential outcome of the brain re-
section surgeries. DCS was performed on the same pa-
tients as those in whom ECoG data were analyzed, to
map out language-specific brain regions before surgery.
The DCS data identified which node-pairs were PN
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positive or language negative, after excluding nodes that
had epileptic activity (Fig. 8). DCS data from all seven pa-
tients were considered, but only four patients had suffi-
cient DCS node-pairs for classification analysis. Details of
all node-pair labels for all patients is given in Table 2.

Classification results using DCS data as the ground
truth

A comparison of classification accuracy across the nine
feature spaces was done to reveal insight into which fea-
ture space had greater classification accuracy between
the PN positive and language negative node-pairs. Three
classifiers were used: kNN classifier (Bentley, 1975), linear
support vector machine (SVM) classifier (Fan et al., 2008),
and the Gaussian process classifier (GPC; Rasmussen,
2003; Rasmussen and Nickisch, 2010) for each of the
nine feature spaces, using Python’s Sci-kit learn machine
learning toolbox (Pedregosa et al., 2011), to classify be-
tween PN positive and language negative node-pairs.
Five-fold cross validation was performed with stratified
training and test splits, to ensure that classes were bal-
anced. Furthermore, to increase the number of splits
while keeping a fixed ratio between training and test set
size, repeated random splits of the data were performed

eNeuro.org
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Table 2: Node-pair labels obtained from DCS for all patients

Number of Total DCS PN positive Language negative Other Excluded
node- node- node- node- language positive node-
pairs pairs pairs pairs pairs pairs
Patient 1 46 6 17 8 15
Patient 2 25 0 24 1 0

Patient 3 18 1 4 9 4
Patient 4 37 5 13 3 16
Patient 5 35 17 5 7 6

Patient 6 20 1 3 15 1

Patient 7 21 7 6 4 4

The bolded patients are the ones used in the subsequent DCS analysis, as they had sufficient number of node-pairs for analysis.

100 times (Varoquaux et al., 2017). The balanced accu-
racy results of the three classifiers across all test sets are
shown in Table 3, with their 95% confidence intervals.
Figure 9 summarizes the results from the table, which
shows the balanced classification accuracy for each fea-
ture space. While all four network features show greater
accuracy than power, it is not statistically significantly
greater than power. Combined power and network fea-
tures had higher accuracy; with the highest accuracy fea-
ture space being “coreness and power,” statistically
significantly greater accuracy than power (p=0.0039, t
test, significant after FDR correction). To combine results
across patients and classifiers, every classifier result was
plotted in the ROC space, which plots the TPR versus the
FPR. The average distance of classification based on
each feature space for all patients and classifiers, to the
perfect classification point (TPR=1, FPR=0) revealed
which feature space had the best classification in the
ROC space, shown in Figure 10. The results show that
across patients, the feature space coreness+power was
closest to perfect classification, significantly closer than
the power feature space (p = 8.5 x 1074, t test, FDR
corrected).

Finally, we report the sensitivity (also called recall or
TPR), specificity (selectivity or TNR), and precision along
with their 95% confidence interval for each classifier in
the Extended Data Tables 3-1, 3-2, 3-3. The results
clearly show greater classification accuracy from a com-
bined power and network feature space, with the best
performing feature space being coreness values+power.

Discussion

Of all the millions of species inhabiting our planet, we
Homo sapiens are uniquely gifted in our expressive power
through language. We effortlessly articulate two to three
words per second in fluent speech, yet this deceptively
simple task is a highly complex multistage process in our
brains (Indefrey and Levelt, 2004; Hickok and Poeppel,
2007). Unfortunately, when disease and brain damage af-
fect such an intricate speech language system, it causes
a variety of disorders in millions of people, many of which
remain irremediable. Decades of research have greatly
enhanced our understanding of these language proc-
esses (Dell et al., 1999; Indefrey and Levelt, 2004; Riés et
al., 2013; Munding et al., 2016), yet, there exist gaps in
our knowledge, particularly in understanding the underly-
ing neural dynamics (Medaglia et al., 2015; Herbet and
Duffau, 2020).

Historically, language has been analyzed in a localized
manner with a goal of associating cognitive processes to
specific brain regions, evidenced by regions’ activation
profiles. Recently, language has begun to be studied as a
network phenomenon (Bassett and Bullmore, 2009;
Fedorenko and Thompson-Schill, 2014; Braun et al.,
2015; Forseth et al., 2018; Saravani et al., 2019; Skeide
and Friederici, 2016), as it has been theorized that net-
work properties provide greater understanding of the neu-
robiology of language (Medaglia et al., 2015; Chai et al.,
2016).

In prior work, cognitive flexibility is hypothesized as dy-
namic integration between brain areas in Braun et al.

Table 3: Balanced accuracy results (%) for binary classification between PN positive and language negative node-pairs

Features used for Patient 1 Patient 4 Patient 5 Patient 7

KNN, SVM, GPC n=46 n=36 n=44 n=26

classifiers (p: length of feature) ~ KNN SVM GPC KNN SVM GPC KNN SVM GPC KNN SVM GPC Mean
Power ..oy p=104 752+14 587+14 685+13 441+0.6 316+1.0 465+0.7 764+12 59.9+13 709+14 66.9+1.7 663+18 842x14 624
Indeg...... =104 659+13 765+08 732+15 50.1*+02 549*+14 51.9*07 541%17 64.4*x11 49702 714x16 775+12 704+17 633
Outdeg....... =104 588+14 791+0.7 66.1*£17 795x11 704=x0.7 492+04 400+10 486+*1.7 489*07 724*+13 764*+13 702*=15 63.3
Indeg+Outdeg =208 60.8+1.6 78.8+0.7 632+17 509+0.8 69.1+0.8 523+0.8 540+17 66.7+15 650+16 709+13 77.1+x12 765+1.6 654
Cores......cco.... =104 672x15 79.4x0.7 558=*12 641x15 653*x13 720x1.7 625+15 646+14 685+17 780x14 67.0+19 73.0x1.7 68.1
Indeg + Power.... .p=208 85.9x1.2 747x13 728x14 694x15 472x16 652+16 735+15 555+13 640+16 662+14 745+13 69.9*+17 682
Outdeg + Power............ 786+12 752+13 61.4+14 740+x14 598*+14 719+17 788*=14 706+12 858=%x1.0 69.0+16 77.7x13 776+14 734
In+Outdeg + Power....., 846+12 788+0.7 720+15 625+14 574+14 737x15 73.0x15 677x12 855*x09 726=15 749x12 779x13 734
Cores. + Power............. 825+13 778+11 759+13 638+16 67.3+16 865x1.3 820x1.0 71.2x09 763*x14 719x15 721x15 83.6x12 759

Sensitivity, specificity and precision for each classifier are in Extended Data Tables 3-1, 3-2, 3-3. The bolded entries indicate the feature space which had the

highest classification accuracy, for each classifier.
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Figure 8. Location of PN positive and language negative node-pairs obtained after DCS. These node-pairs are used as ground truth

labels for classification.

(2015), while Bassett et al. (2015) address the hypothesis
that sets of brain regions preferentially interact during a
task, and if such interactions differ with learning. Other
studies speculate that syntactic processing is distributed
across a large ensemble of brain regions (Blank et al.,
2016; Xiong and Newman, 2021). All these studies are
based on fMRI data. There is an increased focus on stud-
ies based on multiscale (Betzel and Bassett, 2017;
Domenico, 2017) and modular brain functions (Betzel et
al., 2017; Martinet et al., 2020). A review of contributions
of network science to cognitive neuroscience using neu-
roimaging data are in Medaglia et al. (2015), while Herbet
and Duffau (2020) is a comprehensive review on the con-
cept of network theory of brain functions. Our work

quantitatively evaluated network dynamics using both re-
cording and disruption evidence from ECoG and DCS
data.

We interpret “network phenomenon” as multiple physi-
cal brain regions, that functionally connect together to
subserve a cognitive brain function; and they reconfigure
connections as processing goes forward, similar to Salehi
et al. (2020). To illustrate with an example; for decades,
Broca’s area (inferior frontal regions) was thought to be
primarily responsible for speech articulatory processes.
While Broca’s area has now been shown to be involved in
other cognitive processes as well (Hagoort, 2014;
Fedorenko and Blank, 2020); our network view assumes
that Broca’s area in conjunction with other brain regions
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Figure 9. Comparison of binary classification accuracy between PN positive and language negative node-pairs using different fea-
ture spaces. The average accuracy in each feature space across all classifiers and patients are shown, with their 95% confidence
intervals. While classification accuracy is greater when using network features alone than using the power, it is not significantly
greater. However, combining network features and power, “out-degrees+power,” “both in-out degrees+power,” and “coreness--
power” perform significantly better than power alone, with “coreness+power” being the best feature space. * indicates p < 0.05,
the cyan lines indicate the 95% confidence interval, while the black dots are the original data points.
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Figure 10. A, Each classifier was plotted in the ROC space. TPR=1, FPR=0 is the perfect classification point in this space. There
are four points for each colored shape, for four patients. B, The average L, distance to the perfect classification point, for each fea-
ture space is shown in the bar plot, with the 95% confidence interval. Coreness+power feature space is the closest to perfect clas-

sification, across all patients,

and accounting for classifier variability. Feature spaces

“in-out degrees+power” and

“coreness-+power” perform significantly better than power alone (p = 0.0063, 8.5 x 1074, t test, FDR corrected).

forms a network, and the brain network is responsible for
speech articulation.

In this study, we quantitatively measured network dynam-
ics in PN, by assessing the hypotheses: Are different cogni-
tive functions being supported by different network states,
or by single regions? In other words, are network measures
of brain regions or power profiles of a single region are more
predictive of identifying critical language areas?

A majority of previous works using ECoG data have
shown that h, power is a great indicator of local task ac-
tivity (Salmelin et al., 1994; Crone et al., 2001; Edwards
et al., 2005; Towle et al., 2008; Cogan et al., 2014;
Conner et al., 2014; Flinker et al., 2015; Ries et al., 2017).
Our data analysis from the PN task from seven patients
validated the same phenomenon. Similar to previous
work (Kadipasaoglu et al., 2014; Flinker et al., 2015), for
each trial, we found strong increases in h, power in the
visual cortex, aligned to the stimulus onset, and a strong
increase in h, aligned to the start of articulation time in
the pre-motor cortex regions. Furthermore, a strong in-
crease in h,, in visual cortex in SA windows was accom-
panied by strong decreases in h, power in some frontal
regions, for all patients. Such patterns of power activa-
tions and deactivations were seen in many brain regions
during the task. The NetDl methodology allowed us to
obtain network dynamics among these brain regions,
and we asked the following questions: (1) Is there a rela-
tion between the network measures and the local power
responses? (2) Do the network measures contain any addi-
tional information about the language processes, compared
with power? The answers to these questions are indicative
of the original hypothesis, about whether cognitive functions
are supported by brain networks, or local brain regions. To
answer the first question, we investigated relationships be-
tween h,, and the network measures, to understand the vari-
ous aspects of the relationships. To answer the second
question, we performed a classification analysis between

January/February 2021, 8(1) ENEURO.0177-20.2020

PN positive and language negative node-pairs, considered
as ground truth, using DCS data (Ojemann et al., 1989; Sinai
et al., 2005), for the same set of patients for whom the NetDI
analysis was done.

In order to understand the network basis of power re-
sponses, we developed a graph theoretic framework
NetDI, to discern the spatiotemporal brain dynamics
underlying language. DI provided a robust information
theoretic measure of causality, even if the underlying
data were nonlinear. A multiscale graph theoretic analy-
sis revealed network properties of the process at various
scales. The coarse scale analysis revealed task related
peaks in temporal dynamics conjectured to be local
processing “stages” in the brain, because of their strong
alignment with task activities. These stages could corre-
spond with separable cognitive processes that are
thought to be invoked during speech production (Levelt,
1989; Salmelin et al., 1994). At an intermediate scale, k-
cores and the Louvain analysis provided alternate spa-
tiotemporal views of the process. K-cores uncovered the
highly interconnected innermost core of the network,
providing “coreness values” for each node, as a measure
of centrality of the node in the network. The Louvain analy-
sis revealed a distributed overlapping set of communities
with very strong interconnectivity within each community,
consistent with recent suggestions toward interactive net-
works in Betzel and Bassett (2017), Saravani et al. (2019),
and Martinet et al. (2020). The fine scale analysis revealed
the out-degrees (source strength) and in-degrees (sink
strength) of the nodes, time-varying network measures that
provide additional insight into the language process.

Armed with these network measures, we sought to
understand whether there existed a relation between the
network measures and the local power responses. All three
network features, coreness values, in-degrees and out-
degrees were significantly correlated with the h, power,
with most electrodes showing positive and negative
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correlations with coreness values. The network measure
coreness of nodes values is a measure of the centrality of
the node, and typically depends on both in-degrees and
out-degrees. Our results align with prior work that indi-
cated coreness of nodes as a good measure of a node’s in-
fluence in the network (Kitsak et al., 2010; Pei et al., 2014;
Shin et al., 2016). In Xiong and Newman (2021), language
processing was found to be supported by activation of
both core networks, and periphery brain regions. Our re-
sults show that a region’s coreness and power features
contain different information about the language process.
This is substantiated by the fact that there were both posi-
tive and negative correlations, which could indicate differ-
ent processes where the centrality of the node was related
to either the increase or decrease in h, power. Furthermore,
differences in correlations between SA and AA windows also
existed, along with different fine-scale measures that drove
the correlations. It seems that the information content of in-
degrees, out-degrees and coreness values are related to h,,
power, but not equivalent.

In order to quantitatively verify whether the network
measures contain additional information from power, the
data from DCS were used to classify language areas as
critical to processing (PN positive) or not (language nega-
tive) using feature spaces consisting of power, network
measures and a combination of power and network fea-
ture spaces. The classification results across patients and
multiple classifiers indicate superior classification of com-
bined network and power features compared with power
alone. The feature space consisting of coreness of nodes
and power emerged as the best classifier, thus indicating
that the centrality of the node in the network is an impor-
tant feature for understanding language dynamics. This
confirms the hypothesis that network features do contain
provide novel information about the language process be-
yond information given by power. Our results agree with
other studies like (Jiang et al., 2020; Salehi et al., 2020)
where functional networks dynamically are hypothesized
to reconfigure based on cognitive states, in an individual-
ized manner. Extensive recent work in aphasia studies
suggest that patients with seemingly different lesion loca-
tions could experience similar impairments, probably be-
cause the lesions affect a broad cortical network needed
for the language task (Fridriksson et al., 2018). Our results
provide further evidence that the centrality of the brain re-
gion has a critical role to play in the language system, be-
yond the local processing of the region.

Future research directions

(1) The h,, power in ECoG data are a component of the
local field potential signal, which is inherently ambiguous
because of contributions from multiple sources like syn-
aptic inputs, spikes and volume conduction, making them
harder to interpret. Further studies could elaborate on the
various subcomponents of the network basis of power.
Furthermore, it would be interesting to study the differen-
ces between the various frequency bands, similar to Lam
et al. (2016), in terms of discriminability between language
critical and language negative areas, to understand spec-
tral components of the language process.
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(2) The examination of Louvain communities indicates
that the PN positive brain regions had strong connectivity
with distant brain regions. Within the Louvain commun-
ities, the was a lack of connections between the node-
pairs themselves, the nodes involved in PN positive areas
were instead connected with distant brain regions. We
speculate that DCS did not just disrupt a local process,
but rather disconnected the local brain region from down-
stream brain regions, however further studies need to be
done to prove or disprove that.

(3) In future work, NetDI could be used to improve pre-
surgical DCS language mapping in patients (Szelényi et
al., 2007). DCS has some unpleasant side-effects, it
sometimes induces seizures and has after-discharge ef-
fects, so the doctors would prefer to test only as many re-
gions as is essential for clinical mapping. Network and
power measures can be found for all nodes, from experi-
ments before performing DCS. Given a few ground truth
node-pairs, the corresponding network measures could
be used as training data to identify other potential lan-
guage positive and negative areas, to guide doctors in
making DCS more clinically efficient.

(4) This work is important in understanding why certain
focal brain lesions cause widespread disruption of the
networks of the brain (Gratton et al., 2012; Fridriksson et
al., 2018). Overall, NetDI has the potential to relate brain
cognitive theories of language with the neural connectivity
patterns, and can validate cognitive theories of language
(Dell, 1988; Dell et al., 1999; Bassett and Bullmore, 2009;
Salehi et al., 2020).
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