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THEBIGGERPICTURE Large neural languagemodels have transformedmodern natural language process-
ing (NLP) and have recently become a focus of public attention. However, fine-tuning these models for spe-
cific tasks of interest remains challenging as model size increases, especially with small labeled datasets,
which are common in biomedical NLP.
This study conducts a systematic exploration of fine-tuning stability in biomedical NLP and identifies tech-
niques that address instability and improve performance. The findings highlight the importance of
domain-specific vocabulary and pretraining for creating robust models and establish a new state of the art
on a wide range of biomedical NLP applications in the Biomedical Language Understanding and Reasoning
Benchmark (BLURB).

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Large neural language models have transformed modern natural language processing (NLP) applications.
However, fine-tuning such models for specific tasks remains challenging as model size increases, especially
with small labeled datasets, which are common in biomedical NLP. We conduct a systematic study on fine-
tuning stability in biomedical NLP. We show that fine-tuning performancemay be sensitive to pretraining set-
tings and conduct an exploration of techniques for addressing fine-tuning instability. We show that these
techniques can substantially improve fine-tuning performance for low-resource biomedical NLP applica-
tions. Specifically, freezing lower layers is helpful for standard BERT-BASE models, while layerwise decay
is more effective for BERT-LARGE and ELECTRA models. For low-resource text similarity tasks, such as
BIOSSES, reinitializing the top layers is the optimal strategy. Overall, domain-specific vocabulary and
pretraining facilitate robust models for fine-tuning. Based on these findings, we establish a new state of
the art on a wide range of biomedical NLP applications.
INTRODUCTION

Biomedical text is growing at an explosive rate. PubMed1 adds

thousands of scientific papers every day and more than a million

every year. Simultaneously, digitization of patient records has

created steadily growing resources of clinical text. For example,

every year there are about 2 million new cancer patients in the

United States alone, each with hundreds of clinical notes, such

as pathology reports and progress notes.2 Curating knowledge

and longitudinal patient information from this text stands to
This is an open access article under the CC BY-N
accelerate clinical research and improve clinical care. Manual

curation, however, does not scale to the rapid growth of biomed-

ical text because manual curation often requires hours for each

paper or patient and may require domain-specific expertise,

such as clinical knowledge, that precludes common techniques

in crowd-sourcing.

Natural language processing (NLP) has emerged as a prom-

ising direction to accelerate curation by automatically extracting

candidate findings for human experts to validate.3,4 However,

standard supervised learning often requires a large amount of
Patterns 4, 100729, April 14, 2023 ª 2023 The Authors. 1
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Table 1. Summary of techniques for fine-tuning stabilization in recent studies and our investigation: conducting longer training,

adopting bias correction in the ADAM algorithm, freezing pretrained parameters in the lower layers, adopting layerwise learning-rate

decay, and reinitializing parameters in the top layers

Domain Longer training ADAM debiasing Layer freeze Layerwise decay Layer reinit

Griebhaber et al.7 General (GLUE) U

Mosbach et al.8 General (GLUE) U U

Zhang et al.9 General (GLUE) U U U U

Ours Biomedical (BLURB) U U U U U
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training data. Consequently, task-agnostic self-supervised

learning is rapidly gaining traction. By pretraining on unlabeled

text, large neural language models facilitate transfer learning

and have demonstrated spectacular success for a wide range

of NLP applications.5,6

Fine-tuning these large neural models for specific tasks, how-

ever, may be unstable and prone to overfitting, as has been

shown in the general domain.7–9 For biomedicine, the challenge

is further exacerbated by the scarcity of task-specific training

data because annotation requires domain expertise and

crowd-sourcing is harder to apply. For example, the Biomedical

Semantic Similarity Estimation System (BIOSSES)10 dataset, a

semantic similarity task in the biomedical domain, contains

only 100 annotated examples in total. By contrast, STS,11 a

similar dataset in the general domain, contains 8,628 examples.

In this paper, we conduct a systematic study on fine-tuning sta-

bility in biomedical NLP. We focus this effort on two popular

models, Bidirectional Encoder Representations from Trans-

formers (BERT) and Efficiently Learning an Encoder that Classifies

TokenReplacementsAccurately (ELECTRA).Wegroundour study

in BLURB, a recently proposed comprehensive benchmark for

biomedical NLP comprising six tasks and 13 datasets.12

We first studied how pretraining settings impact fine-tuning

performance. We show that for all applications, skipping next-

sentence prediction (NSP) in pretraining has negligible effect,

thus saving significant compute time, a finding consistent with

general-domain observations by Liu et al.6 and Aroca-Ouellette

and Rudzicz.13 However, modeling segment IDs during pretrain-

ing may have a large impact on certain semantic tasks, such

as text similarity and question answering, especially when

training data are scarce. Larger models (e.g., BERT-LARGE)

significantly increase fine-tuning instability, and their use often

hurts downstream performance. Interestingly, changing the pre-

training objective from the masked language model (MLM) to

ELECTRA has demonstrated improved performance in gen-

eral-domain applications,14 but it may exacerbate fine-tuning

instability in low-resource biomedical applications.

We then conducted a comprehensive exploration of stabiliza-

tion techniques to establish the best practice for biomedical

fine-tuning. We show that conventional general-domain tech-

niques, such as longer training and gradient debiasing, help but

layerwise adaptation methods are key to restoring fine-tuning

stability in biomedical applications. Interestingly, their efficacy

may varywith pretraining settings and/or end tasks. For example,

freezing lower layers is helpful for standard BERT-BASEmodels,

whereas layerwise decay is more effective for BERT-LARGE and

ELECTRAmodels. For low-resource text similarity tasks, such as

BIOSSES, reinitializing the top layers is the optimal strategy.
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Overall, we find that domain-specific vocabulary and pretraining

producemore robust languagemodels. Based on these findings,

we attain new state-of-the-art performance on a wide range of

biomedical NLP tasks.

Finally, we showed that the best biomedical language models

not only cover a much wider range of applications, but also sub-

stantially outperform off-the-shelf biomedical NLP tools on their

currently available tasks. To facilitate biomedical research and

applications, we released our state-of-the-art pretrained and

task-specific fine-tuned models.

RESULTS

Weconduct a systematic study on fine-tuning stability andmitiga-

tion methods in the presence of various pretraining settings and

large models. Prior work studying fine-tuning stability and mitiga-

tionmethods tends to focus ongeneral domain—e.g., usingBERT

models pretrained on general-domain corpora and evaluating on

GLUE15 or SuperGLUE.16 Table 1 summarizes representative

recent work and common stabilization techniques.

We ground our study on the Biomedical Language Under-

standing & Reasoning Benchmark (BLURB).12 BLURB is a

comprehensive benchmark for biomedical NLP, spanning six

tasks and 13 datasets, including applications with very small

training datasets, such as text similarity and question answering.

To facilitate a head-to-head comparison, we followed the train/

dev/test setup from BLURB in all our experiments.

Instability with alternative pretraining settings
We first conducted an ablation study to evaluate the impact of

pretraining settings on fine-tuning stability. Prior work on fine-

tuning stability focuses almost exclusively on LARGE models;

we showed that BASEmodels also suffer instability if we deviate

from standard BERT pretraining settings.

Specifically, we experimented with skipping NSP during pre-

training. Standard BERT pretraining inputs two text sequences

(with two distinct segment IDs). We also experimented with

inputting a single sequence at a time (with same segment ID).

For a head-to-head comparison, we pretrained all language

models from scratch on PubMed abstracts (i.e., using the

same settings as PubMedBERT) and adopted the same fine-tun-

ing settings as in Gu et al.12

Table 2 shows the results. In general, NSP has relatively little

impact on end task performance. However, pretraining with sin-

gle sequences leads to a substantial performance drop in the

sentence similarity task (BIOSSES). Presumably performance

degrades because this task requires comparison of two senten-

ces and the training set is very small, therefore pretraining with



Table 2. Comparison of BLURB test performance with various

pretraining settings: standard BERT pretraining; BERT

pretraining without NSP (i.e., MLM only); BERT pretraining with

MLM only and single-sequence (single-segment ID); ELECTRA

BERT

BERT

(no NSP)

BERT (no NSP,

single seq) ELECTRA

BC5-chem 93.33* 93.21 93.20 93.00

BC5-disease 85.62* 85.29 85.44 84.84

NCBI-disease 87.82 88.29 88.68* 87.17

BC2GM 84.52 84.41 84.63* 84.03

JNLPBA 79.10* 79.01 79.10* 78.57

EBM PICO 73.38 73.87* 73.64 73.57

ChemProt 77.24* 76.82 76.88 76.34

DDI 82.36 82.64* 82.45 80.58

GAD 83.96* 82.30 83.24 83.40

BIOSSES 93.46* 93.12 75.50 80.24

HoC 82.32 82.37* 81.91 81.28

PubMedQA 55.84 56.40 66.66* 64.96

BioASQ 87.56 83.57 85.64 88.93*

BLURB score 81.35* 81.00 79.04 79.61

*Highest performance for task (row).

Table 3. Ablation study on optimization adjustments in fine-

tuning by comparing BIOSSES test performance under various

pretraining settings

Pretraining

setting

Improved

optimization

Standard

epochs

No bias

correction

BERT 93.46* 92.64 91.75

BERT (no NSP) 93.12* 91.31 92.35

BERT (no NSP,

single seq)

75.50* 0.65 70.50

ELECTRA 80.24 49.87 80.41*

Improved optimization used bias correction in ADAM and up to 100

epochs in fine-tuning (vs. up to five epochs in standard setting), all with

BASE models.

*Highest performance for model (row).
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two text segments helps. Surprisingly, pretraining with single

sequences substantially improves test performance on

PubMedQA, even though the task also inputs two text segments.

Interestingly, even with the original pretraining setting (with NSP

and two segments), simply using a single-segment ID in fine-tun-

ing for PubMedQA would result in a similarly large gain in test

performance (F1 63.92, not shown in the table). However, the

standard setting (using separate segment ID) is still better for

BIOSSES and BioASQ.

We also evaluated using the ELECTRA objective. Unlike in the

general domain, ELECTRA does not show clear improvements

over the MLM objective, when fine-tuned in an identical manner,

in the biomedical domain. In fact, ELECTRA performs worse on

most tasks and suffers a catastrophic performance drop in text

similarity. We note that these tasks also happen to have relatively

small training sets. This may appear contradictory with some

recent work that demonstrates superior results using ELECTRA

in biomedical NLP.17 Later, we showed that it is indeed possible

to attain higher performancewith ELECTRA, but doing so requires

various techniques tostabilizeand improvefine-tuning.Compared

with BERT with the MLM objective, ELECTRA is generally more

difficult to fine-tune and demonstrates no significant advantage

for biomedical NLP.

Stabilization by adjusting standard optimization
Aspreviouslymentioned, prior studies conclude that small optimi-

zation adjustments often suffice to restore fine-tuning stability in

LARGE models. In biomedical NLP, however, we found that such

adjustments are necessary to prevent catastrophic performance

drops, but are not always sufficient for stabilizing fine-tuning,

even with BASE models. Table 3 shows an ablation study on

BIOSSES. In this case, forgoingeither adjustment leads to a signif-

icant performance drop. But, as noted in the last subsection, even

if both are used, fine-tuning remains unstable with alternative
pretraining settings, which requires more advanced stabilization

techniques.

Stabilization by layer-specific adaptation
Next, we studied various layer-specific adaptation methods in

fine-tuning. Given that most models suffer from high instability

on sentence similarity (BIOSSES) and question answering

(BioASQ and PubMedQA), we focused on those tasks. For ques-

tion answering, we reported the mean performance. Table 4

shows the results. All three methods are broadly beneficial, but

their effects vary substantially with tasks and pretraining set-

tings. Freezing lower layers is helpful for BERT models with the

standard MLM objective, whereas layerwise decay is more

effective for ELECTRA models. For sentence similarity, reinitial-

izing the top layers is the optimal strategy. We focused our study

on sentence similarity and question answering tasks, as other

datasets in BLURB are relatively large and do not suffer

from stability issues. We explored a combination of layer-spe-

cific adaptation methods but found little gain in preliminary

experiments.

In addition, we consider the task of relation extraction and

simulate low-resource settings by subsampling training in-

stances (100/500/1000 from ChemProt and DDI that contain

18,035 and 25,296 training instances, respectively). Table 5

shows the results. Not surprisingly, test performance is lower

with fewer training instances. However, the simulated results

confirm that layer-specific adaptation generally increases fine-

tuning stability and test performance (except in the extremely

low-resource setting of 100 training instances).

Stabilization for larger models
It is well known that larger models can be finicky to fine-tune.5

Again, we focused on sentence similarity (BIOSSES) and ques-

tion answering (BioASQ and PubMedQA). Indeed, we observed

a substantial drop in test performance on sentence similarity and

question-answering tasks for most large models (see Table 6).

Note that to avoid clutter, we only show the average scores for

the question-answering tasks.

Surprisingly, PubMedBERT-LARGE is a notable exception

because it does not suffer any catastrophic performance drop.

In fact, it actually gains slightly on the question-answering tasks.

This stands in stark contrast with other models such as

BioBERT18 and BlueBERT.19 We hypothesize that its robustness
Patterns 4, 100729, April 14, 2023 3



Table 4. Comparison of test performance (and standard

deviation) on the BIOSSES and BioASQ tasks with major layer-

specific adaptation methods, all with BASE models

Pretraining setting Baseline

Laye

freeze

Layerwise

decay

Layer

reinit

BIOSSES

BERT 93.46

(0.96)

92.86

(0.88)

93.35

(0.78)

94.49*

(0.88)

BERT (no NSP) 93.12

(1.04)

94.01*

(0.99)

93.01

(1.07)

92.89

(0.91)

BERT (no NSP,

single seq)

75.50

(3.00)

72.09

(2.86)

74.11

(3.51)

85.04*

(2.69)

ELECTRA 80.24

(5.92)

83.06

(3.68)

83.55

(3.25)

88.74*

(2.29)

BioASQ

BERT 87.56

(2.43)

90.50*

(1.51)

88.29

(2.76)

81.28

(3.72)

BERT (no NSP) 83.57

(3.60)

87.07*

(3.15)

86.07

(2.29)

83.64

(3.70)

BERT (no NSP,

single seq)

85.64

(2.48)

88.64*

(1.76)

88.50

(1.63)

80.79

(2.51)

ELECTRA 88.93

(3.87)

90.00

(4.16)

90.64*

(2.60)

88.14

(2.21)

*Highest performance for model (row).
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stems from domain-specific vocabulary and pretraining. Inter-

estingly, although PubMedELECTRA-LARGE is also pretrained

in the same domain-specific fashion, it suffers a similar perfor-

mance drop, which provides further evidence that the

ELECTRA pretraining objective may exacerbate fine-tuning

instability.

Optimization adjustments (longer training time and ADAM bias

correction) have been used in all these experiments. Unlike in the

general domain, they are not sufficient to restore stability. As in

the case of BASE models, layer-specific adaptation methods can

substantially reduce fine-tuning instability, in somecases enabling

LARGEmodels to attain even higher performance than BASE (e.g.,

PubMedBERT-LARGE on QA and PubMedELECTRA-LARGE on

SS). See Table 6.

Like Gu et al.,12 we also observed that domain-specific vo-

cabulary and pretraining are far superior, as PubMedBERT-

LARGE substantially outperforms BioBERT-LARGE18 and

BlueBERT-LARGE19. Again, while ELECTRA models can

perform reasonably well with advanced stabilization tech-

niques, they are still finicky to fine-tune and are not superior

over BERT models with the standard MLM pretraining objec-

tive. As with BASE models, reinitializing the top layers is still

the optimal strategy for sentence similarity. However, for

question answering, layerwise decay is superior for LARGE

models.

Table 7 compares overall BLURB test performance for LARGE

models with both improved optimization and layer-specific adap-

tation. They help stabilize fine-tuning, with no LARGE model

suffering significant instability issues. With domain-specific

vocabulary and pretraining, PubMedBERT-LARGE and PubMed

Electra-LARGE benefit the most and attain significant gain

over BASE.
4 Patterns 4, 100729, April 14, 2023
Ablation study on layer removal
Rising concerns about computation cost of large pretrained

models have spawned research in model pruning, such as

removing top layers of a BERT model.20 We thus conducted an

ablation study on BLURB tasks to assess the impact of removing

top layers from PubMedBERT. Table 8 shows the results.

Indeed, pruning barely impacts fine-tuning efficacy for many

tasks, such as named entity recognition (NER), evidence-based

medical information extraction, sentence similarity, and docu-

ment classification. Test performance does not substantially

drop even when the top half of the layers were removed, sug-

gesting that these tasks are relatively easy and do not require

deep semantic modeling. By contrast, test performance in rela-

tion to extraction and question answering was substantially

impacted by layer removal, dropping up to 3 to 4 absolute points

for the former and up to 6 to 13 points for the latter. This suggests

model pruning may make sense for simpler tasks, but not for

semantically more challenging tasks. Further, this study sug-

gests that the upper encoder layers are crucial for semantically

challenging tasks, such as question answering. This illustrates

why stabilization techniques, such as layerwise decay and

layer freezing, are particularly beneficial for question-answering

tasks—both techniques emphasize retraining these upper

layers, which may have overfit to the pretraining objective.

New state-of-the-art in biomedical NLP
To further improve test performance for low-resource tasks, a

common technique is to combine the training set and develop-

ment set to train the final model—after hyperparameter search

is done. We found that for most biomedical NLP tasks, this

was not necessary, but it had a significant effect on BIOSSES.

This is not surprising given that this dataset is the smallest.

By combining our findings on optimal fine-tuning strategy, we

establish a new state-of-the-art in biomedical NLP. Table 9 shows

the results. PubMedBERT with the MLM pretraining objective re-

mains the best model, consistently outperforming ELECTRA in

most tasks, although the latter doesdemonstrate someadvantage

in question-answering tasks, as can be seen in its superior perfor-

mance with BASE models. With more extensive hyperparameter

tuning, the gap between BASE and LARGE is smaller, compared

with more standard fine-tuning (Table 6), which is not surprising.

Overall, we were able to significantly improve the BLURB score

by 1.6 absolute points, compared with the original PubMedBERT

results in Gu et al.12 (from 81.35 to 82.91).

Comparison with off-the-shelf tools
While there are many off-the-shelf tools for general-domain NLP

tasks, there are few available for the biomedical domain. Two

recent exceptions are scispaCy21 and Stanza,22 both with a

limited scope focusing on NER. Table 10 compares sciSpaCy

and Stanza performances with PubMedBERT on BLURB NER

tasks. scispaCy comes with two versions, trained on JNLPBA

and BC5CDR, respectively. Stanza comes with eight pretrained

biomedical models, amongwhich four overlap with or are related

to BLURB NER tasks, namely JNLPBA, BC5CDR, NCBI-dis-

ease, and BC4CHEMD. We compare individually and to an

oracle version of sciSpaCy and huggingface versions of Stanza

that pick the optimal between the three for each evaluation data-

set. As Stanza does not provide any gene/protein extraction



Table 5. Comparison of test performance (and standard deviation) on theChemProt andDDI relation extraction taskswithmajor layer-

specific adaptation methods, for reduced numbers of training instances

No. Training

instances Baseline

Layer

freeze

Layerwise

decay

Layer

reinit

ChemProt

100 22.45* (3.22) 20.39 (2.53) 20.50 (2.44*) 19.33 (3.18)

500 44.77 (3.71) 48.40 (2.85) 48.55* (1.78*) 43.79 (3.29)

1000 56.62 (1.93) 59.91* (1.26*) 59.67 (1.39) 55.31 (2.65)

DDI

100 10.72 (2.93) 11.13* (3.73) 10.34 (2.50*) 9.83 (2.64)

500 34.36 (5.46) 39.78 (4.39) 40.15* (3.34*) 36.67 (5.50)

1000 58.71 (2.87) 61.40 (2.53) 61.54* (1.46*) 58.67 (3.54)

*Highest performance and lowest standard deviation.
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model, its performances on BC2GM task are empty. While scis-

paCy and Stanza performwell, PubMedBERT fine-tunedmodels

attain substantially higher scores. We note that many scispaCy

errors stem from imperfect entity boundaries. We thus further

compare the two using a lenient score that regards overlapping

predictions as correct (Table 11). As expected, the gap shrinks

but PubMedBERT models still demonstrate overwhelming

improvement, raising the average score by more than 10 points

compared with sciSpacy. In both settings, PubMedBERT

models outperform Stanza across tasks.
DISCUSSION

Studies on pretraining and fine-tuning large neural language

models originated in the general domain, such as newswire

and the web. Recently, there has been increasing interest in

biomedical pretraining12,18,19,23 and applications.24,25 In partic-

ular, Gu et al.12 conducted an extensive evaluation of pretrained

models on wide-ranging biomedical NLP tasks. However, they

focus on domain-specific pretraining, whereas we study fine-

tuning techniques and explore how theymight interact with tasks

and pretraining settings.

Prior studies on fine-tuning stability focused on the general

domain and LARGE models, and often conclude that simple
Table 6. Comparison of test performance (and standard deviation)

adaptation methods, all with LARGE models

Baseline Laye

BIOSSES

BioBERT-LARGE 84.92 (10.2) 88.6

BlueBERT-LARGE 82.35 (2.21) 84.5

PubMedBERT-LARGE 91.06 (1.51) 91.1

PubMedELECTRA-LARGE 71.61 (4.91) 86.4

BioASQ

BioBERT-LARGE 67.79 (6.59) 74.5

BlueBERT-LARGE 70.43 (3.91) 70.2

PubMedBERT-LARGE 92.36 (1.36) 93.1

PubMedELECTRA-LARGE 79.93 (5.04) 88.6

*Highest performance for model (row).
optimization adjustments, such as longer training time and

ADAM debiasing, suffice for stabilization. By contrast, we

show that in biomedical NLP, even BASE models may exhibit

serious instability issues and simple optimization adjustments

are necessary, but not sufficient, to restore stabilization. We

systematically study how fine-tuning instability may be exacer-

bated with alternative pretraining settings such as using single

sequences and the ELECTRA objective. We show that layer-

specific adaptation methods help substantially in stabilization

and identify the optimal strategy based on tasks and pretrain-

ing settings.
Limitations of the study
In this work, we identify several strategies that are effective for

biomedical applications, but we have not found a single strategy

or combination that works well across all models and tasks. Our

exploration is also bounded by computational resources and

time. While our study is relatively large and thorough, we have

not exhaustively explored all possible settings or methods.

Belowwe list some relevant directions that are beyond the scope

of our study.

Multi-task learning can also mitigate the challenge pre-

sented by low-resource biomedical tasks.26 This process

generally requires applications with multiple related datasets,
on the BIOSSES and BioASQ tasks with major layer-specific

r reeze Layerwise decay Layer reinit

5 (6.60) 90.13 (1.70) 91.53* (4.09)

6 (1.95) 84.80 (2.58) 86.18* (1.21)

9 (1.12) 90.87 (0.92) 92.73* (0.96)

2 (3.33) 86.17 (1.21) 90.33* (1.04)

7 (3.18) 78.93* (3.39) 74.43 (9.76)

1 (2.99) 72.21* (2.68) 70.86 (2.15)

4 (2.35) 93.36* (1.22) 91.21 (1.54)

4 (4.09) 93.14* (1.71) 88.07 (3.21)
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Table 7. Comparison of BLURB test performance using LARGE models (24 layers, 300M+ parameters), with optimal layer-specific

stabilization methods

BioBERT-LARGE BlueBERT-LARGE PubMedBERT-LARGE PubMedELECTRA-LARGE

BC5-chem 93.05 90.24 93.23* 92.90

BC5-disease 84.97 82.93 85.77* 84.82

NCBI-disease 88.76* 86.44 88.25 87.93

BC2GM 84.21 80.86 84.72* 83.87

JNLPBA 78.83 77.59 79.44* 78.77

EBM PICO 73.81 72.43 73.61 73.95*

ChemProt 77.79 71.31 78.77* 76.80

DDI 81.53 78.99 82.39* 78.92

GAD 82.47 75.80 83.57 83.93*

BIOSSES 91.53 86.18 92.73* 90.33

HoC 81.57 81.35 82.57* 82.37

PubMedQA 55.16 55.24 67.38* 65.02

BioASQ 78.93 72.21 93.36* 93.14

BLURB score 80.09 77.11 82.86* 81.88

D BASE model �0.59 +0.15 +0.58 +0.37

Note: the optimal strategies were all layer-reinit for BIOSSES and layerwise decay for QA.

*Highest performance for task (row).
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such as NER. As discussed previously, NER tasks are

relatively easy, and domain-specific pretrained models

can already attain high performance without specific

adaptation.

Other relevant methods include Mixout,27 which has not been

found to consistently improve performance, and fine-tuning on

intermediate tasks,28 which is not always applicable and incurs

substantial computation. Instead, we focus on layer-specific

adaptation techniques that are generalizable and easily

implemented.

Finally, adversarial training can also help instability issues29–31

and prompt-based learning has been shown to work well in low-

resource settings.32,33 They are worth exploring in future work.
Table 8. Ablation study on the impact of model pruning by comparin

PubMedBERT

Layers removed

0 2

BC5-chem 93.33 93.22

BC5-disease 85.62 85.35

NCBI-disease 87.82 88.38

BC2GM 84.52 84.32

JNLPBA 79.10 78.94

EBM PICO 73.38 73.38

ChemProt 77.24 76.11

DDI 82.36 82.16

GAD 83.96 82.33

BIOSSES 92.30 92.66

HoC 82.32 82.46

PubMedQA 55.84 51.22

BioASQ 87.56 83.73
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Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Hoifung Poon (hoifung@microsoft.com).

Materials availability

This study did not generate any physical materials.

Data and code availability

Models are publicly available via Hugging Face (https://aka.ms/huggingface)

and have been archived to Zenodo where not described by prior work. Specif-

ically, the following models are made available.

d PubMedBERT12: https://aka.ms/pubmedbert

d PubMedBERT-LARGE34: https://aka.ms/pubmedbert-large
g test performance on BLURB tasks after removing top layers of

Performance drop4 6

92.96 92.40 �0.93

85.17 84.29 �1.33

87.99 87.38 �0.44

83.46 82.05 �2.47

78.88 78.07 �1.03

73.33 73.35 �0.05

73.40 72.74 �4.50

79.71 79.30 �3.06

80.23 79.21 �4.75

92.80 92.12 �0.18

82.43 82.01 �0.31

49.76 50.08 �6.08

77.50 74.00 �13.56

mailto:hoifung@microsoft.com
https://aka.ms/huggingface
https://aka.ms/pubmedbert
https://aka.ms/pubmedbert-large


Table 9. Comparison of BLURB test performance: standard fine-tuning vs. optimal fine-tuning with advanced stabilization methods

PLUS extensive hyperparameter search

Fine-tuning

PubMedBERT-BASE PubMedBERT-LARGE PubMedELECTRA-LARGE

Standard Optimal Standard Optimal Standard Optimal

BC5-chem 93.33 93.33 93.23* 93.23* 92.90 93.25

BC5-disease 85.62 85.62 85.77* 85.77* 84.82 85.23

NCBI-disease 87.82 88.21 88.25* 88.25* 87.93 88.19

BC2GM 84.52 84.55 84.72* 84.72* 83.87 84.47

JNLPBA 79.10 79.16 79.44* 79.44* 78.77 78.77

EBM PICO 73.38 73.45 73.61 73.61 73.95 74.02*

ChemProt 77.24 77.41 78.77* 78.77* 76.80 77.26

DDI 82.36 83.17 82.39 82.78* 78.92 80.37

GAD 83.96 84.01* 83.57 83.76 83.93 83.93

BIOSSES 92.30 94.49* 90.29 92.73 86.17 92.69

HoC 82.32 83.02* 82.57 82.70 82.37 82.37

PubMedQA 55.84 63.92 63.18 67.38* 60.18 65.02

BioASQ 87.56 82.75 92.36 93.36* 81.71 93.14

BLURB score 81.16 82.75 82.02 82.91* 79.83 82.44

Note: the addition of extensive hyperparameter tuning results in optimal results that may be higher than those reported without extensive hyperpara-

meter tuning, as in Table 7.

*Highest performance for task (row).
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d PubMedELECTRA35: https://aka.ms/pubmedelectra

d PubMedELECTRA-LARGE36: https://aka.ms/pubmedelectra-large

Additional details regarding the Biomedical Language Understanding &

Reasoning Benchmark (BLURB), including data sizes and evaluation metrics

used can be found in Gu et al.12 and on the benchmark site: https://aka.ms/

BLURB. BLURB comprises 13 datasets across six tasks that are made avail-

able by the dataset owners. Links to each of these datasets also can be found

on the benchmark site. For reference, these are as follows:

d Named entity recognition (NER): BC5-chem,37 BC5-disease,37 NCBI-

disease,38 BC2GM,39 and JNLPBA40

d Evidence-based medical information extraction (PICO): EBM PICO41

d Relation extraction: ChemProt,42 DDI,43 GAD44

d Sentence similarity: BIOSSES10

d Document classification: HoC45

d Question answering: PubMedQA,46 BioASQ47

Any additional information is available from the lead contact upon request.
Methods

In this paper, we focus our study on BERT5 and its variants, which have

become a mainstay of neural language models in NLP applications. Here,

we begin with a brief review of the evaluation metrics for each of the datasets
Table 10. Comparison of PubMedBERT fine-tuned models, scispaC

entity-level test F1 score)

scispaCy Stanza

JNLPBA bc5cdr max jnlpba bc5cdr

BC5-chem 3.60 86.49 86.49 – 91.47

BC5-disease 1.35 80.03 80.03 – 83.78

NCBI-disease 1.77 57.18 57.18 – 68.00

BC2GM 51.98 6.73 51.98 – –

JNLPBA 77.31 10.28 77.31 77.32 –

Mean Score 27.20 48.14 70.60 77.32 81.08

*Highest performance for task (row).
comprising BLURB, and then review core technical aspects in neural language

model pretraining and fine-tuning, providing a basis for the key research ques-

tions of our fine-tuning study.

Evaluation metrics

The six tasks in BLURB use evaluation metrics that are appropriate for each

task. For reference, we identify each evaluation metric here, but refer to

readers to Gu et al.12 and the corresponding works describing each task for

additional details.

Named-entity recognition (NER), including BC5-chem,37 BC5-disease,37

NCBI-disease,38 BC2GM,39 and JNLPBA,40 use F1 score at the entity-level.

Evidence-based medical information extraction (PICO), including EBM

PICO,41 uses macro F1 score at the word-level. Relation extraction, including

ChemProt,42 DDI,43 and GAD,44 use micro F1 score. Sentence similarity,

including BIOSSES,10 use Pearson correlation between the gold standard

scores and the scores produced by the model. Document classification,

including HoC,45 uses micro F1 score. Question answering, including

PubMedQA46 and BioASQ,47 uses accuracy.

The BLURB score is the macro average of average tests results for each of

the six tasks (NER, PICO, relation extraction, sentence similarity, document

classification, and question answering).

Neural language models

The input to a neural language model consists of text spans, such as senten-

ces, separated by special tokens ½SEP�. To address the problem of out-of-vo-

cabulary words, neural language models generate a vocabulary from subword
y, Stanza on BLURB named-entity recognition tasks (standard

PubMedBERT

ncbi-disease bc4chemd max BASE LARGE

– 89.84 91.47 93.33* 93.23

63.54 – 83.78 85.62 85.77*

86.89 – 86.89 87.82 88.25*

– – – 84.52 84.72*

– – 77.32 79.10 79.44*

75.22 89.84 84.86 86.08 86.28*
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Table 11. Comparison of PubMedBERT fine-tuned models, scispaCy and Stanza on BLURB named-entity recognition tasks (relaxed

entity-level test F1 score—overlap counted as correct)

scispaCy Stanza PubMedBERT

jnlpba bc5cdr max jnlpba bc5cdr ncbi-disease bc4chemd max BASE LARGE

BC5-chem 7.70 91.42 91.42 – 94.31 – 92.61 94.31 95.18 95.37*

BC5-disease 2.09 88.88 88.88 – 92.10 77.79 – 92.10 93.34 93.74*

NCBI-disease 12.94 74.64 74.64 – 81.83 93.37 – 93.37 95.22 95.24*

BC2GM 68.87 15.92 68.87 – – – – – 95.56 96.05*

JNLPBA 87.25 20.50 87.25 88.33 – – – 88.33 88.79 88.81*

Mean Score 35.77 58.27 82.21 88.33 89.42 85.58 92.61 92.02 93.62 93.84*

*Highest performance for task (row).
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units, using Byte-Pair Encoding (BPE)48 or variants such as WordPiece.49

Essentially, the BPE algorithm tries to greedily identify a small set of subwords

that can compactly form all words in a given corpus. It does this by initializing

the vocabulary with all characters and delimiters found in the corpus. It then

iteratively augments the vocabulary with a new subword that is most frequent

in the corpus and can be formed by concatenating two existing subwords, until

the vocabulary reaches the pre-specified size—e.g., 30,000 in standard BERT

models or 50,000 in RoBERTa.6 In this paper, we use theWordPiece algorithm,

which is a BPE variant that augments the vocabulary using likelihood in an un-

igram language model rather than frequency in choosing which subwords to

concatenate.

The text corpus and vocabulary may preserve the original case ðcasedÞ or
convert all characters to lower case ðuncasedÞ. Prior work, such asGu et al.,12

finds that case does not have significant impact on downstream tasks, so we

simply use uncased in our work.

BERT5 is a state-of-the-art neural language model based on a transformer

architecture.50 The transformer model introduces a multi-layer, multi-head

self-attention mechanism, which has demonstrated superiority in leveraging

GPU computation and modeling long-range text dependencies. Standard

BERT pretraining inputs two text spans (e.g., sentences) and assigns a distinct

segment ID to each. The input token sequence is first processed by a lexical

encoder, which combines a token embedding, a position embedding, and a

segment embedding by element-wise summation. This embedding layer is

then passed to multiple layers of transformer modules. In each transformer

layer, a contextual representation is generated for each token by summing a

non-linear transformation of the representations of all tokens in the prior layer,

weighted by attention computed using a given token’s representation in the

prior layer as query. The final layer outputs contextual representations for all

tokens, which combines information from the whole text span.

BERT models come with two standard configurations: BASE uses 12

layers of transformer modules and 110 million parameters, LARGE uses

24 layers of transformer modules and 340 million parameters. Prior work
8 Patterns 4, 100729, April 14, 2023
applying BERT to biomedical NLP focuses on BASE models. By contrast,

in this work, we conduct a systematic study on LARGE models as well,

which reveals additional challenges for fine-tuning neural language models

in biomedical NLP.

Pretraining objectives

Similar to other language models, the key idea of BERT pretraining is to pre-

dict held-out words in unlabeled text. Unlike most prior language models,

BERT does not adhere to a generative model. Instead, Devlin et al.5 intro-

duces two self-supervised objectives: Masked Language Model and Next

Sentence Prediction. MLM randomly replaces a subset of tokens by a spe-

cial token (e.g., ½MASK�), and asks the language model to predict them. The

training objective is the cross-entropy loss between the original tokens and

the predicted ones. Typically, 15% of the input tokens are chosen, among

which a random 80% are replaced by ½MASK�, 10% are left unchanged,

and 10% are randomly replaced by a token from the vocabulary. NSP is a

binary classification task that determines for a given sentence pair whether

one sentence follows the other in the original text. While MLM is undoubtedly

essential for BERT pretraining, the utility of NSP has been called into ques-

tion in prior work.6 As such, we conduct ablation studies to probe how NSP

and the use of segment IDs in pretraining might impact downstream fine-tun-

ing performance.

Aside from standard BERT pretraining objectives, we also consider

ELECTRA,14 which has shown good performance in general-domain data-

sets such as GLUE15 and SQuAD.51,52 ELECTRA introduces an MLM-based

generator to help pretrain a discriminator for use in end tasks. Specifically,

given sample masked positions, first the generator predicts the most likely

original tokens as in MLM, then the discriminator classifies, for all tokens,

whether each is the original one. While ELECTRA shares some superficial

similarity with generative adversarial network GAN,53 the roles of generator

and discriminator are very different. After pretraining, the generator in

ELECTRA is discarded and the discriminator is used for downstream fine-

tuning, whereas GAN typically discards the discriminator and uses the
Figure 1. Illustration of major layer-specific

adaptation methods for fine-tuning stabiliza-

tion: freezing lower layers, adopting layer-

wise decay of learning rate, and reinitializing

the top layer
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generator. The training objective is not adversarial, but a weighted combina-

tion of MLM for the generator and classification accuracy for the discrimi-

nator. By classifying on all tokens rather than just the masked ones,

ELECTRA can potentially learn more from each example while adding little

overhead as the majority of compute lies in transformer layers before classi-

fication. The generator, on the other hand, does incur additional compute.

Also, if the generator becomes very accurate early on, there will be little

learning signal for the discriminator. Therefore, ELECTRA typically uses lower

capacity in the generator compared with the discriminator (e.g., one-third in

BASE and one-fourth in LARGE for contextual representation dimension and

attention head number).

Domain-specific pretraining

The study of neural language model pretraining originates in the general

domain, including newswire and web. For example, the original BERT model

was pretrained on Wikipedia and BooksCorpus.5 RoBERTa,6 another repre-

sentative BERT model, was pretrained on a larger web corpus. Biomedical

text is quite different from general-domain text and domain-specific pretrain-

ing has been shown to substantially improve performance in biomedical NLP

applications.12,18,19 In particular, Gu et al.12 conducted a thorough analysis on

domain-specific pretraining, which highlights the utility of using a domain-spe-

cific vocabulary and pretraining on domain-specific text from scratch. We

build on their work and study how domain-specific pretraining might impact

fine-tuning stability, especially for larger models and/or with alternative pre-

training settings. To facilitate our investigation, we pretrained PubMedBERT-

LARGE and PubMedELECTRA (BASE and LARGE) following the same setting

of PubMedBERT ðBASEÞ in Gu et al.12 All BASE models use 12 layers,

768-dimension latent vectors, and 12 attention heads, with 110 million param-

eters. All LARGEmodels use 24 layers, 1,024-dimension latent vectors, and 16

attention heads, with 336 million parameters.

Fine-tuning stability

Prior work studying fine-tuning stability and mitigation methods tends to focus

on the general domain—e.g., using BERT models pretrained on general-

domain corpora and evaluating on GLUE15 or SuperGLUE.16 Table 1 summa-

rizes representative recent work and common stabilization techniques. Small

adjustments to the conventional optimization process may have surprisingly

significant effect. For example, Mosbach et al.8 and Zhang et al.9 show that

simply training for a longer time helps reduce fine-tuning instability with small

training datasets. They also show that bias correction, which was proposed in

the original ADAM algorithm54 but was not used in fine-tuning from the original

BERT paper,5 can enhance fine-tuning stability by effectively reducing learning

rates in the first few iterations.

Such minor adaptations are already highly effective for general-domain

applications.8 However, biomedical datasets are often much smaller than

their general-domain counterparts. For example, as aforementioned for text

similarity, the biomedical dataset BIOSSES10 is much smaller than the gen-

eral-domain dataset STS.11 Similarly, the question-answering datasets in

BLURB have only a few hundred instances, compared with more than

100,000 in SQuAD.51

Therefore, we systematically study advanced layer-specific adaptation

techniques previously studied in the general domains: freezing pretrained

parameters in the lower layers,7 adopting layerwise learning-rate decay,14

and reinitializing parameters in the top layers.9 See Figure 1. Essentially, these

techniques represent various ways to alleviate the vanishing gradient problem

in training deep neural networks,55 where optimization suffers from severe ill

conditioning and requires adapting learning rates for individual layers. Interest-

ingly, we find that their efficacymay interact with the pretraining setting and the

end task.

Below is a list of all the methods we have explored with more details.

d longer training: use up to 100 epochs in fine-tuning (vs. up to five epochs

in standard setting)

d ADAM debiasing: adopt bias correction in ADAM during fine-tuning

d layer freeze: fix pretrained parameters in the lower half layers of BERT

models during fine-tuning (six layers for BASE models and 12 for

LARGE models)

d layerwise decay: adopt layerwise learning-rate decay during fine-tuning

(we follow ELECTRA implementation and use 0.8 and 0.9 as possible

hyperparameters for learning-rate decay factors)
d layer reinit: randomly reinitialize parameters in the top layers before fine-

tuning (up to three layers for BASE models and up to six for LARGE

models)
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Makowski, M.R., Sch€ule, C.Y., Vahldiek, J.L., and Niehues, S.M. (2020).

Highly accurate classification of chest radiographic reports using a deep

learning natural language model pre-trained on 3.8 million text reports.

Bioinformatics 36, 5255–5261.

25. Trieu, H.-L., Tran, T.T., Duong, K.N.A., Nguyen, A., Miwa, M., and

Ananiadou, S. (2020). DeepEventMine: end-to-end neural nested event

extraction from biomedical texts. Bioinformatics 36, 4910–4917.

26. Zuo, M., and Zhang, Y. (2020). Dataset-aware multi-task learning ap-

proaches for biomedical named entity recognition. Bioinformatics 36,

4331–4338.

27. Lee, C., Cho, K., and Kang, W.M. (2020). Effective regularization to fine-

tune large-scale pretrained language models. In Proc. of ICLR.

OpenReview.net https://openreview.net/forum?id=HkgaETNtDB.

28. Pruksachatkun, Y., Phang, J., Liu, H., Htut, P.M., Zhang, X., Pang,

R.Y., Vania, C., Kann, K., and Bowman, S.R. (2020). Intermediate-

task transfer learning with pretrained language models: when and

why does it work? In Proc. of ACL. Online: Association for
10 Patterns 4, 100729, April 14, 2023
Computational Linguistics, pp. 5231–5247. https://doi.org/10.18653/

v1/2020.acl-main.467. https://aclanthology.org/2020.acl-main.467.

29. Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Zhao, T. (2020). SMART:

Robust and efficient fine-tuning for pre-trained natural language models

through principled regularized optimization. In Proc. of ACL. Online:

Association for Computational Linguistics, pp. 2177–2190. https://doi.

org/10.18653/v1/2020.acl-main.197. https://aclanthology.org/2020.acl-

main.197.

30. Zhu, C., Cheng, Y., Gan, Z., Sun, S., Goldstein, T., and Liu, J.J.F. (2020).

Enhanced adversarial training for natural language understanding. In Proc.

of ICLR https://www.microsoft.com/en-us/research/publication/freelb-

enhanced-adversarial-training-for-natural-language-understanding/.

31. Cheng, H., Liu, X., Pereira, L., Yu, Y., and Gao, J. (2021). Posterior differ-

ential regularization with f-divergence for improving model robustness. In

Proc. of NAACL-HLT. Online: Association for Computational Linguistics,

pp. 1078–1089. https://doi.org/10.18653/v1/2021.naacl-main.85. https://

aclanthology.org/2021.naacl-main.85.

32. Schick, T., and Sch€utze, H. (2021). It’s not just size that matters: small lan-

guage models are also few-shot learners. In Proc. of NAACL-HLT. Online:

Association for Computational Linguistics, pp. 2339–2352. https://doi.org/

10.18653/v1/2021.naacl-main.185.

33. Gao, T., Fisch, A., and Chen, D. (2021). Making pre-trained language

models better few-shot learners. In Proc. of ACL-IJCNLP (Volume 1:

Long Papers) (Online: Association for Computational Linguistics),

pp. 3816–3830. https://doi.org/10.18653/v1/2021.acl-long.295.

34. Tinn, R., Cheng, H., Gu, Y., Usuyama, N., Liu, X., Naumann, T., Gao, J.,

and Poon, H. (2023). microsoft/BiomedNLP-PubMedBERT-large-un-

cased- abstract: v0.1. Preprint at Zendo. https://doi.org/10.5281/zen-

odo.7627342.

35. Tinn, R., Cheng, H., Gu, Y., Usuyama, N., Liu, X., Naumann, T., Gao, J.,

and Poon, H. (2023). microsoft/BiomedNLP-PubMedELECTRA-base-un-

cased- abstract: v0.1. Preprint at Zendo. https://doi.org/10.5281/zen-

odo.7739298.

36. Tinn, R., Cheng, H., Gu, Y., Usuyama, N., Liu, X., Naumann, T., Gao, J.,

and Poon, H. (2023). microsoft/BiomedNLP-PubMedELECTRA-large-un-

cased- abstract: v0.1. Preprint at Zendo. https://doi.org/10.5281/zenodo.

7739305.

37. Li, J., Sun, Y., Johnson, R.J., Sciaky, D., Wei, C.-H., Leaman, R., Davis,

A.P., Mattingly, C.J., Wiegers, T.C., and Lu, Z. (2016). Biocreative v cdr

task corpus: a resource for chemical disease relation extraction.

Database. 2016.

38. Do�gan, R.I., Leaman, R., and Lu, Z. (2014). Ncbi disease corpus: a

resource for disease name recognition and concept normalization.

J. Biomed. Inf. 47, 1–10.

39. Smith, L., Tanabe, L.K., Ando, R.J.n., Kuo, C.-J., Chung, I.-F., Hsu, C.-N.,

Lin, Y.-S., Klinger, R., Friedrich, C.M., Ganchev, K., et al. (2008). Overview

of biocreative ii gene mention recognition. Genome Biol. 9, S2.

40. Kim, J.-D., Ohta, T., Tsuruoka, Y., Tateisi, Y., and Collier, N. (2004).

Introduction to the bio-entity recognition task at JNLPBA. In Proc. of

NLPBA/BioNLP Workshop (Geneva, Switzerland: COLING), pp. 73–78.

https://www.aclweb.org/anthology/W04-1213.

41. Nye, B., Li, J.J., Patel, R., Yang, Y., Marshall, I.J., Nenkova, A., and

Wallace, B.C. (2018). A corpus with multi-level annotations of patients, in-

terventions and outcomes to support language processing for medical

literature. In Proc. of ACL (NIH Public Access), p. 197. 2018.

42. Krallinger, M., Rabal, O., Akhondi, S.A., Pérez, M.P., Santamarı́a, J.,
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