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Development and validation of
cuproptosis-related gene
signature in the prognostic
prediction of liver cancer
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and Lianjun Ma1*

1Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China, 2Herbert
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Liver cancer is a generic term referring to several cancer types arising from the

liver. Every year, liver cancer causes lots of deaths and other burdens to the

people all over the world. Though the techniques in the diagnosis and therapy

of liver cancer have undergone significant advances, the current status of

treating liver cancer is not satisfactory enough. The improvement of techniques

for the prognosis of liver cancer patients will be a great supplement for the

treatment of liver cancer. Cuproptosis is a newly identified regulatory cell death

type, which may have a close connection to liver cancer pathology. Here, we

developed a prognostic model for liver cancer based on the cuproptosis-

related mRNAs and lncRNAs. This model can not only effectively predict the

potential survival of liver cancer patients, but also be applied to evaluate the

infiltration of immune cell, tumor mutation burden, and sensitivity to anti-

tumor drugs in liver cancer. In addition, this model has been successfully

validated in lots of liver cancer patients’ data. In summary, we wish this model

can become a helpful tool for clinical use in the therapy of liver cancer.

KEYWORDS
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Introduction

Liver cancer is one of the major cancer types and among the most malignant liver

diseases around the world (1–5). Liver cancer comprises several sub-types, including

hepatocellular carcinoma (the most common type of liver cancer), cholangiocarcinoma,

hepatoblastoma, and angiosarcoma (1). Liver cancer causes great healthy and economic

burdens to the people and the society of both developed and underdeveloped area.

According to the estimation of epidemiologists, there were about 905,677 new cases of

liver cancer and 830,180 new deaths caused by it (2). In the US, although liver cancer is
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not among the top 10 cancer types regarding the estimated new

cases in 2022, it may cause more than 30,000 deaths in the same

year, which ranks 5th in all the cancer types (6). Albeit the

dramatic development in the diagnosis and treatment of liver

cancer in the past decades, its mortality increases rapidly,

partially due to the change of environment, life style, and

dietary habit (1, 7, 8). For scientific and clinical researchers,

elucidating the underlying mechanism for the initiation and

development of liver cancer is a crucial and long-term task. In

the meantime, development of novel prognostic biomarker for

liver cancer patients will greatly benefit their treatments (1, 9).

For the somatic cells in mammalian life, the equilibrium

between cell death and proliferation is of vital importance. To

achieve a concerted life circle, human cells “master” multiple

regulated cell death (RCD) modalities (including apoptosis,

ferroptosis, necroptosis, and pyroptosis) evolutionally (10).

During normal development, these RCDs cooperate with each

other to orchestrate a suitable rate of cell turnover in different

organs. In addition, these RCDs also function in dealing with

various inner or environmental stresses. From a clinical

perspective, these RCDs have been demonstrated to be

involved with a wide range of disease processes, including

organ injury, immune system dysfunction, neurodegenerative

disorder, and particularly tumor (10). Identifying novel RCD

type will not only deepen our understanding of the human cell,

but also create new therapeutic opportunity for lots of diseases,

including liver cancer. Cuproptosis is a quite recently discovered

RCD mode, which is characterized by unique features different

from other RCDs mentioned above (11). Cuproptosis is caused

by copper-induced aggregation of lipoylated proteins in TCA

cycle. The data in the seminal paper suggested that cuproptosis

may participate in the modulation of various diseases, including

cancer. Whether cuproptosis is associated with liver cancer has

not been investigated. However, it is of evident significance to

explore the potential link between liver cancer and cuproptosis

(and essential genes underlying it).

Long non-coding RNA (lncRNA) is one of the research

hotspots in these years (12). This is a family of RNAs with

diverse lengths, localizations, structures, and functions. The

dysregulation of lncRNAs have been demonstrated to be

involved in the progression of various tumor types, including

liver cancer (13). These lncRNAs can not only be therapeutic

targets in liver cancer treatment, but may also constitute unique

expression profiles to indicate distinct characteristics of liver

cancer, including the malignant stage, the sensitivity to

therapeutics, and the prognosis of patients (14). Particularly,

differential lncRNA expression profiles can be established based

on specific cellular processes. Constructing a solid lncRNA

signature in the context of a crucial activity in liver cancer cell

will be of great use for predicting the development of liver cancer

in patients.

In this study, we leveraged our current knowledge about liver

cancer, cuproptosis, and lncRNA to construct a novel prognostic
Frontiers in Oncology 02
model based on cuproptosis-related lncRNAs and mRNAs in

liver cancer. This model fits well with diverse pathologic

parameters of liver cancer. Moreover, this model has been

successfully validated by using a batch of patients’ data. We

believe that, this model can be beneficial to the prognosis of liver

cancer patients.
Materials and methods

Microarray data

We obtained the gene expression profile, survival

information and clinical characteristics of liver cancer patients

from TCGA database (https://cancergenome.nih.gov/). A total

of 424 samples were used in this study, including 374 liver cancer

samples and 50 non-tumor tissues. The mRNAs related to

cuproptosis obtained from previous literatures are summarized

in Table S1 (11, 15–19). Pearson correlation analysis was used to

identify cuproptosis-related lncRNAs, and the co-expression

networks of lncRNAs-mRNAs were established and visualized

with R package “ggalluvial”.
Construction of cuproptosis-related
prognostic signature for liver cancer

Univariate Cox regression analysis was used to screen

cuproptosis-related mRNAs and lncRNAs that were closely

associated with survival. Subsequently, mRNAs and lncRNAs

with statistically significant difference (p<0.01) in univariate Cox

regression analysis were selected for multivariate Cox regression

analysis to determine the potential optimal cuproptosis-related

prognostic genes. Based on the prognostic potential and the

regression coefficient, the 9-gene signature was finally developed.

Next, risk score is calculated according to the formula: Risk score =

(exprgene1 × Coefgene1) + (exprgene2 × Coefgene2) + … +

(exprgenen × Coefgenen).
Evaluation of the 9-gene signature
including 3 mRNAs and 6 lncRNAs

Median of risk score is used to divide patients into two

groups (high and low risk, respectively). Kaplan-Meier survival

analysis was performed with “survival” and “survminer” R

software packages. ROC curve was performed to calculate the

area under the curve (AUC) to evaluate the diagnostic value of

the 9-gene signature. Then, C-index curve were used to estimate

the model accuracy.
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Construction of nomogram

We used the clinical features (including age, gender, grade and

stage) to establish nomograms for predicting survival in patients

with liver cancer. In addition, to assess the consistency between

predicted and actual survival, calibration curves were drawn.
Correlation analysis between distinct
groups and clinical characteristics

To further explore the correlation between risk scores and

clinical characteristics, the distribution of clinicopathological

features in differential groups was displayed by R software

package “pheatmap”.
Validation of the model in GEO dataset
Fron
1. Spearman correlation analysis was used to screened

mRNAs correlated with 9 signature genes (coefficients

> 0.40, p < 0.001).

2. Differential expression analysis was performed to

classify mRNAs into gene up-regulated cluster A and

down-regulated cluster B.

3. The Gene set variation analysis (GSVA) was employed

to calculate enrichment score of cluster A and cluster B.

Then, we calculated RS score equivalent to subtraction

of the enrichment score of cluster B from the

enrichment score of cluster A.

4. After calculating the RS scores in each GEO sample,

Kaplan-Meier curve was used to evaluate the difference

of OS between high RS score group and low RS score

group.
Enrichment functional analysis

We first determined the expression of a set of differentially

expressed genes (DEGs) containing mRNAs and lncRNAs

between the high-risk group and the low-risk group. The

cutoff criteria were FDR < 0.05 and |logFC| > 1. Then go

function enrichment analysis and KEGG pathway analysis

were performed for DEGs.
Immune-related functional analysis

To explore the relationship between risk scores and

infiltration of immune cell, we quantified the abundance of
tiers in Oncology 03
immune cells in the two risk groups using algorithms such as

TIMER, CIBERSORT, and others. In addition, the ssGSEA

algorithm was applied to assess the immune-related functions

in two risk groups. Besides, referring to existing studies, the

expression level of immune checkpoint related genes may be

correlated to the clinical efficacy of immune checkpoint inhibitor

blockade therapy (20). Therefore, the correlation between risk

scores and immune checkpoints was also studied.
Relationship between hypoxia-related
genes and risk score

Hypoxia can regulate TCA cycle and may involve in

cuproptosis initiation (21). Therefore, we studied the

correlation between expression of hypoxia related genes and

risk score.
Analysis of tumor mutation burden and
drug sensitivity

According to the somatic mutation data of each tumor, TMB

was calculated as the mutation bases per million bases. The

maftools package was used to aggregate and visualize mutation

data and evaluate the relationship between risk score and Tumor

mutation burden (TMB). Tumor immune dysfunction and

Exclusion (TIDE) algorithm was used to predict the immune

response. Next, the “pRRophetic” software package of R software

was used to evaluate the sensitivity of chemotherapy drugs with

the half maximum inhibitory concentration (IC50).
Results

Identification of cuproptosis-related
LncRNAs and construction of the
9-gene signature

The flowchart of the research is shown in Figure 1. Firstly, 980

cuproptosis-related lncRNAs were identified from 16,773 lncRNAs

based on the filtering criteria of a correlation coefficient <0.4 and p <

0.001. The co-expression relationship between cuproptosis-related

lncRNAs and cuproptosis-related mRNAs was shown using Sankey

diagram (Figure 2A). In the TCGA set, univariate Cox regression

analysis was used to screen 249 prognostic genes including mRNAs

and lncRNAs associated with cuproptosis from the 999

cuproptosis-related genes. Performing Lasso Cox regression

analysis and multivariate Cox regression analysis on the TCGA

set, we identified robust 9 cuproptosis-related genes containing 3

mRNAs and 6 lncRNAs. The correlation between 6 screened

lncRNAs and cuproptosis-related genes was shown in the

correlation heatmap and network diagram (Figures 2B, C). As a
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result, the risk score model was constructed as follows: risk score =

(-0.1369×ATP7A expression) + (0.0174×DLAT expression) +

(-0.0124×GLS expression) + (0.2669×POLH-AS1 expression) +

(0.0868×AL117336.2 expression) + (0.3621×MKLN1-AS

expression) + (0.2207×AC005479.2 expression) + (0.1527×

AL928654.1 expression) + (0.1200×AL031985.3 expression).
Evaluation of the 9-gene signature

Patients in the TCGA cohort were divided into low-risk and

high-risk subgroups according to the median risk score. The

overall survival rate (OS) of low-risk group was significantly

lower than that of high-risk group (Figure 3A). In order to study

the prediction accuracy of this 9-gene signature, we conducted a

time-dependent ROC analysis (Figures 3B, C). Besides, compared

with other variables, the risk score (AUC = 0.791) was a better

predictor than other clinical traits, such as age (AUC = 0.506),

gender (AUC = 0.507), grade (AUC = 0.477) and stage (AUC =

0.685). The area under the ROC curve (AUC) of OS was 0.791 at 1

year, 0.732 at 2 years and 0.729 at 3 years, indicating the 9-gene

signature had a good prognostic prediction efficacy. Next, we
Frontiers in Oncology 04
constructed a C-Index curve of risk score and clinical traits (age,

gender, and stage), and the results showed the consistency of risk

score was higher than that of the clinical traits (Figure 3D). In

addition, the distribution of patient risk score, survival status and

the 9 genes expression profiles were shown in Figures 3E–G.
Construction and validation of
the nomogram

A nomograph model including risk score, age, gender, grade,

and stage was constructed to predict the 1-, 3- and 5-years OS of

liver cancer patients by calculating the nomograph score based

on the point scale (Figure 4A). The calibration curve of

nomogram showed that there was a good consistency between

the predicted results and the observed results (Figure 4B).
The correlation between risk score and
different clinicopathological factors

In order to clarify the clinical significance of risk score, the

correlation between risk score and major clinicopathological
FIGURE 1

Workflow of the study design.
B CA

FIGURE 2

Screening of prognosis-related genes. (A) Sankey diagram of the associations between between cuproptosis-related lncRNAs and mRNAs. (B)
The correlation heatmap of 6 screened lncRNAs and cuproptosis-related genes. (C) The network diagram of 6 screened lncRNAs and
cuproptosis-related genes.
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variables such as gender, age, grade, and pathological stage were

analyzed. As showcased in Figure 4C, the clinical grade and T

stage of liver cancer patients in the high-risk group was later

than that in the low-risk group, suggesting a worse prognosis

than the low-risk group.
Validation of cuproptosis-related risk
model in GEO dataset

Since there are no corresponding lncRNAs in other data sets,

it is difficult to verify the performance of the risk model.

Therefore, we calculated the RS scores in TCGA and

GSE144269. There was a strongly correlation between risk
Frontiers in Oncology 05
score and RS score in TCGA dataset (p-value = 1.016 * 10-5),

indicating that the RS score can be used as an alternative scoring

model for risk score. The result of Kaplan–Meier (KM) survival

analysis showed the 9-gene signature exhibited good prognostic

performance (Figure 4D).
Functional enrichment analysis

We performed GO (Figure 4E) and KEGG (Figure 4F)

pathway analysis on genes of differentially expressed lncRNAs

and mRNAs in two risk groups. In BP (biological processes)

category, cell division related activity including nuclear division
B

C

D

E

F

G

A

FIGURE 3

Establishment and evaluation of the 9-gene signature. (A) Kaplan-Meier survival analysis of liver cancer patients in the high-risk and low-risk
groups. (B) Time dependent ROC curves of overall survival at 1, 2- and 3- years. (C) ROC curves of risk score for clinical features in liver cancer
patients. (D) The C-index curve analyzes the consistency index of risk score. (E–G) The distribution of risk score, survival status, and 9-gene
expression profiles for each liver cancer patient.
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(GO:0000280), organel le fission (GO:0048285) and

chromosome segregation (GO:0007059) were significantly

enriched. In CC (cellular components) category, the

differentially expressed genes were involved in chromosomal

region (GO:0098687), centromeric region (GO:0000775),

condensed chromosome (GO:0000793), kinetochore

(GO:0000776) and spindle (GO:0005819). In MF (molecular

functions) category, DEGs were enriched in enriched in DNA-

related activities, such as single-stranded DNA helicase activity

(GO:0017116), ATP-dependent activity (GO:0008094) and

DNA helicase activity (GO:0003678). KEGG pathway analysis

showed that differentially expressed genes were mainly enriched

in Cell cycle (hsa04110), DNA replication (hsa03030), and p53

signaling pathway (hsa04115), etc. In summary, the results of the

enrichment analysis showed the 9-gene signature was closely

associated with cell proliferation.
Frontiers in Oncology 06
Immune-related functional analysis

Immune cell infiltration is a crucial component of tumor

microenvironment, which is strongly related to tumor behavior

and patient prognosis (22, 23). Several algorithms (TIMER,

XCELL, QUANTISEQ, MCPCOUNTER, CIBERSORT,

CIBERSORT-ABS and EPIC) were used to study the

correlation between the infiltration of various immune cells

and risk score and the results were shown in Figure 5A. In the

ssGSEA, the immune status of low-risk group was relatively

higher than that of high-risk group (Figure 5B). In addition, we

found that the high risk group showed a higher expression level

of immune checkpoint genes, thus indicating a better response to

immunotherapy (Figure 5C). In conclusion, these results

suggested that the 9-gene signature was related to immune cell

infiltration to some extent.
B

C

D

E

F

A

FIGURE 4

Nomogram, calibration curves and functional enrichment analysis. (A) Nomograms predicting 1-year, 3-year and 5-year OS for patients with
liver cancer. (B) Nomogram model calibration curve. (C) Heatmap displaying expression profile of the 9 genes and correlation between clinical
features and risk score. (D) Results of Kaplan-Meier analysis for the different RS score groups in GEO dataset. (E) Results of GO enrichment
analyses. (F) Results of KEGG enrichment analyses.
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Relationship between hypoxia-related
gene and risk score

Since there may be a close relationship between hypoxia and

cuproptosis, we studied the expression of hypoxia related genes

in the two risk groups. The majority of the hypoxia-related

genes, such as LXN, HAS1, AKAP12, and ETS1, were significant

upregulated in the high risk group than in the low risk group

(p<10-10) (Figure 5D). Based on the above results, we considered

there were relations between cuproptosis and hypoxia in liver

cancer, and specific clinical trials are needed, to further test

this hypothesis.
Analysis of tumor mutation burden and
drug sensitivity

The somatic mutation data of liver cancer patients were

downloaded from the TCGA database and visualized using the

“maftools” R software package. The results showed the mutation

frequency in high-risk group was higher than that in low-risk

group (77.35% vs. 68.89%), and in high risk group, mutation rate

of TP53 was dramatically higher than that in low risk group

(36% vs 16%) (Figures 6A, B). In addition, we studied the

difference of tumor mutation burden between high-risk group
Frontiers in Oncology 07
and low-risk group, and the result showed the high risk score

group had significant higher tumor mutation burden than the

low risk group (p<0.05) (Figure 6C). As shown in the Figure 6D,

the high TMB group had a better prognosis than low TMB

group. Then, we further combined risk score and TMB to

evaluate the prognosis of liver cancer patients, and we found

the overall survival rate of low TMB and low-risk group was the

best, and that of high TMB and high-risk group was the worst

(Figure 6E). In addition, the sensitivity difference of

immunotherapy between high-risk group and low-risk group

was further studied based on TIDE algorithm. We found that the

TIDE level was higher in the low-risk group than in the high-risk

group, indicating that patients in the high-risk group had a lower

possibility of immune escape, and better immunotherapy

(Figure 6F). Finally, we used the R software package

pRRophetic to analyze the half maximum inhibitory

concentration (IC50) of some chemotherapeutic drugs

commonly in two risk groups. AICAR (Figure 6G) and

AMG.706 (Figure 6H) were more effective in the low-risk

group, while AG.014699 (Figure 6I) and A.443654 (Figure 6J)

were more efficacious in the high-risk group (p<10-11).

At last, we attempted to compare our 9-gene signature with

other previously published cuproptosis-related prognostic

models in liver cancer, but there is rare paper in this field. Our

model may initiate research in this field.
B

C

D

A

FIGURE 5

Immune-related functional analysis. (A) The landscape of immune infiltration in two risk groups for liver cancer patients. (B) Boxplot visualizing
differentially immune functions. “ns” stands for not significant. (C) Comparisons of immune checkpoints between the two risk groups in liver
cancer patients. *p < 0.05; **p < 0.01; ***p < 0.001. (D) Comparison of the expression of hypoxia-associated genes between the two risk
groups in liver cancer patients. *p < 0.001. ns, not significant.
frontiersin.org

https://doi.org/10.3389/fonc.2022.985484
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.985484
Discussion

Copper is an essential mineral for human health (24). The fact

that dysregulation of copper level will cause damage to the normal

cell life has been known for a long time. The discovery of

cuproptosis makes an interesting and important explanation for

this phenomenon (25). Although the field of cuproptosis is just in

its infancy, it is reasonable to speculate that this cell death mode

has tight correlation with human diseases, including liver cancer.

There are two basic elements for the initiation of cuproptosis:

copper and lipoylated protein. About the first element, liver is the

central organ for the metabolism of copper (26, 27). For the

lipoylated proteins, most of them function in the TCA cycle in

the mitochondrion. To avoid cuproptosis, these two elements must

be maintained in check. In liver cancer cell, dysregulation of the

normal gene regulatory network is a major hallmark, which applies

to the essential genes associated with copper metabolism and TCA

cycle (28, 29). It will not be surprising that liver cancer cell may be

one of the major sites where cuproptosis happens. We believe that

in the near future, the regulation and the pathologic relevance of

cuproptosis will be revealed in liver cancer. Before that, if we can

utilize the key genes in cuproptosis to make a prognostic model for

liver cancer patient, this will accelerate the translation of this field

to clinical practice, which also applies to other tumor types (30).
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Given the severe threat of liver cancer to human society, much

more efforts are needed to figure out the etiology and pathogenesis

of liver cancer and develop effective therapeutics to treat it. In the

meantime, advances in the diagnosis and prognosis techniques for

liver cancer are of urgent demand. In this study, we leveraged the

lncRNA and mRNA associated with cuproptosis to make a novel

prognostic signature for liver cancer. In this model, we

incorporated 6 lncRNAs (POLH-AS1, AL117336.2, MKLN1-AS,

AC005479.2, AL928654.1, and AL031985.3) and 3 mRNAs

(ATP7A, DLAT, and GLS) after a stringent selection process

(Figures 1, 2). Our model exhibits an effective application in the

prognosis of liver cancer patient (Figures 3, 4). Our model is

capable of reflecting several major hallmarks (including the

immune cell infiltration and TMB) of liver cancer (Figures 5, 6).

This model also satisfactorily passed the validation procedure. The

inclusion of the 3 mRNAs is an advantage of our model compared

with those only analyze lncRNA. These proteins encoded by the 3

mRNAs are closely related to the induction of cuproptosis.

ATP7A is a copper exporter, which is essential for the

homeostasis of intracellular copper level (31). Mutation of

ATP7A is demonstrated to be associated with Menkes disease,

occipital horn syndrome, and X-linked distal spinal muscular

atrophy (32). It will be interesting to investigate whether there is

liver cancer-related mutation in ATP7A gene and if so, whether
B C

D E F

A

G H I J

FIGURE 6

The relationship between TMB and the 9-gene signature. (A, B) The oncoplots of the mutation genes in liver cancer patients for the high-risk and
low-risk groups. (C) Higher TMB levels correlated with high-risk group. (D) Higher TMB level demonstrated poorer OS. (E) Kaplan-Meier curves for
patients by both risk score and TMB. (F) Higher TIDE levels correlated with low-risk group. (G-J) Drug sensitivity analysis. ***p < 0.001.
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this mutation will affect cuproptosis and liver cancer development.

DLAT is an important subunit of the PDH complex and also one

of the major substrates for cuproptosis (33). A recent study found

that the DLAT level in hepatocellular carcinoma was influenced

by blueberry malvidin-3-galactoside and 5-fluorouracil (34). This

may establish links between cuproptosis and intestinal microbiota

and chemotherapy of liver cancer. GLS, as a mitochondrial

glutaminase, which hydrolyzes glutamine to glutamate, has a

close relationship with liver cancer progression (35, 36). Huang

et al. revealed that GLS along with PDH complex was important

in liver cancer metabolism and autophagy, which might be the

underlying mechanism for the chemo-resistance of liver cancer

cell (37). Whether cuproptosis participates in the regulation of

sensitivity to chemotherapy of liver cancer cell needs to be clarified

in the future. For these lncRNAs, several of them have been linked

with other RCDs like ferroptosis (POLH-AS1, MKLN1-AS,

AL928654.1, and AL031985.3) and pyroptosis (MKLN1-AS,

AC005479.2, and AL031985.3) in liver cancer (38–41). Their

involvement with cuproptosis suggests there may be molecular

relevance between those distinct RCDs. In fact, these RCDs do

share similar mechanism of initiation (for example, ROS triggers

apoptosis and ferroptosis), regulator (like Caspases in apoptosis,

pyroptosis, and necroptosis; metal ion in ferroptosis and

cuproptosis), and function (for example, apoptosis, ferroptosis,

and pyroptosis all modulate immune activity) (10, 11). We wish

future researches will shed more light on the link between these

different RCDs. Moreover, POLH-AS1, AC005479.2 and

AL928654.1 have been found to involve immune response in

papillary thyroid cancer and hepatocellular carcinoma,

respectively (42–44). Our model not only incorporates these two

lncRNAs, but also expand this list of immune-associated lncRNAs

in liver cancer to other 4 lncRNAs. AL117336.2 is a novel lncRNA

with little study to date. It is worthy to explore its potential role in

liver cancer and cuproptosis in the future. As hypoxia can

dramatically influence TCA cycle and mitochondrion function,

our results may reveal a link between hypoxia and cuproptosis in

liver cancer (Figure 5D) (21). Another interesting result about our

model is its correlation with TMB in liver cancer, which is related

to the sensitivity of liver cancer cell to several chemotherapeutic

drugs (Figure 6). A notable point is the mutual exclusiveness or

co-occurence of p53 mutation and mutations of other genes. p53

here is of vital pathological relevance, not only because it is among

the most important tumor suppressor genes, but also that it is a

master regulator of several RCDs, including apoptosis, ferroptosis,

and pyroptosis (45–47). p53 also has vital role in regulating TCA

cycle (45). It should be one major direction to study whether p53

can regulate cuproptosis or not in liver cancer.

To sum up, we established an effective prognostic signature

in liver cancer based on cuproptosis-related lncRNAs and

mRNAs. We believe that this work will not only benefit the

liver cancer patient in clinical use, but also make useful

suggestions for the research field of cuproptosis. We wish in

the near future, there will be great advances in researches about
Frontiers in Oncology 09
cuproptosis in liver cancer, based on which we can validate and

improve our model to make it more accurate and efficient.
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