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SUMMARY

Neutralization of tumor necrosis factor (TNF) represents a widely used therapeutic strategy for 

autoimmune diseases including inflammatory bowel disease (IBD). However, the fact that many 

patients with IBD are non-responsive to anti-TNF therapies suggests the need for a better 

understanding of TNF signaling in IBD. Here, we show that co-deletion of TNF receptor 1 

(TNFR1, Tnfrsf1a) in the Il10−/− spontaneous colitis model exacerbates disease, resulting in very-

early-onset inflammation after weaning. The disease can be interrupted by treatment with 

antibiotics. The single deletion of TNFR1 induces subclinical colonic epithelial dysfunction and 

mucosal immune abnormalities, including accumulation of neutrophils and depletion of B cells. 

During the pre-disease period (before weaning), both Tnfr1−/− and Il10−/− Tnfr1−/− animals 

exhibit impaired expression of pro-inflammatory cytokines compared with wild-type and Il10−/− 
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controls, respectively. Collectively, these results demonstrate the net anti-inflammatory functions 

of TNF/TNFR1 signaling through the regulation of colonic immune homeostasis in early life.

Graphical Abstract

In Brief

Although anti-TNF therapies are used to treat colitis, Liu et al. demonstrate that colitis-susceptible 

mice deficient for TNF receptor 1 (TNFR1) paradoxically develop severe disease shortly after 

weaning. TNFR1 function can be traced back to its mediation of pro-inflammatory responses 

during a critical period of immune development in early life.

INTRODUCTION

The global incidence of inflammatory bowel disease (IBD) has increased steadily, especially 

in children under the age of 10 years (Benchimol et al., 2014; Kappelman et al., 2013; 

Schildkraut et al., 2013). A combination of host genetics, environmental exposures, 

intestinal mucosal dysfunction, and microbial dysbiosis contributes to IBD pathogenesis 

(Jostins et al., 2012). Although diverse genes and pathways regulate IBD susceptibility, their 

roles in immune development in early life and the biological mechanisms linking them to 

intestinal inflammation remain to be elucidated.

Tumor necrosis factor (TNF, formerly known as TNF-α) is a major therapeutic target in 

IBD. Pediatric patients with IBD have elevated circulating and intestinal levels of TNF 

(Breese et al., 1994; Murch et al., 1991). Recent genome-wide association studies (GWAS) 
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have identified mutations in the TNF signaling pathway to confer risk for both ulcerative 

colitis and Crohn’s disease (Bank et al., 2014; Ferguson et al., 2009; Lappalainen et al., 

2008; Li et al., 2016; McGovern et al., 2015; Pierik et al., 2004; Sashio et al., 2002; 

Waschke et al., 2005). The immediate therapeutic benefits of anti-TNF agents have 

suggested that TNF is a pro-inflammatory cytokine responsible for mucosal damage in IBD. 

However, the therapeutic effects of anti-TNF agents are short lived for many (Ben-Horin et 

al., 2014; Colombel et al., 2007; Ford et al., 2011; Schreiber et al., 2007). In mice, deletion 

of TNF or either of its transmembrane receptors, TNFR1 (p55) and TNFR2 (p75) (encoded 

by the Tnfrsf1a and Tnfrsf1b genes, respectively), has differing effects on disease 

susceptibility in established colitis models (Dubé et al., 2015; Ebach et al., 2005; Mizoguchi 

et al., 2008; Wang et al., 2012; Wang et al., 2013). Strikingly, loss of TNF-signaling-

pathway members Tnf (Hale and Greer, 2012) or Tnfr2 (Punit et al., 2015) results in severe 

disease in the Il10−/− spontaneous colitis model (Kühn et al., 1993). By ablating a critical 

tolerogenic signal, interleukin 10 (IL-10), the Il10−/− model replicates key features of 

Crohn’s colitis, including the developmental dynamics of disease. However, the role of 

TNFR1 in the susceptibility to Il10−/− colitis has not, to our knowledge, been elucidated. It 

is not known whether TNFR1, on balance, would mediate the beneficial or deleterious 

effects of TNF signaling.

Here, we report severe, very-early-onset (VEO) colitis in Il10−/− Tnfr1−/− mice. 

Paradoxically, the early disease onset was preceded by impaired expression of pro-

inflammatory cytokines during the period of life before weaning. TNFR1-mediated 

signaling in early life is, therefore, essential for the acquisition of mucosal tolerance.

RESULTS

Very-Early-Onset Colitis in Il10−/− Tnfr1−/− Mice

To characterize the role of TNFR1 in an animal model of spontaneous colitis, we bred 

Tnfr1−/− mice (Pfeffer et al., 1993) to Il10−/− mice (Kühn et al., 1993) to generate double-

knockout animals. Consistent with previous reports (Bristol et al., 2000; Farmer et al., 2001; 

Mähler et al., 2002), Bl/6 Il10−/− mice are relatively resistant to colitis. Il10−/− Tnfr1−/− 

mice, however, developed severe, spontaneous, early-onset colitis, with a mixed mucosal 

infiltrate, cryptitis, abscesses, and epithelial hyperplasia. Although Il10−/− Tnfr1−/− animals 

at 2 (n = 8; Figures 1A and 1B) and 3 (n = 4, not shown) weeks old were spared colitis, 

whereas, at 4 weeks old, 8/13 (62%) of the Il10−/− Tnfr1−/− mice had histologic evidence of 

colitis (Figures 1C and 1D) (median histologic disease score: 7/15). At 6 weeks old, 4/7 

(57%) of the Il10−/− Tnfr1−/− mice were colitic, and by 8 weeks old, 11/12 (92%) of the 

Il10−/− Tnfr1−/− mice had colitis (median histologic disease score: 8/15). Littermate Il10−/− 

mice had minimal disease (Figure 1E); moreover, heterozygous Il10−/− Tnfr1+/− littermates 

were spared severe disease and early mortality. Only 50% of Il10−/− Tnfr1−/− mice survived 

to 12 weeks old (Figures 1F, S1A, and S1B); their colons demonstrated increased RNA 

expression of cytokines, including Tnf (Figure 1G, from the NanoString assay) and 

increased crypt cell proliferation (phosphorylated histone H3 [pH-H3+] cells; Figure 1H) 

and apoptosis (TUNEL+ cells; Figure 1I). The disease affected the entire colon and cecum, 

resulting in serrated adenocarcinoma (Figure S1C), and retarded growth in both males and 
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females (Figure S1D). This disease is, therefore, different from colitis in Il10−/− Tnfr2−/− 

mice, in which the cecum was not involved (Punit et al., 2015).

Because TNF signaling has integral roles in immune cell activation and specialization, we 

hypothesized that the loss of TNFR1 altered the relative proportions of the immune cells in 

colitis. We analyzed distal colonic mucosal scrapings by flow cytometry with a panel of 13 

immune-cell-targeted antibodies (Figure S2) (Yu et al., 2016). Adult (8-week-old) Il10−/− 

Tnfr1−/− specimens showed elevated numbers of CD45+ (hematopoietic origin) cells 

compared with age- and litter-matched Il10−/− mice (Figure 1J), suggestive of increased 

immune cell infiltration into the mucosa. Within the CD45+ cell population, the relative 

proportions of neutrophils and activated CD4+ T cells were increased compared with those 

of the controls. However, several cell types showed a proportional reduction in the Il10−/− 

Tnfr1−/−animals: B cells, intraepithelial lymphocytes, dendritic cells, and macrophages 

(Figure 1K). Thus, the loss of TNFR1 results in a fundamental imbalance of immune cell 

subtypes in the context of inflammation.

To determine whether TNFR1 expression protected from colitis in a general setting of IL-10 

signaling inhibition, we assessed the susceptibility of Tnfr1−/− mice to colitis induced by 

repetitive administration of anti-IL-10 receptor-targeted antibodies (Figure S3A) (Carvalho 

et al., 2012; Kullberg et al., 2006; Singh et al., 2016). Antibody-injected Tnfr1−/− (knockout) 

mice exhibited crypt loss and mucosal immune infiltration, hallmarks of colitis, whereas 

antibody-injected Tnfr1+/− (heterozygous) mice were relatively protected from colitis 

(Figure S3B), as assessed histologically (Figure S3C). Thus, TNFR1 restricts colitis 

associated with the loss of IL-10 signaling.

Antibiotics Induce Remission of Colitis

Because IBD is thought to represent an abnormal immune reaction against gastrointestinal 

commensals, we tested whether antibiotics would alter the severe colonic injury observed in 

Il10−/− Tnfr1−/− mice. We treated 8-week-old Il10−/− Tnfr1−/− mice with neomycin and 

metronidazole for 2 weeks. Distal colonoscopy performed before and immediately after 

treatment showed resolution of the disease in the antibiotic-treated group (Figure 2A) 

compared with the vehicle-treated controls (p = 0.0043; Figure 2B). The difference in 

outcomes was apparent histologically (p = 0.0042; Figures 2C and 2D) and was associated 

with reduced numbers of pH-H3+ (proliferative) and cleaved caspase-3+ (apoptotic) cells 

(Figure 2E). In a mixed cohort of adult Il10−/− (n = 7) and Il10−/− Tnfr1−/− (n = 2) mice, we 

found that antibiotic treatment reduced fecal lipocalin, a marker of neutrophil activity, to 

baseline uninflamed levels (<50 pg/mg stool) within the first week of treatment (Figure 2F). 

Lipocalin levels rebounded within 1 week after antibiotic withdrawal. We noted diarrhea in 

Il10−/− Tnfr1−/− mice, which precluded the comparison of absolute lipocalin levels between 

genotypes. Taken together, these results indicate that disease continuation in Il10−/− Tnfr1−/− 

mice requires neomycin/metronidazole-sensitive commensals and that colonic epithelial and 

neutrophil abnormalities in these mice result from host-microbe interactions.

We next assessed whether the very-early-onset colitis observed in Il10−/− Tnfr1−/− mice was 

due to a distinct microbial ecosystem in early life. Using 16S sequencing, we profiled the 

luminal bacterial composition from the previously presented (Figure 1) cohort of littermate 
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Il10−/− and Il10−/− Tnfr1−/− mice at different ages. Analysis of variance (permutational 

multivariate analysis of variance [PERMANOVA]) showed that microbial composition was 

significantly associated with age (p = 0.001) and dam (p = 0.01) but not genotype (p = 0.22) 

(Figure 2G). The abundances of few operational taxonomic units (OTUs) were significantly 

altered at 2 weeks old, but alterations increased after onset of colitis at 4 weeks old (Figure 

2H). We note that at 2 weeks old, low-abundance Coriobacteriaceae were depleted in Il10−/− 

Tnfr1−/− samples (Figure 2I), consistent with this taxon’s reduced representation in pediatric 

IBD (Maukonen et al., 2015). At 8 weeks old, a qualitative difference in microbiome 

composition was observed (Figure 2G), but that difference was likely secondary to colitis. 

Colitic mice were depleted of Lachnospiraceae, a known producer of butyrate (Figure 2I) 

(Geirnaert et al., 2017; Surana and Kasper, 2017; Vital et al., 2014). Thus, a specific 

commensal signature did not cause exacerbated disease.

We next tested whether treatment of mice with antibiotics during the perinatal period would 

affect the onset of disease. Pregnant Il10−/− Tnfr1+/− dams were exposed to neomycin and 

metronidazole in their final week of pregnancy and up to 7 d postpartum. After treatment, F1 

pups of all genotypes (Il10−/−, Il10−/− Tnfr1+/−, and Il10−/− Tnfr1−/−) remained free of 

disease to at least 16 weeks old (Figure 2J). Heterozygous Il10−/− Tnfr1+/− pups were 

subsequently interbred, and their F2 pups of the Il10−/− Tnfr1−/− genotype exhibited colitis 

at 16 weeks old. Thus, the early onset of colitis in Il10−/− Tnfr1−/− mice can be interrupted 

by maternal treatment with antibiotics.

Colonic Mucosal Dysfunction in Tnfr1−/− Mice

To determine the specific contribution of TNFR1 to the colitic disease process, we analyzed 

the physiological effects of TNFR1 genetic loss in isolation, using Il10+/+ Tnfr1−/− mice (or 

simply Tnfr1−/− mice). The fecal lipocalin levels of Tnfr1−/− mice at 12 weeks old were all 

<50 pg/mg stool (n = 7), suggesting that these mice did not have overt colitis. However, we 

found crypt fission, dropout, and branching (Figure 3A) in foci in 3/7 (43%) Tnfr1−/− mice. 

Moreover, at 4, 8, and 16 weeks old, Tnfr1−/− mice had significantly increased serum 

recovery of enemaadministered fluorescein isothiocyanate (FITC)-dextran (Figure 3B). 

Tnfr1−/− colonic crypts at 4 and 12 weeks old exhibited modestly elevated numbers of 

proliferating pH-H3+ cells (Figure 3C), and crypt abnormalities could also be identified in 4-

week-old mice (Figure 3D; in 4/8 mice). At 12 weeks old, Tnfr1−/− mice had significantly (p 

= 0.03) increased numbers of DNA-damaged phosphorylated histone 2A.X (pH2A.X)-

positive epithelial cells and phosphorylated STAT3-positive epithelial cells (Figure 3E). In 

contrast to Il10−/− Tnfr1−/− mice, intra-crypt staining for cleaved caspase-3 apoptotic bodies 

was not observed in Tnfr1−/− mice (not shown). TNFR1, therefore, regulates colonic 

epithelial function (e.g., morphology, permeability, and DNA-damage signaling) and repair 

(e.g., proliferation and STAT signaling) from a young age.

We also found significant immune defects through flow cytometry. There was a trending 

reduction (p = 0.07) in the total number of mucosal immune cells in 8-week-old Tnfr1−/− 

mice (Figure 3F). Although the proportions of T cells were similar between Tnfr1−/− and 

wild-type mice, the Tnfr1−/− mice showed an ~90% loss of B cells, consistent with prior 

reports of the TNFR1 role in the establishment of germinal centers (Le Hir et al., 1996; 
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Matsumoto et al., 1996; Pasparakis et al., 1996). Knockout mice showed a higher percentage 

of neutrophils (Figure 3G). Treatment of adult Tnfr1−/− mice with neomycin and 

metronidazole antibiotics for 2 weeks reduced the total representation of CD45+ 

hematopoietic cells, neutrophils (CD45+ Ly6G+), and macrophages (CD45+ SSChi CD11b/c
+ IA/IE+ CD24−) (Figure 3H). However, antibiotic-driven reductions in colonic epithelial 

pH-H3 staining did not reach significance (Figure 3I). A reduced inter-crypt cellularity was 

histologically apparent in antibiotic-treated animals (Figure 3J). Thus, live commensals 

contribute to the mucosal defects associated with the loss of TNFR1.

Loss of TNFR1 Reduces Early-Life Cytokine Expression

The very-early onset of disease in Il10−/− Tnfr1−/− mice occurs shortly after the completion 

of the weaning process. We ordinarily separate pups from the dam at 3 weeks of age. 

Delaying that separation by 1 week (from 3 weeks old to 4 weeks old) did not prevent 

disease onset at 4 weeks (data not shown). Thus, the cause of disease cannot be reduced to 

this single ‘‘trigger’’ of maternal separation.

We next asked whether the effects of TNFR1 loss could be discerned in the pre-disease, 

early-life period. By high-throughput expression profiling, we examined the full-thickness 

colons of wild-type, Tnfr1−/−, Il10−/−, and Il10−/− Tnfr1−/− mice at ages corresponding to the 

pre-colitic (2 weeks) and colitic (8 weeks) states. In RNA sequencing (RNA-seq) studies 

comparing Il10−/− Tnfr1−/− and Il10−/− mice at 2 weeks old, we observed a profound 

downregulation of classical inflammatory markers, including Nos2, Cxcl1, Saa1, and 

calprotectin (S100a8 and S100a9), in the double-knockout mice (Figure 4A). We analyzed 

those cytokines as a group, the ‘‘TNFR1-associated early-life immune module,’’ and 

calculated a score (−1.7 ± 0.35, their mean logarithmic expression ratio between TNFR1-

deficient and TNFR1-expressing conditions), which quantified their overall change (Figure 

4B). That score was significantly less than zero (p = 3 × 10−5), supporting the overall 

reduced expression of those cytokines in Il10−/− Tnfr1−/− mice at 2 weeks of age. At 8 

weeks old, these immune markers had a positive (p = 0.003) expression score of 3.4 ± 1.0 in 

Il10−/− Tnfr1−/− (versus age-matched Il10−/−) animals, consistent with their broad 

upregulation in colitis. This pattern of changes was preserved in Tnfr1−/− mice that had 

genetically functional IL-10, although the magnitude of the changes was less. Adult Tnfr1−/− 

mice had elevated expression of neutrophil-associated genes, such as the calprotectin 

subunits (S100a8, S100a9) and Duox2. In contrast, pre-weaning Tnfr1−/− mice at 2 weeks 

old exhibited reduced transcription of Il1b (IL-1b) (Figure 4A). qPCR studies showed that 

adult heterozygous Tnfr1+/− mice had similar calprotectin expression as wild-type 

littermates (Figure S4A).

Cytokine changes were associated with functional defects. There was more epithelial pH-H3 

(proliferative) staining in 2-week-old Il10−/− colons versus Il10−/− Tnfr1−/− colons (Figure 

4C), in marked contrast to results in 8-week-old mice (Figure 1H). On flow-cytometric 

analysis, we found similar proportions of CD45+ cells (Figure 4D) and neutrophils (Figure 

4E) in 2-week-old animals across all genotypes. However, reduction in B cell numbers in 

TNFR1-deficient animals was already evident at 2 weeks of age (Figure 4E). Thus, loss of 

TNFR1 results in profound immune and epithelial defects in early life.
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We ruled out that transcriptional changes in Tnfr1−/− mice were compensated for by TNFR2. 

We compared transcriptomic profiles of adult Tnfr1−/− mice and Tnfr2−/− mice (Punit et al., 

2015). As shown in Figure S4B, there was little overlap (4%) of differentially expressed 

transcripts in Tnfr1−/− and Tnfr2−/− colons. Among the few co-regulated transcripts, there 

was a significant negative correlation in their direction of regulation (Figure S4C). The loss 

of Tnfr1 did not affect expression of Tnfr2 and vice versa. Notably, Saa2 and Duox2, 

associated with abnormal mucosal immune responses to microbiota (Eckhardt et al., 2010; 

Grasberger et al., 2015), were both upregulated in the absence of either TNFR1 or TNFR2.

DISCUSSION

Here, we show that the genetic loss of TNFR1 results in increased susceptibility to colitis. 

The early age of disease onset in Il10−/− Tnfr1−/− mice, after weaning, may be functionally 

equivalent to infantile or toddler colitis in humans (assuming full weaning at 1–2 years of 

age). In rodents, at that age, the colonic mucosa undergoes histological maturation (Walthall 

et al., 2005). During the simultaneous immune ‘‘weaning reaction,’’ pro-inflammatory 

signals act against intestinal luminal contents to ultimately promote tolerance through the 

establishment of immunosuppressive cell populations (Al Nabhani et al., 2019; Olszak et al., 

2012; Pié et al., 2004; Redhu et al., 2017; Scheer et al., 2017). The results of our study can 

be interpreted within that framework and demonstrate that TNFR1-mediated pro-

inflammatory signaling, including upregulation of Il1b, in early life is essential for the 

weaning reaction (Pié et al., 2004). These results demonstrate how immunodeficiency during 

early life can predispose animals toward later autoimmunity, as hinted at by studies of other 

genetic immunodeficiencies (Glocker and Grimbacher, 2012; Mombaerts et al., 1993; 

Sadlack et al., 1993; Salzer et al., 2014; Tegtmeyer et al., 2017).

The exacerbation of colitis with TNFR1 loss in mice could partially model the uneven 

clinical efficacy of anti-TNF antibodies in IBD (Gratz et al., 2002; Kullberg et al., 2001; 

Scheinin et al., 2003), increased risk for human IBD associated with genetic perturbation of 

TNF receptors, and new-onset IBD in autoimmune patients treated with anti-TNF (Korzenik 

et al., 2019; Toussirot et al., 2012; Üsküdar Cansu et al., 2019). Relevant to this study, very-

early-onset IBD is frequently linked to the loss of the IL-10 receptor (Bianco et al., 2015) 

(Begue et al., 2011; Beser et al., 2015; Kotlarz et al., 2012; Moran et al., 2013; Pigneur et 

al., 2013). Elucidating key functions in TNF receptor signaling in intestinal development and 

inflammation may have therapeutic benefits.

Limitations of Study

First, it is premature to generalize our findings directly to human anti-TNF therapies, which 

may work through distinct mechanisms (e.g., Atreya et al., 2011). Second, we have had only 

limited success in pharmacological manipulation of the weaning reaction in colitis. Third, 

we do not know whether immune cell alterations and epithelial dysfunction in Tnfr1−/− 

animals are caused by one or the other. Future studies will need to elaborate on these aspects 

of TNF signaling in colitis.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Brent Polk (dbpolk@chla.usc.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The RNA-seq datasets generated during this study are 

available at NCBI Gene Expression Omnibus (accession numbers): GSE107933, 

GSE155654, GSE155626).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—Mice were maintained humanely, in accordance with the rules and regulations of the 

Institutional Animal Care and Use Committee (IACUC) of Children’s Hospital Los Angeles 

(CHLA). This study was approved by the CHLA IACUC under the internal protocol number 

288. Mice were anesthetized with isoflurane and euthanized via cervical dislocation prior to 

dissection.

Wild-type (WT), Il10−/− (stock #002251), and Tnfr1−/−(stock #002818) mice on the 

C57BL/6J background were obtained from Jackson Laboratory. Il10−/− Tnfr1−/− mice and 

control Il10−/− littermates were generated from Il10−/− Tnfr1+/− parents. Experimental and 

control groups of mice were co-housed for > 4 weeks prior to experimentation, and co-

housing was maintained during experimentation. Both male and female mice were included 

in the study. Details regarding the ages of mice used in experiments are given in the 

description of Results.

METHOD DETAILS

Tissue collection—Colons and ceca were carefully freed from the abdominal cavity of 

euthanized mice, opened longitudinally, and cleaned of fecal contents. Luminal contents of 

the ceca were collected for bacterial 16S rRNA sequencing. Colons were opened and 

splayed; a thin longitudinal strip representing the full proximal-distal length of each colon 

was removed and preserved for RNA isolation. The remaining tissue was fixed overnight in 

10% neutral buffered formalin at room temperature. For histological assessment, colons 

were washed with 50% ethanol, dehydrated in an ascending ethanol series, cleared with 

xylenes, and embedded in molten paraffin. Thin (5 μm) sections were prepared on a 

microtome and stored until their usage in staining procedures.

Histochemistry—Blinded to sample origin, assessment of colitis severity was made on 

hematoxylin and eosin-stained sections of murine colon by MKW using previously validated 

and published methodologies (Dubé et al., 2012; Zhang et al., 2012). Histology was scored 

based on 5 categories: enterocyte loss, crypt inflammation, lamina propria mononuclear 

cells, polymorphonuclear cells, and hyperplasia. Each category is awarded a score from 0 to 

3, with higher score indicating more severe disease. A maximum score of 15 is assigned. For 

quantification of epithelial cell markers, label-positive cells in 30–100 crypts adjacent to the 
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anal verge were counted and divided by the total number of counted crypts to yield a per-

crypt number.

Immunohistochemistry was performed using standard protocols. Primary antibodies were 

incubated at 4○C overnight. Primary antibodies used were rabbit anti-pH2A.X (Ser139) 

(Cell Signaling Technology #9718S, 1:2,000 dilution), rabbit anti-pHH3 (Ser10) (Cell 

Signaling Technology #9701S, 1:500 dilution), rabbit anti-pSTAT3 (Tyr705) (Cell Signaling 

Technology #9145, 1:100 dilution), and rabbit anti-cCSP3 (Cell Signaling Technology 

#9661S, 1:200 dilution).

Flow Cytometry—Colons were freshly dissected from mice. If the colon was isolated 

from an adult (8-wk-old) animal, the mucosal layer was separated from the muscle layer 

using fine forceps. The mucosal piece was minced into 2-mm2 pieces. If the colon was 

isolated from an unweaned (2-wk-old) mouse, the full-thickness organ was immediately 

minced into 2-mm2 pieces.

Tissue was incubated with prewarmed digestion solution (0.2 Wunsch units/ml Liberase TM 

+ 200 Kuntz units/ml DNase I in DMEM/F12 + 15 mM HEPES) for 30 min at 37○C with 

continuous agitation at 180 rpm. After trituration of the tissue and its passage through a 70-

μm-pore cell strainer, the tissue was washed with DMEM:F12 supplemented with 10% FBS, 

and then also with HEPES-buffered saline (Liu et al., 2012) supplemented with 0.5% BSA. 

All subsequent washes and stainings were performed in HBS+0.5% BSA. The tissue was 

stained with 0.1 μM DAPI, blocked for 15 min at 4○C with a solution composed of 5% 

mouse/rat serum supplemented with mouse Fc block (anti-CD16/32 antibody, Biolegend 

‘‘truStain fx’’), and probed with a mixture of preconjugated antibodies for 30 min at 4○C. 

Antibodies (working dilutions) were targeted to CD45 (1:250), Ly6G (1:200), CD11b 

(1:200), CD11c (1:100), IA/IE (1:1,000), CD64 (1:400), CD24 (1:500), Ly6C (1:200), CD69 

(1:200), CD8 (1:100), CD4 (1:200), TCRd (1:200), and CD3 (1:200). After washes, cells 

were analyzed on a BD LSR II. Compensation was adjusted using references obtained by the 

analysis of antibodies bound to Ultracomp eBeads (ThermoFisher Scientific).

Analysis of flow cytometric data was performed using FlowJo. Gates were adjusted for each 

experimental day but were consistent between experimental and control samples. Data were 

pooled across 3–4 experimental days per genotype/age comparison.

Collection and analysis of stool—Stool pellets were collected from mice by manual 

restraint which typically induced defecation within 30 s. A clean Eppendorf tube was held 

beneath the anal opening. Pellets were frozen at −80○C and analyzed for fecal lipocalin-2 

levels using a commercial ELISA kit and according to the manufacturer’s instructions (R&D 

Systems, cat# DY1857).

Antibiotic treatment—Il10−/− Tnfr1−/− mice at 8 weeks of age were assigned to either 

‘Vehicle’ or ‘Antibiotics’ treatment group (n = 3 in each group). Mice received either water 

(‘Vehicle’) or broad-spectrum antibiotics for 2 weeks (Neomycin sulfate 500mg tablets 

purchased from Hi-Tech Pharmacal, Metronidazole 500mg/100ml purchased from Claris 

Lifescience) ad libitum. Both antibiotics were mixed with drinking water at 1 g/L. Distal 
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colonoscopy on deeply anesthetized mice was performed pre- and post-treatment using a 

flexible instrument (Karl Storz). Mice were euthanized post-treatment at 10 weeks of age, 

and colon histology was scored as previously described (Dubé et al., 2012; Punit et al., 

2015) to determine colitis severity.

16S sequencing—16S rRNA libraries were prepared from flash-frozen cecal contents. 

Cecal content was collected from co-housed littermates of Il10−/− and Il10−/− Tnfr1−/− mice 

euthanized at 2, 4, 6, and 8 weeks. Cecal content was frozen immediately after collection 

and stored at −80○C. Cecal microbiome composition was determined by sequencing the 16S 

ribosomal RNA gene. Sequencing was performed on the Illumina MiSeq platform (Diversity 

assay 2x300bp 20K bTEFAP® at MR DNA lab (Shallowater, TX USA)).

Expression analysis of immune-related transcripts—RNA was extracted from 

colon tissues using standard RNA extraction techniques (PureLink® RNA Mini Kit from 

Ambion) and assayed for mRNA expression of targeted immune genes using the Nanostring 

technology (nCounter Mouse Immunology Panel, 561 genes).

RNA-Seq—mRNA transcripts were purified from total colonic RNA using oligo-dT coated 

beads, sheared, and prepared for 2x75 bp sequencing on a HiSeq 4000 (Illumina). Library 

preparation and sequencing were performed by SeqMatic, LLC (Fremont, CA USA).

Barrier function assay—WT and Tnfr1−/− mice were co-housed for minimum of 1-week 

prior to experiment. Mice were sedated and a 0.2 mL volume of fluorescein (FITC)-dextran 

(MW 3000, Invitrogen, 50 mg/ml solution in PBS) was instilled into the rectum with a 3.5 

Fr catheter. Blood was obtained 30 minutes later through a retro-orbital blood draw. Plasma 

fluorescence was measured in a plate reader (excitation 490nm; emission 520nm).

Anti-IL10R model of colitis—Co-housed Tnfr1+/− and Tnfr1−/− mice were 

intraperitoneally injected, on alternating sides of body, with 1 mg/mouse/dose of anti-IL10R 

antibody once per week, for a total of 3 injections. Injections were begun when mice were 3 

wks old. Euthanasia and postmortem analyses were performed at 6 wks of age.

QUANTIFICATION AND STATISTICAL ANALYSIS

Gene abundance estimates—Transcript quantification and significance testing from 

RNA-Seq data were performed using the paired-end read option on kallisto/sleuth (Bray et 

al., 2016). Differential expression of expression data obtained using the Nanostring platform 

was computed using nSolver version 3.0 software (Nanostring).

Operational taxonomic units (OTUs) were generated from 16S sequences by clustering at 

3% divergence (97% similarity) in mothur (Schloss et al., 2009). Final OTUs were 

taxonomically classified against a curated database derived from the Ribosomal Database 

Project (Cole et al., 2014) and NCBI. Additional analyses were performed using the 

‘phyloseq’ (v1.19.1) (McMurdie and Holmes, 2013) and ‘vegan’ (v2.4–2) (Dixon, 2003) 

packages in R (version 3.3). Random forest regression was used to predict colitis score with 

OTU relative abundances as covariates (‘randomForest’ package v4.6). Only OTUs with > = 
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1% relative abundance in at least 5 samples were used. Linear discriminant analysis was 

performed using LEfSe (Segata et al., 2011).

Statistical tests—Data are presented as individual points with summary statistics 

reporting the mean and standard error of the mean. Significance was evaluated using the t 

test, unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Il10−/− Tnfr1−/− mice exhibit severe colitis beginning shortly after weaning

• Colitis is dependent on the microbiome but is not taxa specific

• Tnfr1−/− mice exhibit colonic immune dysregulation and abnormal epithelium

• Tnfr1−/− mice have reduced cytokine expression during a critical weaning 

period
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Figure 1. Il10−/− Tnfr1−/− Mice Develop Early-Onset, Severe Colitis at 4 Weeks Old
(A and B) Hematoxylin-and-eosin (H&E)-stained sections of pre-weaning 2-wk-old Il10−/− 

(A) (n = 7) and Il10−/− Tnfr1−/− (B) (n = 8) mice show normal distal colon.

(C and D) H&E sections of 4-week-old post-weaning mice reveal normal colon in the 

Il10−/− genotype (C) (n = 6) but colitis in the Il10−/− Tnfr1−/− genotype (D) (n = 13).

(E) Histological scoring of colitis severity (worst disease score is 15). Horizontal lines 

indicate median.

(F) Kaplan-Meier survival curve indicates early mortality in Il10−/− Tnfr1−/− mice.

(G) Nanostring analysis demonstrates upregulation of Tnf expression in Il10−/− Tnfr1−/− 

animals.

(H and I) Crypts in 12-wk-old Il10−/− Tnfr1−/− mice exhibited increased numbers of 

proliferating (pH-H3+) (H) and apoptotic (TUNEL+) (I) cells.
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(J and K) Flow cytometric analysis of colonic mucosal scrapings demonstrates increased 

colonic mucosal infiltration of CD45+ hematopoietic cells (J) with increased immune cell 

subsets (K) in 8-wk-old Il10−/− Tnfr1−/− mice.

Scale bars: (A)–(D) 100 μm. *p < 0.05. See also Figures S1, S2, and S3. Error bars: standard 

error.
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Figure 2. Broad-Spectrum Antibiotic Treatment Improves Colitis in Il10−/− Tnfr1−/− Mice
(A–E) Improved endoscopic appearance (A), endoscopic score (B), histology (C and D), and 

crypt cell dynamics (E) were observed in 8-week-old antibiotic-treated Il10−/− Tnfr1−/− mice 

(n = 3) compared with controls (n = 3).

(F) Fecal lipocalin levels diminished to nearly undetectable levels during antibiotic treatment 

of Il10−/− (n = 7) and Il10−/− Tnfr1−/− (n = 2) mice but quickly rebounded.

(G) 16S analysis of Il10−/− Tnfr1−/− and Il10−/− cecal microbiomes collected from 2-, 4-, 6-, 

and 8-week-old Il10−/− Tnfr1−/− and Il10−/− mice. Shown are weighted UniFrac distances 

plotted using multidimensional scaling. Each sample is coded by age (gray facets), genotype 

(color), and colitis score (size). At 8 weeks old, the genotypes could be qualitatively 

discriminated (dotted black line). The displayed p value for each age is computed by 

permuted analysis of variance using littermates, colitis severity, sex, and genotype 

conditioned on dam identity as model factors.
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(H) Bar graph displays the total number of significant operational taxonomic units (OTUs) 

that are differentially abundant in Il10−/− versus Il10−/− Tnfr1−/− animals by age.

(I) OTUs with taxonomic classifications plotted to indicate their relative abundance in 

Il10−/− Tnfr1−/− versus Il10−/− samples. The transparency of the bars denotes the total 

abundance of the OTUs on a log scale (more transparent is less abundant).

(J) Depiction of the multigenerational experiment analyzing the effects of maternal 

antibiotic treatment on colitis development, with associated colitis scoring shown in the 

inset.

Scale bars: 200 μm. Error bars: standard error.
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Figure 3. Adult Tnfr1−/− Mice Exhibit Epithelial Dysfunction and Alterations in Colonic 
Mucosal Immune Cell Representation
(A) Image montages show normal crypt structures in wild-type mice (n = 8) and focal 

abnormalities in 8-wk-old Tnfr1−/− mice (n = 7).

(B) Tnfr1−/− mice at 4, 8, and 12 weeks old exhibited increased colonic permeability at 30 

min after rectal instillation of 4 kDa FITC-dextran. The graph is representative of three 

different experiments.

(C) Trending increase in pH-H3+ proliferative cells in knockout mice at 4 and 12 weeks old.

(D) H&E images of the colonic mucosa at 4 weeks old demonstrate foci of altered crypt 

patterning in Tnfr1−/− mice.

(E) Adult 12-week-old Tnfr1−/− colonic epithelium also had increased numbers of pH2A.X+ 

and pSTAT3+ cells.
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(F and G) Flow cytometry reveals a trend toward decreased hematopoietic cell numbers (F) 

in the colonic mucosa of 8-week-old Tnfr1−/− mice. This was driven by increased 

neutrophils and a near-total loss of B cells (G).

(H) Flow cytometric assessment of antibiotic-treated Tnfr1−/− mice reveals reduced numbers 

of mucosal immune cells.

(I) Changes to pH-H3 staining after antibiotic treatment were more modest and insignificant.

(J) Qualitative reductions (arrowheads) in the density of inter-crypt cells were noted in 

H&E-stained sections of antibiotic-treated samples.

Scale bars: (A) 100 μm; (D) and (J) 50 μm, *p < 0.05. Error bars: standard error.
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Figure 4. TNFR1-Deficient Animals Show Early-Life Defects in Colonic Immune Response
(A) Heatmaps summarize cytokine-expression levels obtained from RNA-seq/NanoString 

analysis of colons from wild-type (WT), Tnfr1−/−, Il10−/−, and Il10−/− Tnfr1−/− animals at 2 

weeks (pre-disease) and 8 weeks (post-disease onset) old. Overall cytokine expression was 

decreased in TNFR1-deficient animals at 2 weeks of age but increased in those animals at 8 

weeks old. Note that reads for Il10 were still detected in Il10−/− animals because of 

continued production of mRNA encoding of an early-termination codon.

(B) The boxplot shows a summarized score of cytokine expression changes across 

comparisons of genotypes and ages. The lower and upper hinges represent the 25th and 75th 

percentiles. Whiskers denote the range of the data, excepting outlying points beyond 150% 

of the interquartile range. All values were obtained from RNA-seq except for the comparison 

of Il10−/− Tnfr1−/− versus Il10−/− mice at 8 weeks old (NanoString). Significance of scores 

was tested using the t test against 0 (no change).

(C) Il10−/− Tnfr1−/− animals at 2 weeks old show reduced pH-H3+ cell counts per crypt.

(D and E) Flow cytometric analysis of whole colons collected from 2-week-old mice shows 

overall similarity of colonic hematopoietic (CD45+) cell counts (D) but loss of B cells in 

TNFR1-deficient animals (E).
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Significance was evaluated using ANOVA. *p < 0.05. See also Figure S4. Error bars: 

standard error.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

FITC rat anti-CD45 Biolegend 103107; RRID: AB_312972

Alexa Fluor 700 rat anti-Ly6G BD Biosciences 561236; RRID: AB_10611860

APC-Cy7 rat anti-CD11b BD Biosciences 561039; RRID: AB_2033993

APC hamster anti-CD11c BD Biosciences 561119; RRID: AB_10562405

PE rat anti-IA/IE BD Biosciences 562010; RRID: AB_10893194

PE-Cy7 mouse anti-CD64 Biolegend 139313; RRID: AB_2563903

BV421 rat anti-CD24 BD Biosciences 562563; RRID: AB_2737002

PerCP-Cy5.5 rat anti-Ly6C ThermoFisher Scientific 45-5932-80; RRID: AB_2723342

BV786 hamster anti-CD69 BD Biosciences 564683; RRID: AB_2738890

BV510 rat anti-CD8a Biolegend 100751; RRID: AB_2561389

BV605 rat anti-CD4 Biolegend 100451; RRID: AB_2564591

PE-CF594 hamster anti-gdTCR BD Biosciences 563532; RRID: AB_2661844

BUV395 hamster anti-CD3ε BD Biosciences 563565; RRID: AB_2738278

Rabbit anti-pH2A.X (Ser139) Cell Signaling Technology 9718S; RRID: AB_2118009

Rabbit anti-pH-H3 (Ser10) Cell Signaling Technology 9701S; RRID: AB_331535

Rabbit anti-pSTAT3 (Tyr705) Cell Signaling Technology 9145; RRID: AB_2491009

Rabbit anti-cleaved CSP3 Cell Signaling Technology 9661S; RRID: AB_2341188

truStain fcX (rat anti-CD16/32) Biolegend 101320; RRID: AB_1574975

Rat anti-mouse IL-10R (CD210), 1B1.3A Bio X Cell BE0050; RRID: AB_1107611

Chemicals, Peptides, and Recombinant Proteins

Neomycin sulfate – 500 mg tablets Hi-Tech Pharmacal 50383-565-10

Metronidazole – 500 mg/100 mL Claris Lifesciences 36000-001-24

4 kDa FITC-dextran ThermoFisher Scientific D3305

Liberase TM Sigma-Aldrich 5401119001

DNase I Sigma-Aldrich D5025

Ultracomp eBeads ThermoFisher Scientific 01-2222-41

Critical Commercial Assays

16S library preparation MR DNA (Molecular Research) bTEFAP

mRNA-Seq library preparation (Illumina) SeqMatic 20020594

nCounter Mouse Immunology Panel Nanostring XT-CSO-MIM1-12

Mouse Lipocalin-2/NGAL DuoSet ELISA R&D Systems DY1857

Deposited Data

RNA-Seq (Tnfr1−/− versus WT, 8 wks of age) Gene Expression Omnibus (GEO) GSE107933

RNA-Seq (Tnfr1−/− versus WT, 2 wks of age) Gene Expression Omnibus (GEO) GSE155654

RNA-Seq (Il10−/− Tnfr1−/− versus Il10−/−, 2 wks of age) Gene Expression Omnibus (GEO) GSE155626
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REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mice: C57Bl6/J Jackson Labs 000664

Mice: Il10−/− Jackson Labs 002251

Mice: Tnfr1−/− Jackson Labs 002818

Software and Algorithms

Kallisto/sleuth v0.44.0 Pachter Lab https://pachterlab.github.io/kallisto/

nSolver v3.0 Nanostring https://www.nanostring.com/products/analysis-
software/nsolver

mothur v1.40.1 Schloss Lab https://mothur.org/

FlowJo v10.4 FlowJo https://www.flowjo.com/
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