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Abstract
The etiology of many neurological diseases affecting the central nervous system (CNS) is unknown and still needs more 
effective and specific therapeutic approaches. Gene therapy has a promising future in treating neurodegenerative disorders 
by correcting the genetic defects or by therapeutic protein delivery and is now an attraction for neurologists to treat brain 
disorders, like Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, spinal muscular atrophy, spinocerebel-
lar ataxia, epilepsy, Huntington’s disease, stroke, and spinal cord injury. Gene therapy allows the transgene induction, with 
a unique expression in cells’ substrate. This article mainly focuses on the delivering modes of genetic materials in the CNS, 
which includes viral and non-viral vectors and their application in gene therapy. Despite the many clinical trials conducted so 
far, data have shown disappointing outcomes. The efforts done to improve outcomes, efficacy, and safety in the identification 
of targets in various neurological disorders are also discussed here. Adapting gene therapy as a new therapeutic approach 
for treating neurological disorders seems to be promising, with early detection and delivery of therapy before the neuron is 
lost, helping a lot the development of new therapeutic options to translate to the clinic.
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Introduction

Neurological disorders are still a major challenge for phy-
sicians because of their multifactorial and multicausal 
pathogenesis [1, 2]. Treatment of nervous system disorders 
with classical, ongoing therapies and surgical interventions 
remains strenuous for several reasons, namely, the complex 
nature of the central nervous system (CNS), blood–brain 
barrier (BBB), and the slow regenerative capacity of the 
nerve tissue. In particular, BBB restricts the entry of many 
potentially important molecules with high lipophilicity and 
molecular weight [1–4]. These molecules require intracere-
broventricular injections or intracerebral or usage of osmotic 
mini pumps. Also, neurons that are morphologically and 
physiologically heterogeneous compared to any other cells in 
the human body function as convolutions capable of receiv-
ing and transmitting signals or information [1, 2, 5].

Gene therapy has appeared as a new therapeutic inter-
vention and an attractive option to deliver genetic material. 
Gene therapy approaches the treatment of a disorder by 
introducing a stable and inducible transgene that will cor-
rect and replace the defective gene with a controlled expres-
sion of the disease environment [6]. Preliminary results were 
promising that they prompted many investigators to submit 
protocols for phase I and II trials to many neurological dis-
eases. Recent developments, like neuroimaging, have helped 
assess precise knowledge about the anatomical-functional 
relation in assisting clinical evaluation [7, 8]. Indeed, the 
efficiency of gene therapy for treating CNS diseases must be 
demonstrated by numerous preclinical and clinical studies 
[9, 10]. Also worthy of note is that the practice of gene ther-
apy needs several factors to be optimized, like selection of a 
suitable vector, transgene, and an appropriate delivery mode. 
The complexity of nervous tissue, the interaction of the host 
immune system to vector and transgene, makes the practice 
of gene therapy challenging in neurodegenerative disease. 
In addition to this, a therapeutic strategy via gene therapy 
involves challenges such as optimum delivery of the thera-
peutic agent, which can be possible either by intracerebral 
delivery or directing growth factors or therapeutic agents 
stimulating the synthesis of growth factors into the brain 
parenchyma [11]. Though to be used with caution, growth 
factors show to be promising in preclinical studies and need 
to get through in all the phases of clinical trials. Unlike other 
neuroprotective agents, growth factors work via apposite 
molecular pathways and involve restoration, protection, and 
generation of neurons and their functionality. Despite hav-
ing a shorter half-life, growth factors are capable of activat-
ing respective receptors that trigger a cascade of reactions 
directing the second messengers in the activation of tran-
scription factors, the effect of which can last from days to 
months post-growth factor inactivation [12]. Additionally, 

two approaches are noteworthy to be mentioned. One is the 
amalgam of stem cell and gene therapy that could prove use-
ful in treating neurodegenerative disorders via modification 
of expression of ectopic protein within the transplanted cells 
[13]. Another is the improvement of outcomes of human 
pluripotent stem cells (hPSC) graft via neurotrophic gene 
therapy, an example of which is the delivery of glial cell 
line–derived neurotrophic factor (GDNF) that promoted the 
recovery of hPSC-generated dopaminergic neurons in Par-
kinson’s disease (PD) [14].

In this article, we mainly canvass the various approaches 
and vectors used in gene therapy, as also preclinical and clin-
ical studies carried out to treat the various neurological dis-
orders. Besides, the advances stated in gene therapy for the 
treatment of various neurological conditions, among them 
PD, Alzheimer’s disease (AD), amyotrophic lateral sclero-
sis (ALS), spinal muscular atrophy (SMA), spinocerebellar 
ataxia, epilepsy, Huntington’s disease (HD) and stroke, spi-
nal cord injury (SCI), traumatic brain injuries, and COVID-
19-associated neurological conditions, are also highlighted.

Gene Therapy: an Overview

Gene Therapy Approaches

In vivo and ex vivo gene therapy are the two approaches 
used in gene therapy, by which genes are transferred (Fig. 1). 
In the in vivo gene therapy, a new gene with the help of 
a plasmid or viral vectors is directly introduced into the 
patient, and now, it is further developed utilizing clustered 
regularly interspaced short palindromic repeats (CRISPR) 
strategy [15, 16]. The ex vivo gene therapy uses in vitro cell 
modification, and these cells are transplanted for a stable or 
transient graft based on the patient to serve the purpose of 
replacement of faculty cells or providing therapeutic proteins 
[17–19]. Various in vivo gene therapy complications include 
the viral vector associated with nonspecific gene expression 
and targeting insertional mutagenesis, gene silencing, and 
immune responses against the vector gene silencing and 
immune responses against the vector [20]. The in vivo gene 
therapy can also produce strain to CNS cells to work hard 
making therapeutic molecules. In ex vivo gene therapy, 
modified cells’ characterization is done before introducing 
to the patient, and the patient is not directly exposed to the 
vector [21]. Recent advancements in neural stem cell (NSC) 
strategies, including the capability to generate autologous 
induced pluripotent stem cells (iPSC) from the patient’s 
blood or skin, seem promising in the future for ex vivo gene 
therapy [22, 23]. The cells can undergo differentiation to 
produce therapeutically relevant tissues, including oligo-
dendrocytes or astrocytes, besides providing the missing 
or beneficial protein. In ex vivo gene therapy, fibroblasts 
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and mesenchymal stem cells (MSC) were studied earlier but 
had many disadvantages because they are not endogenous 
to the CNS [24–26]. MSC was studied as they show good 
immunomodulatory activity and generate growth factors and 
cytokines producing angiogenesis and tissue repair [27, 28], 
but MSC cannot penetrate the blood–brain barrier (BBB) 
and cannot survive for long, requiring prolonged administra-
tion for long-term effects. The neural progenitor cell (NPC) 
or NSC can be obtained from many regions of the brain. The 
self-renewal is limited for NPC and produces neurons and 
astrocytes [29]. The NSC can differentiate to form oligo-
dendrocytes, astrocytes, or neurons [30]. The human embry-
onic stem cells is another cell type that can be utilized for 
ex vivo gene therapy but is associated with ethical problems 
regarding their derivation [31, 32]. The iPSC can circum-
vent embryonic stem cells’ ethical issues and are capable 
of autologous CNS transplantation [33, 34]. Besides the 
ex vivo gene therapy, non-viral strategies seem promising 
and can provide protein expression for the long term in non-
dividing cells [35, 36]. The recent developments including 
gene editing strategies such as CRISPR-Cas-9, transcription 
activator-like effector nucleases (TALEN), and zinc finger 
nucleases (ZFN) can be employed for the purpose of gene 
therapy [37]. The strategies depend on genomic site-specific 
double-stranded breaks that can make possible a precise 
gene knockin to a sage harbor locus [38, 39]. These gene 
editing strategies can be utilized and are promising in the 

future for the therapy of hereditary disorders such as HD as 
well as the hereditary types of ALS and PD [40].

Vectors Used in Gene Therapy

The transgene introduction into a vector is a complex proce-
dure, and vectors must possess salient features [41–43], like:

	 i.	 The vector must allow the easy manipulation for 
recombinant technology followed by propagation in 
suitable hosts.

	 ii.	 The vector should possess minimum invasiveness 
with high cloning capacity. The vector should enable 
the adaptation of regulatory genes or sequences that 
ensure the appropriate spatial and temporal regulation 
of transgene expression and should not have the ability 
for undesired or uncontrolled alterations of the host 
genome.

	 iii.	 Transgene selected must have exclusive expression 
only in the target cells.

	 iv.	 The vector should be absent from immunogenicity 
(it should be devoid of genes that bring on immune 
responses).

	 v.	 The vector must allow a prolonged expression of a 
functional gene that is stable with no alteration in cell 
progeny.

Fig. 1   Illustration of gene 
therapy approaches
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Gene therapy uses different kinds of vectors, like viral 
and non-viral, which may include synthetic macromolecules, 
cationic polymers carrying specific ligand for cell surface 
receptors, and lipid carriers, like liposomes. Viral vectors are 
a fine strategy to pass and express genetic materials to the 
host cells. In the CNS, the most commonly used and targeted 
ones are adeno-associated viruses (AAV), herpes simplex 
virus-1 (HSV1), retrovirus (RV), and lentiviruses (LV). They 
can invade cells by triggering infection naturally [44–46]. 
However, several factors should be considered while using 
viral vectors, namely, (1) interaction of viral genome with 
the host genome; (2) antigenicity, putative toxicity, and 
tumorigenicity of the viral genome; (3) viral tropism for 
specific genes; and (4) facility of mass production for effec-
tive transduction. Interestingly, adenovirus can be regarded 
as one of the most efficient vectors for CNS due to its ability 
to divide quiescent cells with high effectiveness and safe 
usage in approaches such as in vivo and in vitro [47]. For 
example, adenoviruses deleted with E1 and E3 regions can 
accommodate large regions and lead to cytotoxicity by viral 
capsid and inflammation. Also, HSV1 and AAV can infect 
neuronal cells with high transduction frequency and non-
replicating entities; they do not integrate well into the host 
genome. Additionally, RV infects only dividing cells, and the 
integration of RV into the host cells’ genome might cause 
insertional mutagenesis [48, 49]. Table 1 describes various 
vectors, their structural features, route of administration of 
vectors, and the merits as well as demerits of each. Figure 2 
summarizes the various methods of gene therapy.

Viral Vectors

Viral vectors are modified viruses that can infect cells and 
introduce foreign genes. By changing viral vectors, the genes 
needed for replication are substituted by therapeutic genes. 
The important viral vectors utilized in gene therapy include 
RV, adenoviruses (AV), HSV, AAV, and LV. RV are highly 
effective in transferring genes to the cells that are divid-
ing. The limitation is that they can only infect mitotic cells 
and have a problem in introducing genes to the post-mitotic 
neurons. AVs are popular in gene therapy and can be modi-
fied by producing viral gene deletions to make space for the 
foreign gene insertion, thus generating a replication-deficient 
virus. They can also be utilized to target the non-dividing 
cells. Their genes do not merge into host chromosomes and 
are useful in modulating target gene expression.

The neurotropic HSV1 can distribute in the nervous 
system after infecting the periphery and can be utilized in 
neurological diseases. They can be utilized to target post-
mitotic neurons and are studied for fibroblast growth factor 
2 association in neurological diseases. They are utilized to 
express enzymes important in metabolic disorders, inher-
ited neuropeptides, enzymes synthesizing neurotransmitters, 

neurotrophic factors (NTFs), and glutamate receptors. The 
virus’s axonal transport pathway is utilized for transgene 
expression in the dorsal root ganglion cells or the trigeminal 
ganglion after subcutaneous injection of the vector [50, 51]. 
The HSV can be utilized in HD, PD, and AD. The tyrosine 
hydroxylase gene direct transfer serves as an example. They 
can also be used in NTF expression for the promotion of 
peripheral neuron regeneration. AAV can infect post-mitotic 
neurons and can reach the brain rapidly, thus facilitating tar-
geted gene therapy. Another advantage is that the wild-type 
virus is not linked to any disease, the capability to infect 
non-dividing cells, the capacity to introduce a gene into the 
host’s genome, and transgene expression for a long term. 
The utilization of AAV vectors is gaining popularity in gene 
therapy studies [52]. The AAV vectors promote long-term 
local expression of genes in the CNS.

More than 20 clinical trials have been conducted so far to 
study the efficacy of AAV vectors in the treatment of neuro-
degenerative disorders [51, 53, 54]. Table 2 describes clini-
cal trial advances of gene therapy in various neurological 
disorders. AAV9 is an excellent vector that can be directly 
introduced into the brain and can produce a global expres-
sion in the spinal cord and the brain following a peripheral 
systemic administration route in animal models [51, 55]. 
Thus, affecting the entire CNS without being injected into 
the CNS seems promising for gene therapy. AAVs include 
serotypes depending on capsid profiles. Multiple AAV sero-
types have been identified. They vary in tropism, making 
each of them suitable for the transduction of specific cells 
or tissue types with the AAV receptor’s aid. These include 
AAV1, 2, 3b, 4, 5, 6, 7, 8, and 9 with varying ability to 
transduce specific cell types. AAV capsid interaction with 
glycans and proteins in the cell surface as well as the sero-
types of varying protein composition is the major factor that 
determines the efficiency of transduction. AAV1 on direct 
injection targets local populations of neurons and are admin-
istered at high vector doses to exhibit retrograde trafficking 
activity greater than that of AAV2 and similar to AAV5 and 
8. Transduction levels are either higher or similar to that 
of AAV9 and AAVrh10. AAV1 also exhibits transsynap-
tic anterograde transport causing post-synaptic neurons to 
express Cre-dependent transgene [56]. AAV2 also targets 
local populations of neurons on direct intraparenchymal 
delivery and capsids of choice for precise targeting. At a 
high vector dose, AAV2 exhibit retrograde transduction 
activity lesser than that of AAV1 and AAV5. AAV2 has a 
lower frequency of transduction in the astrocytes. Modified 
capsid AAV2-Retro by Tervo et al. show efficient transduc-
tion of neurons into the site of injection [56, 57]. AAV4 via 
intracerebroventricular injection can transduce ependymal 
cells [58]. Direct intraparenchymal delivery of AAV5 trans-
duces primarily neurons, whereas intraventricular delivery 
can also transduce multiple regions of the brain including 
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oligodendrocytes and astrocytes [56, 59]. AAV5 exhib-
its anterograde transduction similar to AAV8 and higher 
than AAV2 [56]. AAV8 primarily transduces neurons on 
direct injection and exhibits anterograde trafficking activ-
ity higher than AAV2 and similar to that of AAV1 and 5. 

AAV8 exhibits retrograde transduction on regions such as 
astrocytes at a low frequency but higher than that of AAV9. 
Modified capsid AAV MNM008 by Davidsson et al. show 
efficient transduction of neurons into the site of injection 
[56, 60]. AAV9 are commonly applied for targeting neurons 

Fig. 2   Illustration of various methods of gene therapy
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which exhibit anterograde transduction activity with a trans-
duction level similar to AAV1 and AAVrh10. AAV9 requires 
high vector doses to exhibit retrograde trafficking activity on 
astrocytes and at high titers exhibit transsynaptic anterograde 
transport on oligodendrocytes. AAVrh10 transduces primar-
ily neurons and exhibits both anterograde and retrograde 
trafficking activity [56]. AAV capsid engineering has been 
performed to overcome the shortcomings of AAV for better 
tropism, immunogenicity, and biodistribution. This strategy 

involves mainly four approaches, rational design, directed 
evolution, computer-guided design, and a combination of 
rational and directed evolution [61]. In rational design, only 
fewer capsid variants are designed, evaluated systematically, 
and capsid structure refined for desired function which are 
done based on prior knowledge. Directed evolution involves 
utilization of random processes including phage display, ran-
dom insertion of peptides into AAV capsid that are already 
known, or shuffling of genes of serotypes that are available 

Table 1   Advantages and disadvantages of various vectors.
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Table 1   (continued)
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Table 1   (continued)
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[62]. In computer-guided design, variant design is conducted 
based on the knowledge available on DNA sequence and 
phylogenetic analyses and highly diverse mutants can be 
generated. But this approach is time-consuming and lacks 
animal models [61].

AAV1 is capable of transducing skeletal muscles and 
CNS; AAV2 gets involved in the transduction of a wide 
range of tissues, including the entire midbrain, skeletal mus-
cles, lungs, liver, and transgene expression occurs at a slower 
rate. Both AAV4 and 5 can transduce retinal pigmented epi-
thelium (RPE), whereby the AAV5 is to a greater extent than 
AAV4. In addition to RPE, AAV4 transduces astrocytes and 
ependyma. Additionally, AAV5 transduces CNS at a higher 
frequency compared to AAV2 and also photoreceptor cells. 
AAV6 has a rapid onset of action and has a higher efficiency 
in transducing skeletal muscles, but VEGF coadministra-
tion is a requisite for transgene expression and traversing 
across the blood vessel barrier. AAV7 has a high transduc-
tion profile towards skeletal muscle with a rapid onset of 
action. Like AAV6, AAV8 has a rapid onset of action in the 
transduction of skeletal muscle and heart, pancreas, and liver 
tissue. AAV9, in comparison to AAV2, transduces at higher 

efficiency tissue of the liver, skeletal muscle, and lungs [63, 
64]. Viral vectors move from one area to another in the brain 
via retrograde or anterograde transport, and the transport 
depends on the serotype [56, 65]. AAV2 is considered a 
gold standard in neurosurgical gene therapy because of its 
phenotype specificity for neurons and the safety profile. It 
is being studied in several clinical trials [66–72]. AAV2 uti-
lizes anterograde transport, and the downstream targets of 
neuron projection can produce transgene expression [56, 73]. 
LV is capable of delivering larger DNA and can also infect 
post-mitotic cells and exhibit excellent neurotropism. The 
transgene expression can be studied in a clinical trial for PD 
[51, 74–76].

Surgical Delivery of Viral Vectors

Convection-enhanced delivery (CED) can directly and 
efficiently deliver viral vectors in a controlled manner all 
over the brain [87]. CED employs a pressure gradient to 
produce infuscate flow in the interstitial fluid space and 
depends on fluid convection instead of passive diffusion to 
deliver large-volume, highly concentrated macromolecules. 

Table 1   (continued)
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The MRI-guided CED employing intraoperative or inter-
ventional MRI can monitor the infusion by administering 
MRI contrast media and the therapy. Research in primates 
permitted quantifying CED dynamics and deleting the reflux 
or leakage [88–91]. Specific areas can be marked for can-
nula placement [92, 93], and the gadoteridol distribution 
seen in MRI matches the expression of the transgene [94, 
95]. The placement of cannula also depends on the anatomy 
of individual patients [94, 96]. The commercially obtain-
able MRI compatible platform for delivery of therapy (MRI 
interventions, Irvine, USA) includes an aiming device that 
is mounted on the skull (smart frame), a CED cannula that 
is resistant to reflux (smart flow), and software that is MRI 
integrated (clear point) which interacts with the console as 
well the neurosurgeon performing the procedure. The plat-
form utilizes a two-step design cannula with an inner silica 
sleeve and a ceramic body enclosed with an outer polymer 
sleeve. It allows the cannula’s placement to align with the 
planned route and control the infusion targeted area [11].

Antisense Strategy

The antisense strategy in gene therapy employs agents that 
modulate the cell’s genetic information processing, espe-
cially in diseases caused by genetic abnormalities. Anti-
sense strategy aims to block target protein synthesis in 
the cell by affecting transcription or translation. Antisense 
mRNA, which is plasmid derived and introduced with the 
help of a vector, can produce an arrest of translation. The 
antisense substances include ribozymes, antigene, and anti-
sense sequences. The oligodeoxynucleotide complementary 
to DNA or RNA can inhibit targeted protein expression. 
Ribozymes can catalyze the cleavage of RNA. Antisense 
therapy can modulate the targeted gene’s function, and anti-
sense drugs can prevent disease-associated protein synthe-
sis. Oligonucleotides are unable to generate proteins but can 
block the expression of targeted genes. Therefore, antisense 
oligodeoxynucleotides need to be studied for their potential 
use in treating neurodegenerative disorders [15, 51].

RNA Trans‑splicing

The RNA trans-splicing helps join different pre-mRNA 
to produce composite mRNA and can help a mutated area 
of pre-mRNA be substituted with a normal sequence that 
can code normal proteins. RNA trans-splicing needs to be 
explored in-depth for its therapeutic utility in neurodegen-
erative disorders [15, 51].

RNA Interference

The RNA interference (RNAi) is a mechanism that can 
modulate gene expression and viral replication. The RNA 

interference, as well as gene silencing, employs the utiliza-
tion of a double-stranded RNA. According to the sequence, 
the double-stranded RNAs form small interfering RNAs 
inside the cell that can recognize and destruct complemen-
tary RNAs. RNA interference produces silencing of genes 
rather than knockout of genes produced by antisense oligo-
nucleotides compared to antisense strategy. Small interfering 
RNAs are highly efficient and specific and thus can be uti-
lized as antigene agents in gene therapy. RNA interference is 
being studied in the treatment of ALS. RNA interference can 
use viral and non-viral vectors for its delivery. RNA inter-
ference is promising for its therapeutic potential in treating 
HD as well as spinocerebellar ataxia in which the associated 
genes are known, thus can be precisely silenced [51, 97]

Non‑viral Vectors

Non-viral vectors utilize cellular mechanisms to introduce 
DNA then transferring it to the nucleus. An example is the 
administration of a plasmid DNA utilizing strategies for 
drug molecules. As in the case of biologicals, the injection 
has also experimented with gene therapy. The DNA can be 
introduced into tissues either naked or conjugated with the 
drug delivery system, including liposomes. In the naked 
DNA-mediated gene transfer, the naked DNA can be intro-
duced intracerebrally with the help of injection and studied 
for luciferase expression in mice’s brains. Liposomes can 
encapsulate the whole of DNA or virus and provide new 
ways for introducing DNA into human cells. It is a kind 
of chemical transfection, and the lipid coat helps the cell 
survival following injection and transfer the DNA by fus-
ing with cells. Liposomes are not that popular because of 
the sophisticated technique of preparation and efficiency in 
large fragment encapsulation. Various modifications include 
the virosome, a liposome with fusogenic viral proteins, and 
cationic liposomes instead of encapsulation encased by uni-
lateral vesicles with the help of electrostatic force. Cationic 
liposomes are better than liposomes, and they can bind with 
a negative charge containing a high-efficiency cell surface, 
thereby releasing DNA into the cytosol. It is promising in 
newborns, but in the adult brain, cationic formulations have 
limited bioavailability. Trojan horse liposome strategy, 
which conjugates monoclonal antibodies, has been studied in 
various CNS disorders. They exhibit transcytosis mediated 
by receptors, penetrating the blood–brain barrier, and endo-
cytosis in the CNS. The technique needs to be studied in the 
therapy of PD. A synthetic liposome vector with therapeutic 
DNA can be administered to the systemic circulation and 
utilized for gene therapy. Ligand-polylysine complexed with 
DNA can also be utilized for gene therapy. Lipopolyamines 
are effective transfection agents. The cationic polyamine 
can complex with the anionic DNA. The polyethylenimine 
showed excellent transgene expression in the murine brain 
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and showed potential for gene therapy. The molecular conju-
gate vectors utilize a receptor-mediated mechanism for trans-
ferring DNA into tissues. Genes can be targeted to recep-
tors on the cell surface, and DNA can be conjugated to the 
targeting agent such as polylysine. The DNA released to the 
cells happens via endocytosis. The artificial chromosomes 
can be created by combining genomic DNA with alpha satel-
lite DNA synthetic arrays. They contain complete sequence 
elements for mitotic segregation of chromosomes as well 
as maintenance. The technique needs to be explored further 
for its potential role in gene therapy. Non-viral nanoparticles 
can also be studied for their potential role in gene therapy 
as they do not have much toxicity and are efficient [98]. 
Synthetic nano-delivery approach mimicking viruses with 
non-viral vectors’ safety can be utilized for gene therapy 
of CNS disorders [51, 99]. The silica nanoparticles have 
been studied for their potential role in gene therapy. The 
monodispersed nanoparticle aqueous suspension with the 
surface-functionalized amino groups for DNA-binding are 
studied. They can form complex with plasmid DNA and 
be introduced into the brain, and studies have been done 
in murine models. Thus, gene nanoparticle complexes can 
be utilized in neurodegenerative disorders for in vivo gene 
therapy. Carbon nanotubes can be functionalized and can 
be made biocompatible to deliver the gene to targeted cells. 
They can be coupled with dendrimers and can be utilized 
in gene therapy but need to be studied and standardized. 
Dendrimers can produce effective neuronal transfection 
and have low toxicity if the external amino groups undergo 
surface functionalization. Studies need to be conducted to 
evaluate BBB permeation’s efficiency and the delivery of 
genes to glial cells and neurons. This technique also needs 
further studies to be developed into a gene therapy strategy 
[51]. The most often used synthetic vectors in gene therapy 
are cationic polymers and cationic lipids, which permit the 
electrostatic interaction with DNA [100]. Cationic polymers 
are like peptides or amino acids positively charged, which 
can link to ligands ultimately acting at the cell and nuclear 
level. Also, while cationic lipids are amphiphilic molecules, 
like cholesterol, that can be infected by in vivo or in vitro 
methods, the cationic polymer’s efficiency largely depends 
on the cationic charge and linked stability and saturation 
[100]. In this way, non-viral vectors, besides being less path-
ogenic, have the advantage over viral vectors to be of low 
cost and used in handling techniques [101, 102]. However, 
to boost transfection effectiveness, non-viral vectors have to 
overcome intracellular and extracellular barriers [103, 104]. 
Genetic materials to tissues can be delivered by using physi-
cal methods and chemical barriers by microinjection and 
direct injection [102, 105]. To improve the DNA stability 
in circulation and release nucleic acids intracellularly, sev-
eral strategies have been implemented, including the use of 

acetyl bonds, disulfide bridges, polyethylene alcohol (PEG), 
and bio-responsive polymers [106–110].

Promoters in Gene Therapy

Gene expression can target certain cells or tissue by the pro-
moter region, active for the long term. Promoter binding 
varies in bacteria and eukaryotes. Considering eukaryotes, 
promoter binding is complex to the sense that in order to 
bind to promoters, RNA polymerase II requires at least 7 
transcription factors. The eukaryotic promoters are way 
complex as well as diverse than the bacterial/prokaryotic 
promoters. To list out a few eukaryotic promoters in research 
are CAG (hybrid mammalian promoter), CMV (human cyto-
megalovirus derived mammalian promoter), EF1α (human 
elongation factor 1α derived mammalian promoter), PGK 
(phosphoglycerate kinase gene derived from mammalian 
promoter), UAS (Gal4 binding sites in drosophila promoter), 
TRE (Tetracycline response element promoter), and human 
U6 nuclear promoter (for small RNA expression). Among 
these, gene expression in TRE is inducible, UAS is specific, 
and other promoters are constitutive. Bacterial promoters 
include araBad, lac, trp, Ptac, Sp6, and T7. araBad is an 
arabinose metabolic operon promoter which is inducible by 
arabinose. Expression of lac operon–derived promoters is 
induced by lactose or IPTG, but in absence of lacIq, lacI 
(lac repressors) are constitutive. trp are E. coli tryptophan-
derived promoters which in the presence of tryptophan 
represses trp gene expression. Ptac are promoters that are 
hybrid of both trp and lac and are similar in gene expression 
to that of lac. Sp6 promoters are derived from Sp6 bacterio-
phage which in the presence of Sp6 RNA polymerase has 
a constitutive gene expression. T7 promoters are derived 
from T7 bacteriophage which has a constitutive expression 
of the gene in presence of T7 RNA polymerase. In short 
different promoters include constitutive (upregulated pro-
moters that are active throughout various circumstances), 
repressible (promoters that used to downregulate expression 
of the gene that can affect the viability of a cell), and induc-
ible promoters (regulated promoters that are active only at 
specific circumstances or stimuli) [111–115]. Repressible 
promoters can be either regulated by positive repressible or 
negative repressible promoters. Positive repressible promot-
ers turn off the transcription by deactivating the activator 
protein by forming a repressor-activator protein complex 
and one such example includes Tet-Off. Repressor and co-
repressor protein binding promotes the repressor protein to 
bind to operator and blocking transcription. Such promoters 
are called negative repressible promoters, and this includes 
ADH1 which are generally used in yeasts [116, 117]. Induc-
ible promoters can either be positively or negatively regu-
lated. When a positive inducer binds to the activator protein, 
this in turn binds to the promoter leading to transcription 
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initiation, whereas the negative inducer binds to the repres-
sor protein which in turn detaches from the DNA leading to 
transcription initiation. Inducible promoters can be mainly 
of three types, namely, chemical-, light-, and temperature-
inducible promoters. Chemically inducible promoters are the 
most common among inducible promoters. Positive induc-
ible include tetracycline ON (Tet-On) system (used in both 
prokaryotic and eukaryotic system), LexA promoter (steroid-
regulated promoter), and AlcA promoter (alcohol-regulated 
promoter). Negative inducible include pLac and pBad [118, 
119]. Light-inducible promoters activate the expression of 
genes by using light such as red flame plasmid pDawn which 
can activate YFI gene responsible for phosphorylation of 
FixJ. FixJ in turn binds to FixK2 promoter which induces 
repressor cl transcription. Temperature-inducible promoters 
express either at a rise in or a fall of temperature and not at 
regular temperatures. These include heat shock–inducible 
Hsp70 or Hsp90-derived promoters [120–124]. One can use 
the promoters for neurofilaments, neuron-specific enzyme 
D-hydroxylase, enolase, and tyrosine hydroxylase, i.e., glial 
fibrillary protein astrocytes and myelin basic protein for 
oligodendrocytes [125, 126]. Sometimes, when the protein 
quantity is essential, an externally regulated “inducible” pro-
moter is advised. The Tet-off system (tetracycline-controlled 
transcriptional activation systems) controls gene expression 
in neurons or astrocytes. Neuron-specific enolase (NSE) pro-
moter driven by the vector herpesvirus was studied for a 
transgene expression regulation with a conclusion that NSE 
in herpesvirus vectors is not an optimal promoter that could 
deliver gene to the CNS neurons. Another approach was 
NSE incorporated in adenoviral vector in regions of cerebel-
lum, hippocampus, and striatum showed long-term neuronal 
cell-specific transduction. In spite of being neuron specific, 
NSE could be expressed in glial cells also. Tetracycline 
(Tet) regulatable transgene expression (TRE) coupled with 
adenoviral vector controlled by synapsin I promoter is capa-
ble of transfecting rat hippocampus making it significant 
in glial and neuronal cell function investigations. Synapsin 
(SYN) I promoter also has a long-term transgene expres-
sion from adenoviral vector in regions like thalamus and 
striatum. Using human cytomegalovirus (CMV) enhancer 
and platelet-derived growth factor B-chain (PDGF-β), a neu-
ron-specific promoter, neuronal transgene expression can be 
improved and this can be useful in the study of gene therapy 
in case of neurological disorders. Cytomegalovirus enhancer 
and SYN promoter with LV as vector showed persistent neu-
ronal expression. Phosphate-activated glutaminase (PAG) 
as well as vesicular glutamate transporter-1 (VGLUT1) 
promoters incorporated into herpesvirus can express gluta-
matergic neurons, whereas glutamic acid decarboxylase-67 
(GAD67) promoter driven by herpesvirus supports expres-
sion of GABAergic neuron. Nigrostriatal neuron-specific 
expression by GDNF or BDNF from herpes simplex virus 

vectors are useful for investigating gene therapy of Parkin-
son’s diseases [122].

Promoters in AD

Human PAD gene are promoter of A4 amyloid protein and 
has close resemblance with that of housekeeping genes pos-
sessing 72% GC-rich content in the DNA region. PAD gene 
regulation can be achieved based on four mechanisms, the 
GC-rich element involved potential protein binding, CpG 
region methylation, AP-1/Fos binding site associated with 
oncogene, and the stress-related heat shock control element 
[127]. A study by Ohyagi et al. demonstrated the activa-
tion of p53 promoter by specific binding of Aβ42 causing 
possibilities of p53-dependent neuronal apoptosis, synaptic 
degeneration, mitochondrial dysfunction involved in AD 
[128]. An Italian case–control study by Bizzarro et al. on 
APOE promoter interaction in AD confirmed genetic risk 
factors specifically for ACG3, ATT4, and ATG4 haplotypes, 
and single-nucleotide polymorphisms (SNP) in APOE pro-
moter gene can be independent of ɛ4 risk factors [129]. 
Another study reports a weak association of APOC1 pro-
moter polymorphism in AD [130]. Another association is the 
polymorphism in PIN1 promoter at − 842 (G → C) and − 667 
(C → T) regions to have an increased risk of AD [131]. 
Myeloperoxidase (MPO) gene promoter polymorphism in 
Chinese Han population has also been reported to have a 
contribution in AD risk via MPO regulation [132].

Promoters in PD

Based on hypothesis and unbiased (derived from a micro-
array study) approach, Wettergren et al. made efforts for 
selection and evaluation of promoter candidates relevant for 
PD that might prove useful for the disease treatment using 
gene therapy approaches. Prodynorphin (pDyn), dopamine 
receptor 1a (Drd1a), and dopamine receptor 2 (Drd2) were 
selected based on hypothesis approach. From a microarray 
study angiotensin I converting enzyme (ACE), DnaJ (Hsp40) 
homolog, microtubule-associated protein 1A (MAP1A), 
N-Acetylgalactosamine-6-sulfatase (GALNS), and ring fin-
ger protein 25 (RNF25) were selected based on unbiased 
approach. All candidates selected based on both approaches 
showed more than 90% neuronal specificity and were able to 
express transgene in rat striatum but the ones selected from 
microarray study showed highest efficacy [133]. Another 
study conducted on Prkd1 gene promoter characterization 
MN9D dopaminergic neuronal cells showed PKD1 to have 
a neuroprotective role in dopaminergic neurons during oxi-
dative stress at early stages and can probably contribute to 
PD drug development [134]. Neuron-specific Tα1 α-tubulin 
(Tα1) promoter induced neuronal-specific expression of Gli1 
showed neuroprotective activity. Suwelack et al. concludes 
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that neuronal-specific expression of transcription factors 
can be specific, more effective, and can apply for targeted 
neurological gene therapy with minimum side effects [135].

Promoters in ALS

NAD+ in astrocytes activates nuclear factor, erythroid-
derived 2, like 2 (Nfe212 or Nrf2) as well as upregulates sul-
firedoxin 1 (SRXN1) and heme oxygenase 1 (HO-1). SIRT6 
overexpression can also cause Nrf2 activation. Based on 
these facts, Harlan et al. designed a primer by incorporating 
Nrf2 binding site onto both Srxn1 and Hmox1 promoters. 
Enhancing the availability of NAD+ plays a crucial role in 
modulating various cytoprotective mechanisms and thereby 
increasing the antioxidant defenses within the astrocytic 
region which are of importance in motor neuron interaction 
in ALS. Further studies are required to estimate the thera-
peutic potential of NAD+ in ALS [136].

Route of Administration

Two routes are preferred to what concerns administration 
routes, either direct injection or an indirect approach that 
determines gene therapy’s safety and efficiency. Indirect 
injection, a restricted and precise gene region, is targeted, 
which requires stereotaxic guidance, whereas the indirect 
route can be used for neuron population with a retrograde 
axonal-transport system [137, 138]. This indirect approach 
facilitates a selective and targeted transfection of motor neu-
rons by intramuscular injection of the vector carrying a gene 
of interest. This review gives an account of gene delivery via 
various routes by utilizing AAV vector.

Systemic Delivery

AAV as a vector can be transduced via systemic circula-
tion targeting the liver and most trials have demonstrated its 
ability in correcting defective gene mostly inherited mono-
genic diseases [20]. Localized administration via eye is not 
influenced by NAb levels, but in parenteral administration, 
the NAb levels need to be monitored in patients and the re-
administration possibility is hard [139]. There are concerns 
from animal models that rarely rAAV vectors integrate into 
the genome producing genotoxicity [140, 141]. In hepatocel-
lular carcinoma samples, the AAV sequences were present 
adjacent to cancer driver genes, even though rarely [142]. 
These concerns need to be addressed and the possibility of 
genotoxicity should be monitored in the development of 
AAV vectors.

Intramuscular Administration

The direct intramuscular administration via injection is 
another delivery strategy. In Europe, Glybera is an approved 
AAV gene therapy strategy which is an AAV1 that codes 
lipoprotein lipase deficiency gene [143, 144]. Various AAV 
variants can effectively target transduction of skeletal mus-
cles [145]; then, after transduction, the muscle cells act as 
a site for protein production which produces its effect either 
locally or systemically. The cell turnover in case of muscle 
cells is low, so that the transduced AAV will remain in these 
cells as an episome for many years and is evident in research 
with primates [145]. Therefore, a single-dose intramuscu-
lar administration does not require future re-administration 
unless the transduced product undergoes immune clearance 
or is severely damaged. The therapeutic strategy is being uti-
lized in AGTC as well as Adverum for muscular dystrophy 
as well as α1-antitrypsin deficiency [20].

Central Nervous System Administration

In Parkinson’s disease and in case of inherited Canavan 
disease, Batten disease, as well as mucopolysaccharidosis 
(MPS) IIA, IIB, IIIa (Sanfilippo syndrome type A) and IIIb 
(Sanfilippo syndrome type B), direct administration to the 
CNS is employed. Various phase I/II trials are being cur-
rently carried out utilizing AAV variants such as AAV2, 
AAV9, and AAVrh10 [54, 145, 146]. The strategies for 
administration include direct intraparenchymal delivery to 
various brain regions as well as utilizing other routes such 
as cisternal, intracerebroventricular, and lumbar intrathe-
cal route [146]. The ideal route for administration depends 
upon the disease condition as well as the targeted areas. In 
the case of PD, the current knowledge recommends direct 
injection into the striatum, substantia nigra, or the putamen. 
In case of diseases affecting major regions of the brain, for 
example, MPS and Canavan disease, an injection to cerebel-
lum is employed [146, 147]. A direct delivery to the cerebro-
spinal fluid (CSF) utilizing intrathecal route produces wide 
distribution in the CNS and can be employed in cases of AD 
as well as spinal muscular atrophy [146–150]. The AAV 
variants which can permeate the BBB can be delivered sys-
temically as a substitute for administration into the CSF. The 
AAV9 can permeate the BBB and transduce to wide areas 
of the CNS [45, 148, 151] and is being utilized by AveXis 
(AVXS-101) in the therapy of spinal muscular atrophy.

In AD, the neurofibrillary tau tangles (NFTs) as well as 
amyloid plaques, which are neurotoxic, have been aimed to 
be cleared utilizing antibodies which are plaque specific, 
showed promising result of limitation of disease progress 
in various animal experiments as well as early clinical stud-
ies [152, 153]. But larger research showed the results to be 
inconclusive. Failures where are also documented which can 
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be because of inadequate exposure of brain areas to the anti-
body therapy [153, 154]. Alternate approaches can utilize 
administering AAV which encodes the antibody, ether via 
direct local administration to the CNS or systemic adminis-
tration, then reaching the brain via BBB permeation, produc-
ing high exposure of the CNS to the therapeutic antibody 
[155].

Cardiac Administration

The direct local administration of AAV to the cardiac muscle 
has been studied for heart failure in several clinical studies. 
The SERCA2A have been tried to be delivered to the heart, 
but the study by Celladon failed to yield positive results. 
Another study by UniQure aims to deliver S100A into the 
heart and is under preclinical studies [156–158]. Celladon 
utilized intracoronary infusion to administer the SERCA2A 
AAV1 product, whereas UniQure utilizes retro-infusion as 
well as left anterior descending coronary occlusion [158, 
159]. The strategy can target S100A AAV9 product to the 
area of interest in the heart and the real benefit will be under-
stood in future studies.

Pulmonary Administration

The AAV as aerosolized form fore inhalational pulmonary 
administration were studied for cystic fibrosis (CF) but were 
unsuccessful in producing positive results yet indicated the 
safety of AAV via the route of administration [160–162]. 
Airway congestion can affect AAV distribution hampering 
the transduction (118). The CF transmembrane conduct-
ance regulator (CFTR) gene has a size of more than 4 kb; 
the upper limit of AAV package capacity and the gene is 
expressed in submucosal glands which is difficult to be 
targeted effectively [160, 161]. Despite all these facts, the 
efforts showed AAV as a safe delivery strategy targeting 
the lungs and can be utilized in other diseases such as influ-
enza as well as other lung infectious diseases [163]. The 
local delivery of AAV as a gene therapy strategy is just in 
the beginning stages of exploration. The broad tropism as 
well as the viral stability in various cells and tissues can be 
utilized efficiently. At least an AAV variant can be utilized 
for each targeted tissue type and AAV discovery as well 
as engineering can generate AAV variants with desirable 
specialized functions. All these efforts can generate novel 
therapeutic approaches for newer indications [54].

Gene Therapy in Neurological Conditions

Gene therapy has been identified as a key therapeutic strat-
egy for nervous system disorders. Despite the advances 
stated so far, there is still a gap between principal theories 

and therapeutic efficiency. The initial trial identified that 
gene therapy is a safe method. A well-tolerated vector iden-
tified is AAV-9, with a robust neuronal tropism and cross 
BBB, besides revealing highly effective in various preclini-
cal and clinical trials [164–167]. Another commonly used 
viral vector is a tricistronic LV vector, prosavin running in a 
clinical trial to treat PD [75, 168]. Several delivery methods 
have also been used, like intracerebroventricular injection, 
intrathecal, direct delivery to the brain, and spinal delivery, 
mainly depending on the transgene efficiency [169–172]. A 
better understanding of the neurological diseases’ etiology 
and the identification and validation of a reliable biomarker 
will give a clearer idea of disease initiation and progres-
sion. Table 3 gives an account of gene therapy approaches 
including growth factor gene therapy and the possible mech-
anisms/outcomes in various neurological disorders. The 
various brain disorders and vectors used in gene therapy are 
described in the next subsections and summarized in Fig. 3.

Alzheimer’s Disease (AD)

AD is a very common progressive neurological disease and 
is currently considered a social burden. AD is character-
ized by the damage of brain regions and neuronal circuits 
by the deposition of amyloid plaques, leading to neuronal 
circuit dysfunction and degeneration, which ultimately 
leads to memory loss, resulting in dementia and death. AD 
is known to be age-related, inherited as an autosomal disor-
der linked to several genetic risk factors [232, 233]. Indeed, 
small drifts or mutations are present in several genes, such 
as the amyloid-beta precursor protein (APP) gene or prese-
nilin genes. AD results in cholinergic neuron loss in nucleus 
basalis magnocellularis and the inhibitors of cholinesterases 
include the primary therapy but result in little symptomatic 
relief. In the basal forebrain, the cholinergic neuron func-
tion can be increased by nerve growth factor (NGF). The 
protective action of NGF has been seen in the primates with 
lesions and aged primates [25, 234, 235].

Growth Factor Gene Therapy in AD

The AAV2 delivery of NGF was examined in a dose-escalat-
ing clinical study phase I in mild to moderate AD patients. 
The study assessed long-term safety and feasibility utiliz-
ing a traditional surgical strategy [25, 234–237]. Earlier 
studies utilized fibroblasts modified genetically and were 
examined in primate and rodent models possessing cholin-
ergic injury. The NGF producing fibroblasts survived and 
increased the cholinergic neuron survival [24]. A direct kind 
of gene therapy employing AAV2, which encodes NGF, was 
studied [238]. Studies employing a rodent lesion model for 
AD utilized NGF expressing modified NSL engrafted in the 
CNS restoring cognitive capabilities and seems promising 
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for the future [173, 174]. NSC’s BDNF basal production 
can also notably improve cognitive abilities and synaptic 
plasticity in AD transgenic mouse models [175, 176]. The 
genetically modified NSC, which shows BDNF overexpres-
sion, showed an effect in the AD transgenic mouse model 
[239]. An insulin-like growth factor (IGF) producing fetal 
cortical-derived NSC survived for 10 weeks in the AD trans-
genic mouse model, but the exact therapeutic effects need to 
be explored [240]. Modified NSL producing neprilysin, an 
enzyme degrading Aβ led to a betterment in synaptic density 
and alleviated AD pathology in transgenic mouse models 
[182]. Many studies regarding MSC transplantation showed 
promising outcomes on cognitive capabilities in mouse mod-
els of AD producing Aβ reduction, microglial function, and 
neuroinflammation modulation [28, 241, 242]. A study by 
Kiyota and team on transfer of FGF2 gene in AD mouse 
model concluded FGF2 delivery via adeno associated virus 
serotype 2/1 hybrid (AAV2/1-FGF2) could enhance neuro-
genesis and hippocampal Aβ clearance which puts forward 
chances of FGF2 gene delivery to be used as an alternative 
in AD therapy [243].

Miscellaneous Gene Therapy Approaches in AD

In another study, miRNA-937 knockdown through anti-
sense miRNA-937 overexpression in MSC increased Brn-4 
expression, which is important for neurons’ development. 
In the AD transgenic mouse model, these cells were intro-
duced to the hippocampus, resulting in Aβ reduction, raised 
BDNF, and improved cognition [21]. In AD, the ex vivo 
gene therapy is promising a lot of studies are yet required 
to utilize stem cells as delivery technology to alleviate the 
pathology of AD modifying stem cells to generate TGF-β 
growth factors microglial activation modulators or improv-
ing the function of astrocytes can be studied for its therapeu-
tic potential [244–247]. A major difficulty can be targeting 
a wide brain region with cells to generate the desired thera-
peutic action [15].

A study conducted in a mouse model proved that an 
AAV expressed miRNA capable of inhibiting acyl CoA: 
cholesterol acyltransferases 1(ACAT1), capable of lower 
Aβ levels [248, 249]. Another wild mouse study revealed 
that antisense oligonucleotide therapy could inhibit micro-
tubule-associated protein τ. But there is an emerging need in 
assessing animal models of AD to assess the progression of 
damage [250]. An enzyme neprilysin mediates Aβ catabo-
lism, and its amount is decreased during the early stages of 
AD. Two papers published using the `AAV9 vector about the 
administration of neprilysin/membrane metalloendopepti-
dase (MME) by direct injection into cortex or hippocampus 
by intracardiac administration [250–252]. These studies gave 
a reduction in the Aβ levels. Various studies showed that 
the symptoms of AD could also be lessened by leptin. A 

double transgenic mouse is injected with a LV vector con-
taining leptin, which reveals a low Aβ load and reduces τ 
phosphorylation with a better synaptic density [253]. Reel 
pathway expression has been identified as the therapeutic 
target for AD, linked to the early pathogenesis as it reduces τ 
phosphorylation. Other studies on F-spondin, a homologous 
of Reelin, revealed that when administered into the dentate 
gyrus of the hippocampus of mice, it showed reduced amy-
loid plaques and increased learning memory. Apoptosis is 
caused by the expression and knockdown of various genes. 
The toxic and ill effects of Aβ generate reactive oxygen spe-
cies and induce apoptosis [184]. Another study implicated 
an improvement in learning and memory [254] with low lev-
els of Caspase-3 proteins (CASP3) and apoptosis by induc-
tion of LV short hairpin (shRNA) against CASP3. In a later 
study, it was found that oxidative stress–induced apoptosis 
and neurotoxicity of Aβ could be attenuated by targeting 
hypoxia-inducible factor 1 α subunit (HIF-1), which pos-
sesses neuroprotective activity [255].

Neurotropic support using growth factors is also eval-
uated for AD. Animal studies implicate that many of the 
growth factors showed successful results but failed in clini-
cal trials, showing that the procedure needs more refinement 
and better targeting. In the triple transgenic mouse model 
study, it was found to preserve learning and memory but 
no change in the levels of τ and Aβ [77]. A reduction in the 
Aβ levels is observed during the overexpression of human 
APP using the AAV8-IGF2 delivery system [178]. The 
authors illustrate the link between IGF2 and AD expression 
by showing the reduced amount of IGF2 in the hippocampus 
of AD patients. According to scientists, the new targets have 
promiscuous potential but require fully tested clinical trials 
to estimate the targets’ safety and efficacy.

Parkinson’s Disease (PD)

PD is a common neurological disorder characterized by the 
loss of dopaminergic neurons in substantia nigra, causing 
a reduction in dopamine levels [4]. The best symptomatic 
treatment for PD was introduced in 1960 by the molecule 
levodopa. Besides this, there are many other treatments cur-
rently in use, like dopamine agonists, monoamine oxidase-
B inhibitors, and catechol-O-methyl transferases (COMT), 
among others. Recently multitargeted compounds also 
experimented with for PD. Another approach that has been 
revealed to be useful in treating PD was deep brain stimu-
lation (DBS). The surgically implanted electrode has an 
advantage of improving motor coordination but exacerbates 
the cognitive and emotional deterioration that erupts at the 
later PD stages [256].
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Table 3   Gene therapy approaches in various neurological disorders

Neurological disorders Gene therapy approaches Outcomes/mechanism References

Alzheimer’s disease Growth factor gene therapy approaches
Nerve growth factor (NGF)-AAV2 system Restoration of cognitive capabilities [173, 174]

Brain-derived neurotrophic factor 
(BDNF)

Improvement in cognitive abilities and synaptic plasticity in transgenic mice [175, 176]

Fibroblast growth factor (FGF) gene Clearance of hippocampal Aβ and significant improvement in spatial learning [177]

AAV8-insulin-like growth factor-2 
(AAV8-IGF2) delivery system

Reduction in the Aβ levels, forming of dendritic spine is promoted and memory 
enhanced

[77, 178]

Miscellaneous gene therapy approaches

LV-PGRN Progranulin haploinsufficiency overexpression leads to inhibition of spatial memory 
dysfunction and neuronal loss

[179]

AAV1-AKT Restore aberrant mTORC1 activity thereby preventing neurodegeneration [180]

AAV2-PINK1 Overexpression of PINK1 causes promotion of autophagy by facilitating dysfunc-
tional mitochondria clearance there by ameliorating decline in cognition and Aβ 
induced synapses

[181]

AAV2-PSD95-6ZF-VP64 Epigenetic regulation and promotion of autophagy [82]

AAV2/8-sTREM2 TREM overexpression leads to an improvement in the migration and proliferation of 
microglia and Aβ degradation, thereby spatial memory dysfunction is ameliorated

[82]

Neprilysin Reduction in the Aβ levels and improvement in synaptic density and alleviation of 
AD pathology in transgenic mouse models

[182]

miRNA-937 knockdown Antisense miRNA-937 overexpression in MSC which increased Brn-4 expression 
responsible for neurons development

[21]

miRNA-AAV system Lowering of Aβ levels in mouse [183]

F-spondin Administration into the dentate gyrus of the hippocampus of mice, it showed reduced 
amyloid plaques and increased learning memory

[77, 184]

RNAi-based therapy CDK5 silencing by using RNAi probably suppresses neurofibrillary pathology and τ 
hyperphosphorylation

[185]

Parkinson’s disease Growth factor gene therapy approaches
Neurturin (NTN) Binds to the GFRα 1 and 2 of the GDNF receptor and is a structural and functional 

homolog of GDNF having similar neuroprotective nature that of GDNF in amelio-
rating PD pathology

[186, 187]

Glial-derived neurotropic factor (GDNF) These are neurotrophins that via AAV-mediated gene transfer caused minimal puta-
men coverage whereas via lentiviral delivery resulted in reduction of cytokines in 
substantia nigra and striatum and microglia in the striatum of MPTP lesioned and 
normal monkeys

[17, 188]

AAV2-GAD Primarily alteration in Unified Parkinson’s Disease Rating Scale (UPDRS) which was 
later terminated due to financial reasons, and this system works by inhibiting local 
GABA, thereby correcting the pathological hyperactivity in basal ganglia

[11, 187]

Miscellaneous gene therapy approaches

AAV1-AKT mTOR signaling activation whereby restoration of aberrant mTORC1 activity occurs 
thereby preventing neurodegeneration

[82, 189]

AAV2-hAADC hAADC delivery to MPTP-lesioned primates caused long-term and significant 
improvements in behavioral rating scores. Therapeutic goal of therapy strategy 
was to produce a continuous as well as stable production of dopamine in the motor 
region of the putamen

[11]

AAV2-HSP70 Overexpression of HSP70 regulates mitochondrial oxidative stress and functions 
thereby reducing neurotoxicity

[82]

AAV2-TFEB Transcription factor EB overexpression enhances neuronal survival and axonal regen-
eration thereby improving α-synuclein-induced neurodegeneration

[82]

AAV2-XBP-1 Local delivery of XBP-1 to substantia nigra or striatal region can halt neurotoxin 
induced neurodegeneration

[82, 190]

AAV5-BiP BiP overexpression reduces ER stress and unfolded protein responses thereby reduc-
ing apoptosis of dopaminergic neurons as well as progression of disease, addition 
to motor performance enhancement

[82, 191, 192]

AAV6-Lamp2a Lysosome-associated membrane protein 2a overexpression enhances neuronal sur-
vival and axonal regeneration thereby improving α-synuclein-induced neurodegen-
eration

[82]

RNAi Therapy α-Synuclein suppression or knock down by RNAi can effectively treat PD. Another 
approach is β-synuclein encoded gene transfer which will bind to α-synuclein 
thereby cause reduction in accumulation and aggregation of α-synuclein in synap-
tic membrane

[193]

Amyotrophic lateral 
sclerosis

Growth factor gene therapy approaches
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Table 3   (continued)

Neurological disorders Gene therapy approaches Outcomes/mechanism References

Genetically engineered cells secreting cili-
ary neurotrophic factor (CNTF)

Beneficial effects of NTFs, not complete cure [194, 195]

Genetically engineered myoblast cells 
secreting GDNF

Promotes survival of motoneurons, thereby delaying neurodegeneration of ALS [196]

BDNF/GDNF-adenoviral delivery Massive motor neuron death was prevented [197]

BDNF/CNTF-adenoviral delivery Axotomized motor neurons survived up to 5 weeks, neurotrophin-3 overexpression 
could prevent axonal degeneration at motor end plates but effect was little in the 
quantity of neuronal cell bodies in motor end plates

[198]

IGF1-AAV complex Causes retrograde transportation from spinal muscles to motor neurons thereby 
prolonging life and delaying progression of the disease

[199]

Miscellaneous gene therapy approaches

AAV6-SIL1 SIL1 delivery to intracerebral region reduces ER stress by restoration of ER homeo-
stasis thereby prolonging survival

[82]

AAV9-snapin Snapin overexpression aids in reversing autophagy impairment, survival of motor 
neuron enhancement by the correction of retrograde transport defects

[82]

Vascular endothelial growth factor 
(VEGF)

VEGF expression via lentiviral vector could delay the onset as well as progression 
of ALS

[200, 201]

Spinal muscular atrophy Replacement of SMN1 via AAV9 Most animal studies implicate a delay in disease progression, but only the partial 
progression in motor neuron numbers

[202–204]

Spinocerebellar ataxia
Epilepsy
Huntington’s disease
Stroke
Spinal cord injury
Traumatic brain injuries

RNAi therapy SCA1 and SCA7 are targeted through direct brain injection via RNAi. SCA1 targeted 
by RNAi causes suppression of polyglutamine-induced neurodegeneration. Sup-
pression of Atxn3 in SCA3 rats via lentiviral delivery demonstrated mitigation of 
degeneration

[205]

miRNA delivery miRNA delivery in SCA3 mice caused improvement in molecular phenotype. The 
usage of miR-3191–5p in SCA6 animal models demonstrated protection against 
Purkinje cell degeneration, motor deficits, and ataxia. Direct delivery of miRNA or 
AAV in SCA7 mice cerebellum showed an improvement in ataxia phenotype

[205]

Antisense oligonucleotide ASO approach Targeted against ATXN1, ATXN2, and ATXN3 demonstrated a reduction in these 
protein levels

[205]

Transfer of neurotrophin genes FGF-2, BDNF encoded by HSV vector containing transgene can cause neural tissue 
regeneration and reduce the epileptogenesis

[206–208]

Galanin and neuropeptide Y delivery via 
recombinant AAV vector

Seizure inhibition [209–211]

Rearrangement of glutamate or GABA 
receptor composition to modulate 
receptors response

Gave promising results in epileptic animal models [212]

Restoration of neuropeptide balance CG01 along with NPY and Y2 genes when delivered into the brain post-surgery 
confirmed antiepileptic effects by restoring neuropeptide balance

[213]

RNA interference (RNAi) This approach has aided in suppressing pathological level of polyglutaminated 
huntingtin (mHtt) protein and delivery via AAV5 has demonstrated a widespread 
distribution of the transgene

Exon 1 of huntingtin gene targeted by adenoviral vector expresses a short hairpin 
RNA which is capable of inhibiting expression of huntingtin in both non-neuronal 
as well as neuronal cell lines

[214–216]

Genetically engineered nerve growth 
factor-producing fibroblasts

Protection against excitotoxic insults [217]

Encapsulated genetically engineered cel-
lular implants

Encapsulated recombinant human ciliary NTF implants that produce fibroblasts 
prevents degeneration of striatum and behavioral defects

[218]

Gene transfer of NGF/CNTF factor Prevention of degeneration [217, 218]

Ciliary neurotrophic factor (CNTF)-
lentiviral delivery

Showed dose dependent neuroprotective effect in rat model [218]

AAV-GDNF Incorporation into mouse striatum developed behavioral as well as neuroanatomical 
protection

[15, 219, 220]

AAV1-caRheb Restore aberrant mTORC1 activity thereby preventing neurodegeneration [82]

AAV2-XBP-1 Local delivery of XBP-1 to substantia nigra or striatal region can halt neurotoxin 
induced neurodegeneration

[82, 221]

Antisense therapy Could effectively cause reduction of mHtt protein [222]

Growth factor gene therapy approaches

FGF-2 Proliferation of progenitor cell leading to neurogenesis [223]
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Growth Factor Gene Therapy in PD

Considering gene therapy in PD, two strategic approaches 
can be made: symptomatic and neurorestorative approach. 
Symptomatic treatments include glutamic acid decarboxy-
lase (GAD) and aromatic L-amino acid decarboxylase 
(AADC), whereas neurorestorative approaches involve 
NTFs, namely, neurturin (NTN) or GDNF, which are trans-
ferred via in vivo gene therapy [11].

NTN can bind to the GFRα 1 and 2 of the GDNF receptor 
and is a structural and functional homolog of GDNF [186]. 
NTN is a neuroprotective substance like that of GDNF 
[257]. Many restorative neurotrophins are known, out of 
which GDNF is seen promising in animal studies to miti-
gate PD pathology [258]. The transforming growth factor- β 
(TGF-β) members include GDNF and similar neurotrophins.

In preclinical and clinical studies, two GDNF delivery 
strategies have been studied, including AAV-dependent 
gene transfer and direct infusion of proteins [259]. The 
initially documented preclinical studies regarding GDNF 

gene therapy targeted substantia nigra as well as striatum 
of MPTP-lesioned and normal aged monkeys utilizing a LV 
vector [260]. AAV2-GDNF putamenal administration pro-
duced better clinical scores, raised DA turnover, and a raised 
uptake of PET-FMT in monkeys showing symptoms of PD 
for 6 months.

Apart from the AAV-mediated GAD and growth factor 
approach, several emerging ex vivo gene therapy approaches 
target PD. Transplantation of fetal NSC to MPTP-admin-
istered mice produced notable improvements in behavior 
regarding the protection of dopaminergic neurons [261]. The 
BDNF was increased in substantia nigra and striatum, and 
there was an increase of neurotrophin-3 and GDNF. There 
was a reduction of cytokines in substantia nigra and stria-
tum and microglia in the striatum. The genetically modi-
fied human NPC generating GDNF was introduced into the 
striatum of rats with 6-OHDA lesions resulting in improved 
behavior and survival of dopaminergic cells. They showed 
neuroprotection in primates with MPTP lesion [17, 188].

Table 3   (continued)

Neurological disorders Gene therapy approaches Outcomes/mechanism References

GDNF GDNF administration could cause reduction in motor function damage, and cerebral 
infarction were limited which might have occurred due to antiapoptotic and NTF 
mechanisms

[224]

Miscellaneous gene therapy approaches

Stem cell gene therapy approach NTFs such as BDNF transfects recombinant mesenchymal stem cells delivered by 
lentiviral vectors can promote recovery and regeneration of neurological function

[225]

HSP27 delivery HSP27 delivery with a suitable viral vector could reduce the lesion size in experi-
mental stroke model post stroke

[226]

SOD-HSV-1 Antioxidant gene, SOD when administered through striatal region prior or post 
cerebral ischemia could improve 50% of neuronal survival due to neuroprotective 
property

[227]

RNAi therapy Endothelial gene silencing via T cell invasion could hold the production of neuro-
toxic cytokine as well as secretion of IF-γ thereby reducing neuroinflammation 
after ischemia as well as the infarct volume

[228]

CRISPR/Cas9 genome editing Extenuated the adverse effects caused by spinal cord injury [229]

Enhancement of pro-regenerative factors Kruppel-like factors (KLFs) and SOX11 promotes axonal regeneration and neuro-
genesis

[229]

Short-hairpin RNA (shRNA) silencing 
inhibitory factors

Phosphatase and tensin homolog (PTEN) via mTOR downregulation can reduce 
damaged neuron regeneration

[229]

Chloride potassium symporter 5 (KCC2) KCC2 was identified which could maintain a balance in excitatory and inhibitory 
neurotransmission ratio via modulation of neural circuits and AAV mediated over-
expression of KCC2 could improve the functional recovery with less or no adverse 
effects by influencing synapsin promoter

[229]

Enzymatic degradation of glial scars 
secretions

Chondroitinase ABC (ChABC) causes enzymatic degradation of CSPGs that can 
improve neuronal functionality and regeneration

Application of gene therapy that is by incorporating lentiviral vector to ChABC gene 
resulted in a long-term expression the gene that could improve fine motor recovery 
post cervical SCI

[229]

Gene therapy with heat shock protein 
(HSP72)

High neuroprotective potential, promotion of growth, survival and differentiation of 
neuronal cells

[230]

GDNF- adenoviral delivery, gene transfer 
via AAV8, transfer of calbindin D 
gene via HSV, NGF expression via 
transferrin-associated cationic lipo-
some/ Tf-lipoplexes

Caused attenuation in traumatic injury in focal cortex and these include [231]

AAV-based overexpression of S6K1 or 
AKT

Therapeutic effect by mTOR signaling activation [231]
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The IGF-1 secreting modified NPC produced similar 
effects in rodent models [262]. The FGF-2 producing modi-
fied embryonic mesencephalic progenitor cells of the rat 
could not enhance the functions or survival of dopaminergic 

neurons in rats with 6-OHDA lesions showing every trophic 
factor does not show neuroprotective action [263].

In PD animal models, many researches have been done 
with NSC, which showed the protective activity for dopa-
minergic neurons showing the damage and enhanced 

Fig. 3   Application of gene therapy vectors in the treatment of various brain disorders. Various diseases of the brain are represented in pink 
boxes, and yellow boxes indicate the specific vectors used in gene therapy for the treatment of central nervous system disorders
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behavioral recovery in striatum lesions. The MSC shows 
benefit because of immunomodulatory activities and growth 
factor production [264]. But MSC does not have evidence for 
long-term survival, limiting its therapeutic value in neuro-
degenerative disorders. The ex vivo gene therapy to deliver 
growth factors has not yet reached the clinics. The direct 
GDNF delivery targeting caudate-putamen showed poten-
tial in clinical studies [265, 266]. Many successful clinical 
and preclinical studies with direct delivery of growth factors 
and several successful ex vivo approaches employing cells 
producing growth factors, shows a promising future in the 
treatment of PD. A human NPC producing GDNF is being 
studied for ALS [15]. The expression of GDNF is an effec-
tive animal model for PD, and side effects that constitute 
the expression of GDNF include the downregulation of TH, 
aberrant axonal sprouting, and increased turnover of dopa-
mine [267–269]. In another study, the E. coli dihydrofolate 
reductase with its destabilized domain (DD) fused with a 
LV vector was developed. Trimethoprim drug, which can 
cross BBB, binds and stabilizes the destabilized domain 
[270, 271]. It can stabilize the domain, expression, and 
extension of GDNF. This study is conducted in the rodent 
model before the induction of PD. Furthermore, studies 
are required to conduct on animals that already display PD 
symptoms [271].

The possibility of using gene therapy for the treatment of 
PD has been studied extensively and found safe and effective 
in phase I clinical trials, despite most of them have failed 
to show improvement in phase 2 trials, except for direct 
injection in the subthalamic nucleus by AAV2-GAD [72]. 
Another phase II clinical study of postmortem brain tissue 
found that NTN delivery to the putamen led to a rise in NTN 
I of the striatum/putamen, but not in the substantia nigra, 
that can be attributed to the failure of the retrograde trans-
port of dopaminergic neurons [71, 272]. Another phase II 
trial was undertaken to resolve this transduction pattern, and 
NTN was injected into the putamen and substantia nigra. In 
such an approach, scientists hypothesized that gene therapy 
might be a success only when the growth factor is delivered 
before the neurodegeneration progresses extensively.

Miscellaneous Gene Therapy Approaches in PD

The AAV2-GAD delivers GAD with CED’s help to the sub-
thalamic nucleus (STN) and inhibits local GABA, thereby 
pathological hyperactivity in basal ganglia. While AAV2-
GAD strategy was examined in phase I and II trials, sympto-
matic amelioration was displayed to a lesser extent achieved 
by STN stimulation via deep brain stimulation or a neuro-
stimulator [11, 187]. The gene therapy employing AADC is 
a prodrug strategy where the hAADC enzyme focal replace-
ment produces an elevated transformation of levodopa to 
form dopamine and can be utilized in long term levodopa 

therapy. The therapy targets sensorimotor territory post com-
missional striatum. The striatum’s medium spiny neurons 
are not seen degenerating in PD, and research has shown 
these cells producing transgene expression for a larger time 
[273, 274]. The delivery of hAADC to promote with MPTP 
lesion in preclinical experiments resulted in notable better 
long term behavioral rating scores and notably reduced the 
requirement and adverse effects of levodopa [273–277]. The 
AAV2-hAADC delivery targeting putamen via iMRI-CED is 
being studied in a phase I trial aiming to track and modulate 
in real time the vector delivery with the help of iMRI-CED 
and can result in precisely calculating the vector coverage of 
the targeted brain areas. A two-center phase 1/2 open-label 
study of prosavin is done in 2014 [75], a LV vector encoding 
AADC and cyclohydrolase 1 tyrosine hydroxylase. No pre-
vious clinical trials employing LV vectors in humans have 
been reported. The therapeutic approach was to generate 
dopamine in a stable and continuous fashion in the motor 
areas of the putamen and showed safety in the first time use 
in humans, the LV vector–based gene therapy for the disease 
of CNS [11].

A clinical trial with prosavin targeting the dopamine syn-
thesis pathway used trancistronic LV, with advantageous 
potential to deliver gene encoding for three enzymes, like 
GTP cyclohydrolase, tyrosine hydroxylase, dopa decarboxy-
lase [75, 278]. The phase I and II trials were a dose-esca-
lation study targeting the sensorimotor part of the striatum 
and putamen. As the main findings, the trial revealed suc-
cess, with the drug showing a good safety profile and being 
promising in improving motor functions [69].

When a long-term phase I trial using a viral vector, 
AAV2 with AADC used as a transgene, an improvement 
in the PD rating scale was observed for the first year, but it 
was reduced for the following years [279]. The researchers 
focused on improving gene delivery by using an MRI-guided 
delivery system with more putamen coverage, anticipating 
AAV2-AADC to be a better therapy in humans [280]. The 
expression of tyrosine hydroxylase (TH) and GTP cyclo-
hydrolase 1 (GCH1) to synthesize dopamine has experi-
mented in non-human primate models of humans and rats 
using the AAV5 vector. The rat gave a promising result, 
but in primate models failed to express TH [281, 282]. A 
preliminary rat model with two groups was taken to assess 
cerebral dopamine NTF efficiency, with both reporting func-
tional improvements and only one TH protection [283, 284]. 
Achieving control over the transgene expression may refine 
gene therapy as sometimes transgene, and its continuous 
expression may lead to several side effects.

Amyotrophic Lateral Sclerosis (ALS)

ALS is a progressive neurological disease known as Leu 
Gehrig’s disease that causes weakness of respiratory 
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muscles, arms, and legs, sporadic or familial presentation, 
and fatal within 2–5 years [4, 285, 286]. The familial ALS 
can be approached in gene therapy by specific mutations, 
whereas in sporadic ALS, the neuron is supported by the 
delivery of NTFs [285, 286].

Growth Factor Gene Therapy in ALS

Aebischer et al. performed phase I clinical trial of encapsu-
lated genetically modified xenogeneic cells in ALS patients 
via intrathecal route following initial systemic delivery of 
CNTF and concluded persistent delivery of neurotrophic fac-
tors with human CSF via ex vivo approach can open doors 
for further treatment of neurological diseases including ALS 
[287]. Team effort by Suzuki and colleagues reported the 
GDNF expressing MSCs engraftment onto rat skeletal mus-
cles could spar death of motor neuron death and ameliorate 
survival directing towards a practical ex vivo gene therapy 
approach in ALS [288–290]. Another effort by Acsadi et al. 
to study AV-mediated GDNF expression in transgenic neo-
natal SOD1 mice muscles demonstrated prolonged survival 
and a delay in motor function decline which also opens up 
chances of GDNF in ALS treatment if successful in clinical 
trials [291]. Neurotrophin-3 (NT-3) delivery via AV vector 
can also be an option in motor neuron diseases including 
ALS but lacks bioavailability and risk of toxicity which rec-
ommends this approach to be of a lower choice in clinical 
practice [292]. Another approach is AAV-mediated IGF-1 
delivery into mice muscles that could offer delayed onset of 
disease as well as neuroprotection. But the rationale in selec-
tion of both vectors and growth factors matters that could 
yield successful results [293].

Miscellaneous Gene Therapy Approaches in ALS

In ALS, earlier studies of cell-based therapies focused on 
replacing motor neurons [294–297]. Other approaches 
focused on trophic factor production, thereby improving 
motor nervous and motor functions [298–300]. Studies were 
conducted with modified NPC and NSC showing growth 
factor overexpression and its transplantation improved motor 
neurons’ survival. Research conducted with NSC producing 
GDNF and IGF-1 resulted in improved motor neuron sur-
vival in the ALS animal model, whereas NSC that express 
VEGF, NT3, and BDNF could not produce results [15, 301]. 
In many studies utilizing the SOD1G93A ALS rat model, 
the NPC, which can express GDNF administered via intra-
parenchymal injection, had remarkable motor neurons [18, 
196, 302]. Still, the locomotive function seems unaffected 
as there is no protection of the muscle innervation. A recent 
clinical trial administers modified NPC that can express 
GDNF to the lumbar spinal cord of patients with ALS and 
is the first ex vivo gene therapy with neural cell researched in 

humans to treat neurodegenerative disorders. Treatment with 
MSC delivered via several routes showed beneficial effects 
in animal models of ALS [303]. Various studies showed 
that intrathecal and intramuscular delivery of MSC-NTF 
is beneficial and relatively safe for ALS treatment [304]. 
MSC expressing GDNF showed benefit in ALS pathology, 
and MSC expressing VEGF showed similar activity [197]. 
Several ex vivo gene therapies have been studied in animal 
models of ALS with varying results.

A major hurdle in research is the unavailability of spo-
radic ALS animal models and delivery techniques for study-
ing potential therapies [15]. One of the gene therapy trials 
found to be effective was superoxide dismutase 1 (SOD1), 
where drifts in SOD1 cause ALS. The safety profile of this 
treatment was established by administering antisense oligo-
nucleotides to SOD1 intrathecally. Another study involved 
AAV9-SOD1-Sh RNA in opening up SOD1 gene expres-
sion in rat motor cortex, and the injection was given via tail 
vein or by temporal vein [286, 305]. Both trials exhibited 
extended survival and delayed disease inception. Another 
study that can transfer to the clinic is a non-human primate 
trial, which was successful in intrathecal delivery and SOD1 
suppression [306]. This trial revealed a delayed disease onset 
and an extended life span in transgenic mice, although it 
restricts only to SOD1, so that it can extend up to the other 
mutations causing ALS.

A neuroprotective approach has also been adopted for 
sporadic ALS, achieved by motor neuron protection through 
growth factors delivery. The worth of note is that promis-
ing results have been achieved at preclinical level but not at 
clinical one.

Also, vascular endothelial growth factor (VEGF) has been 
linked to ALS, where VEGF deletion in the promotor region 
exhibit neurological disorders similar to SOD1 [200, 307]. 
Of VEGF expression studies conducted in animals, two of 
them were AAV4- IGF1 and AAV4-VEGF [200]. They are 
delivered into the lateral and ventricles of SOD1 mice and 
found to improve the extended survival and delayed onset 
of the disease. Another approach was the expression of a 
protein called zinc finger by delivery of plasmid which might 
increase the expression of VEGF. This study was conducted 
in SOD1 rats with weekly 8 injections gastrocnemius mus-
cle which showed refinement in motor functions, but not 
in overall weight or life span [308–311]. The only growth 
factor which showed improvement was granulocyte colony-
stimulating factor (GCSF) when injected into the spinal cord 
of SOD1 mice [312, 313].

Another potential source of transgene involved in the 
regulation of mRNA expression is enzyme adenosine deami-
nase acting on RNA 2 [ADAR2] and up frames shift protein 
1 [UPF1] [312, 313].
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Spinal Muscular Atrophy (SMA)

SMA is a childhood neurological disease caused by the loss 
of survival motor neuron 1 (SMN1), which leads to infan-
tile death [314]. SMA is ideal for gene therapy as only one 
gene is responsible for the disease [315]. Replacement of 
SMN1 showed efficacy in mice studies, where researchers 
used the route of administration of AAV9 as both intrathe-
cal and intravenous to take over the expression of SMN1 
in the spinal cord [202–204, 316]. In a phase 1 trial of the 
AAV9-SMN1 study initiated in 2014, safety and efficacy 
investigations continue to be performed. Similarly, studies in 
pig models of SMA have also focused on the SMA adversity 
and intervention mediation, where the disease is induced 
by the knockdown of SMA1 expression [317]. Most animal 
studies implicate a delay in disease progression, but only the 
partial progression in motor neuron numbers. A recent study 
on AAV vectors’ engineering states that gene delivery via 
AAV vector is approbated for SMA treatment [61].

Spinocerebellar Ataxia

Spinocerebellar ataxia (SCA) is a neurodegenerative disor-
der caused by cytosine adenine guanine (CAG) repeats in 
ataxin-3 gene resulting in dysfunction cerebellum and brain-
stem. Another type of SCA is SCA3, known as Machado-
Joseph disease (MJD), an autosomal neurodegenerative 
disorder with rare occurrence, whereby the accumulation 
of mutated ataxin-3 protein causes protein misfolding [4]. 
SCA1 and SCA7 are similarly targeted through direct brain 
injection, with results indicating that RNAi is a promising 
tool for treating many SCA forms. SCA1 can be targeted 
by RNAi, which suppressed neurodegeneration induced by 
polyglutamine in the SCA1 mouse model. Suppression of 
Atxn3 in SCA3 rats via LV delivery demonstrated mitigation 
of degeneration but required further preclinical confirma-
tions. Similarly, miRNA delivery in SCA3 mice improved 
molecular phenotype but still requires further preclinical 
replication. Antisense oligonucleotide ASO) approach tar-
geting against ATXN1, ATXN2, and ATXN3 demonstrated 
a reduction in these protein levels, but further preclinical 
confirmation is required, and no clinical observations have 
been reported so far. The usage of miR-3191–5p in SCA6 
animal models demonstrated protection against Purkinje 
cell degeneration, motor deficits, and ataxia but required 
strong preclinical as well as clinical studies. Direct delivery 
of miRNA or AAV in SCA7 mice cerebellum showed an 
improvement in ataxia phenotype, but there is a need for 
strong preclinical and clinical observations [205]. Another 
approach is small interfering RNAs (siRNAs) in SCA3/MJD 
transgenic mouse models targeting mutant ATXN3, which 
were encapsulated within stable nucleic acid lipid particle 

(SNALPs) delivering selective and effective silencing with 
improvement in neuropathology and motor behavior [318].

In an open-labeled study, IGF-1 has been tested in SCA3 
and SCA7 resulting in a decreased scale for assessment rat-
ing of ataxia (SARA) score and treatment using insulin-like 
growth factor-1/insulin-like growth factor-binding protein-3 
(IGF-1/IGFBP-3) showed higher expression level in SCA3 
subjects resulting in an increase in an autophagy-mediated 
protection [319, 320].

Neuropeptide Y(NYP) is under-expressed in MJD mouse 
models and patients, and parenteral administration of NYP 
via AAV vector could reduce the accumulation of ataxin-3 
in mouse models, while improve BDNF expression and 
motor coordination, and preserves granular layer thickness 
and cerebellar volume [320]. For example, the intramuscular 
administration of NGF in SCA3 patients for 28 days led to 
a decrease in SARA score, improvement in speech, finger 
chase, stance, heel-shin slide, and hand movements [320].

Epilepsy

Epilepsy is a disease characterized by neuronal excitability 
occasionally and sometimes as unpredictable seizures [321]. 
Seizures can be of different types, like in generalized form, 
bilaterally distributed network and in focal, and distributed 
to only one brain hemisphere. Gene therapy can be a good 
alternative therapy for epilepsy caused by lesions. A study 
by incorporating HSV vector containing transgene encod-
ing two NTFs, fibroblast growth factor 2, brain-derived 
NTFs are injected into the lesion area which can cure the 
cell loss and reduce the epileptogenesis [206–208]. Another 
approach is to rearrange the glutamate or GABA receptor 
composition to modulate receptors’ response, which gave 
promising results in epileptic animal models [322]. Later 
another propitious result was given by the delivery of vec-
tors containing the transgenes of NYP, which resulted in 
consistent antiseizure effects that can be applied clinically 
[209, 210, 323]. A patient with surgical resection of the epi-
leptical region is an ideal candidate for gene therapy. Seizure 
inhibitory factors like NYP can be transferred along with 
depth electrodes to know the necessity for surgical proce-
dures to transfer the vector. If gene therapy fails, the patient 
can go ahead with surgical intervention as planned [211, 
324–328]. Another approach to reducing seizure frequen-
cies can be by the restoration of neuropeptide balance. One 
such is CG01, an amalgam of NPY and Y2 genes delivered 
into the brain post-surgery confirmed antiepileptic effects. 
Kullmann and team’s serendipitous observation encouraged 
them to develop a modified Kv1.1 gene introduced into a 
viral vector specifically targeting the excitatory neurons. 
Both Kv1.1 and CG01 have prolonged duration action at a 
single injection, which can be due to the regulated produc-
tion of growth factors or ion channel functioning. In contrast 
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to Kv1.1 and CG01, studies on GluCl and the regulation 
of membrane proteins such as opsins capable of keeping 
neurons inert have been done on nematodes, giving a dis-
advantage of immune chances system rejection [213, 329]. 
Additionally, in the case of epilepsy that is drug-resistant, 
investigations using LV gene therapy are performed in phase 
I and II trials [330].

Huntington’s Disease (HD)

Huntington’s disease is produced by excessive CAG trinu-
cleotide repeats on chromosome 4 exon 1 and is an auto-
somal dominant disorder and results in polyglutaminated 
huntingtin (mHtt) protein [331]. The raised mHtt aggregate 
levels in pyramidal cortical neurons and medium spring neu-
rons of the striatum result in a pathological phenotype seen 
in HD. The protein mHtt generates energy dysregulation by 
restraining the PGC-1α action, which is essential for mito-
chondrial function and prevents individual neuronal volume 
[331]. A regulatory protein, calmodulin (CaM), plays a sig-
nificant role in regulating the calcium by activating many 
enzymes for calcium-binding, and HD patients can show 
aberrant calcium signaling in the cytoplasm [332].

Growth Factor Gene Therapy in HD

NTFs, like ciliary neurotropic factors (CNTF), BDNF, and 
fibroblast growth factors (FGF), also can enhance the neu-
ron lifespan [217, 218, 333]. Research with NPC, NSC, 
and MSC transplanted into HD animal models produced 
improvement of function, showing ex vivo gene therapy’s 
potential in treating HD [334]. These modified cells express 
trophic factors, which seem beneficial in HD. In a study, 
NPC/NSC expressing GDNF are transplanted and resulted 
in better survival of neurons in the striatum and produced a 
reduction in behavioral deficits associated with lesions [15, 
219, 220]. Several studies utilizing ex vivo gene therapy for 
HD have been focused on modified cells expressing BDNF. 
But the drawbacks in methodology and limited results alter-
nate concepts are in need [225, 335]. The ex vivo gene ther-
apy transplanting cells that express molecules modulating 
astrocyte and microglial function need to be studied for their 
potential benefit in HD therapy [15].

Miscellaneous Gene Therapy Approaches in HD

Gene therapy in HD can directly target the nuclei showing 
dysfunction, thus lowering mHtt levels. The gene therapy 
approach in preclinical studies utilizes RNA interference 
(RNAi) to reduce abnormal mHtt volume. A study utilized 
AAV5 with a transgene encoding delivery, an engineered 
miRNA towards HTT mRNA [214–216]. The AAV5 deliv-
ery resulted in wide transgene distribution [336] and is ideal 

for the therapy of HD [11]. Studies on a recombinant anti-
body that can reduce the mHtt aggregation have also been 
done [337].

Stroke

Transforming growth factor β (TGFβ) secreted by the astro-
cytes can cause capillary endothelial downregulation result-
ing in a stroke, which can be either ischemic or hemorrhagic 
[4]. Gene therapy can help treat ischemic and hemorrhagic 
stroke due to its ability to stabilize blood vessels. Receptors 
involved in treating stroke include C-X-C chemokine recep-
tor 4 (CXCR4) and neuronal death are prevented by HSP72, 
GDNF, and B-lymphoma 2 [BCL2] [224, 226, 338].

Growth Factor Gene Therapy in Stroke

NSC expressing GDNF/BDNF post-infarct administration 
produced slight behavioral betterment in an animal model of 
stroke [15, 339, 340]. A reduction in the infarct and improve-
ment of neurological deficits were observed in the cerebral 
ischemia rat model after administering modified MSC 
expressing VEGF, GDNF, and BDNF [341–343]. Various 
preclinical research utilizing stem cells produced promising 
results, which can be due to improved plasticity and survival 
of neurons because of the molecules expressed by the stem 
cells transplanted [344, 345]. The clinical translation showed 
safety, but the effectiveness is not yet confirmed [345, 346]. 
A useful therapy dependent on stem cells for stroke needs 
an ideal therapeutic window. The stem cells that can survive 
in post stroke areas should be able to deliver molecules that 
improve synaptic plasticity and neurogenesis and modulate 
neuroinflammation while providing trophic support [15]. 
Another approach is FGF-2 delivery via AV vector per-
formed on Mongolian gerbils found to promote neurogenesis 
post cerebral ischemia compared to direct administration of 
FGF-2 due to an increase in the proliferation of progenitor 
cell [223].

Miscellaneous Gene Therapy Approaches in Stroke

Reperfusion therapy to restore the blood flow may cause 
brain injury, production of harmful oxygen-free radicals. 
The generation of the radical can be subsided by gene ther-
apy by the delivery of genetic materials that can eliminate 
the free radicals (heme oxygenase-1 [HO-1], glutathione 
peroxidase [Gpx], and superoxide dismutase [SOD]. The 
glucose uptake of neurons is influenced by the glucose trans-
porter gene (GLUT-1), which hinders the energy reduction, 
which induces cell death [227, 347, 348]. The ex vivo gene 
therapy strategies targeting stroke seems beneficial in neu-
rological repair. Modified NSC expressing galectin-1 was 
studied, focusing on neuroprotection and modulation of 
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neuroinflammation [15, 349]. The NSC, after administra-
tion, were found surviving and produced a notable reduc-
tion in tissue loss, and enhanced cognitive and sensorimotor 
functions were seen with cells expressing galectin-1, which 
showed promise in vitro studies improving the microglial 
generation of IL-10, TGF-β neuroprotective as well as anti-
inflammatory cytokines and produced and inhibition of pro-
inflammatory mediators. Another strategy produced a slight 
improvement in infarct and behavior size after the admin-
istration of modified NSC secreting copper/zinc superoxide 
dismutase (SOD1) [15, 350].

Spinal Cord Injury (SCI)

SCI’s mechanism is necrosis of neurons and secondary 
mechanism includes ischemia, inflammation, and delayed 
apoptosis, which follow and worsen the functional losses. 
Emergence of CRISPR/Cas9 genome editing, enabled the 
possibility of gene editing in extenuating the adverse effects 
caused by SCI. Mainly two significant applications for SCI 
amelioration via gene therapy approach are known, and these 
include either ex vivo cell transduction or in vivo delivery 
directly to spinal cord by non-integrating AAV. Preclinical 
investigations on spinal cord injury could reveal in vivo gene 
therapy applications for enhancement of pro-regenerative 
factor expression, gene silencing of inhibitory factors, neural 
circuit modifying factors, and inhibitory particle degrada-
tion by enzymes that modify matrix [229]. Enhancement of 
pro-regenerative factors such as Kruppel-like factors (KLFs) 
and SOX11 promotes axonal regeneration and neurogen-
esis. Short-hairpin RNA (shRNA) are capable of silencing 
inhibitory factors say, for example, a tumor suppressor, 
phosphatase, and tensin homolog (PTEN) via mTOR down-
regulation can reduce damaged neuron regeneration. Using 
staggered double hemisection (SDH)-SCI studies, reforma-
tion of bypass circuits surrounding the lesions or damaged 
neurons is possible. Through SDH model in mice, chloride 
potassium symporter 5 (KCC2) was identified which could 
maintain a balance in excitatory and inhibitory neurotrans-
mission ratio via modulation of neural circuits and AAV 
mediated overexpression of KCC2 could improve the func-
tional recovery with less or no adverse effects by influencing 
synapsin promoter. Preclinical studies using chondroitinase 
ABC (ChABC), a bacterial enzyme reveals that enzymatic 
degradation of the secretions from glial scars such as CSPGs 
can improve neuronal functionality and regeneration. Appli-
cation of gene therapy that is by incorporating LV vector to 
ChABC gene resulted in a long-term expression the gene 
that could improve fine motor recovery post cervical SCI 
[229]. For the regenerative treatment of SCI and to refine 
the axonal regrowth in SCI patients, several therapeutic 
genes have been tested, like NGF, GDNF, neurotrophin-3, 
decorin (DCN), CNTF, galectin-1, and neural cell adhesion 

molecule (Ncam1) [351–354]. DCN suppresses inhibitory 
chondroitin sulfate proteoglycan, which will improve the 
axonal regrowth of neurons. Growth factor α can target 
astrocytes and can increase its invasion towards the dam-
aged neural cells and improves axonal growth into lesions. 
Remyelination of oligodendrocytes is essential to stabilize 
the axons, and necessary myelin protein (MBP) and leuke-
mia inhibitory factor (LIF) are involved for the purpose. Var-
ious therapeutic genes support secondary injuries, regrowth, 
neuroprotection, remyelination, and improving the microen-
vironments in spinal cord injury. Some of them are collagen 
type 4-α1, laminin subunit-α, heparin sulfate proteoglycan 
2, and fibronectin 1 [355–360].

Traumatic Brain Injuries

Traumatic brain injuries (TBI) are complex brain injuries 
that are progressive as a result of neuroinflammation and 
other physiopathological mechanisms, and no treatment 
strategies are approved so far. TBI can be categorized based 
on symptoms, etiology, prognosis, and anatomical abnor-
mality. Classification based on clinical features consists of 
mild, moderate, and severe TBI. Pathoanatomical classi-
fication of TBI includes contusions, diffuse axonal injury, 
hematomas (epidural, parenchymal, and subdural lesions are 
included), and subarachnoid hemorrhage (SAH) [361]. Mild 
TBI/concussions occur as a result of non-penetrating trauma 
on the head and develop symptoms that not only include 
behavioral and cognitive defects but also physical symp-
toms such as dizziness, nausea, and vomiting. Being of less 
severity, about 90% of mild TBI resolves in a week time or 
about 12 weeks in case of post-concussive patients. Unlike 
mild, both moderate and severe forms of TBI are concerns 
of intensive care and/or neurosurgery. Moderate TBI can last 
for months with behavioral, cognitive, and other physical 
complications. Severe TBI are life-threatening which might 
have developed as a result of penetrating injuries capable of 
damaging dura [362].

Gene therapy has been advancing in the area of TBI 
as studies reveal role of specific genes in causation of the 
disease. TBI is known to express genes both that are self-
destructing and protective genes. Hence, targeting on spe-
cific genes responsible for the pathogenesis of TBI can block 
the cell death and aid in self-repair of the neurons [231]. 
Gene level studies in TBI include determining the expression 
of the NTF (NGF), proapoptotic, and anti-apoptosis pro-
teins in Bcl-2 family, heat shock protein (HSP-60, 72, 32), 
and zinc finger protein (A20). Additionally, there are genes 
that are targeting in ameliorating neuronal death post TBI 
and this includes GLUT1 which is responsible in the inhibi-
tion of necrosis associated factors. However, the targeted 
delivery of genes requires appropriate vectors. AV delivery 
of genes were found to be robust compared to other viral 
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and non-vectors. AV delivery of GDNF can attenuate focal 
cortex trauma and expression of Bcl-2 fusion protein using 
recombinant AV could prove to be neuroprotective post TBI.

Potentiating pro-inflammatory vectors can cause pro-
gression of injury which can be evaluated using suitable 
TBI models [230]. Elevation of tumor necrosis factor alpha 
(TNF-α), elevated c-fos expression, and HSP-72 has been 
observed in animal fluids post TBI indicating that the 
expression of these genes has a critical role in TBI, whereas 
expression of NGF, proteins from Bcl-2 family, and HSP-
70 are decreased in TBI or showed features such as pro-
motion of growth, survival, and differentiation of neuronal 
cells [231]. By the incorporation of viral vectors and certain 
non-viral vectors to growth factors, there was an attenuation 
in traumatic injury in focal cortex and these include GDNF-
adenoviral delivery, gene transfer via AAV8, transfer of 
calbindin D gene via HSV, NGF expression via transferrin-
associated cationic liposome/Tf-lipoplexes.

However, there are a lot of obstacles involved in practic-
ing gene therapy in TBI. Biosafety is a concern in use of 
viral vectors, and the gene therapy approach has a lot of 
compatibility issues which is not favorable in clinical prac-
tice. For example, unlike animals, direct intracranial admin-
istration is not preferable whereas intravascular approach in 
clinical set up has drawbacks such as low BBB permeability. 
Another issue is with the targeting of specific genes as about 
200 genes are expressed and interact among each other form-
ing a regulative network with much complexity [231].

Canavan Disease

Canavan disease (CD) is a rare genetic, progressive met-
abolic neurological disorder belonging to the leukod-
ystrophies category, occurring mainly in infants due to 
aspartoacylase (ASPA) mutation. Initially infants appear 
asymptomatic for a period of 2–3 months and gradually 
develop macrocephaly, reduced head control, floppiness, 
and delayed developmental milestones. Both viral and non-
viral vector-mediated gene therapy approaches have been 
under clinical development and show a practical safety pro-
file, despite having limited clinical benefits. AAV-mediated 
ASPA gene delivery has been conducted in phase 1 clinical 
trial with 13 patients, whereas non-viral vector and lipo-
some-mediated ASPA delivery has been underwent in 2 
patients [363].

Lysosomal Storage Disorders

Lysosomal storage disorders (LSDs) are rare genetic meta-
bolic disorders occurring due to defect in the functioning of 
lysosomes, including autophagy impairment, vesicle traffick-
ing aberration, mitochondrial dysfunction, dysregulation of 
various signaling pathways, and calcium dyshomeostasis. 

Patient-derived iPSCs are capable of addressing these 
defects in lysosomal functioning; however, the genetic diver-
sity causes an inconvenience in proceeding this technique. 
An amalgam of CRISPR-Cas-9 editing and iPSC can be 
utilized for the novel pathway identification and screening 
of drugs for LSDs therapy. Moreover, CRISPR-Cas-9 edit-
ing can be used for altering mutants responsible for LSDs. 
In  vivo LSDs models have been developed using gene 
knockin and knockout technologies. So far, both in vivo and 
ex vivo approaches have been used in LSDs gene therapy, 
with the in vivo approach involving transduction of organ-
specific or ubiquitous regulated transgene via AAV vector, 
whereas ex vivo approach involves hematopoietic stem cells 
subjected to genetic modification and re-implantation using 
lentiviral vectors. Another strategy is antisense oligonucleo-
tides utilization found to have good impact on larger portion 
of patients [364].

X‑Linked Adrenoleukodystrophy

X-linked adrenoleukodystrophy (X-ALD) is a rare genetic 
peroxisomal neurodegenerative disorder affecting adrenal 
glands and nervous system which can range from a severe 
cerebral defect in childhood to a delayed onset of adreno-
myeloneuropathy (AMN) with a higher incidence in males 
due ABCD1 gene mutation which is supposed to encode 
adrenoleukodystrophy protein (ALDP), whose defect can 
cause saturated very long-chain fatty acids accumulation. 
Studies have shown that long-term lentiviral-mediated 
hematopoietic stem cells (HSCs) gene therapy can arrest 
the devastative progression of the disease. Slow progression 
of axonopathy is the hallmark of X-ALD and this feature 
needs to be addressed and studies on Abcd1/Abcd2 double-
deficient mice models have been conducted by evaluating 
the potential of neurotrophic factors, such as NT-3, and IGF-
1. The mice treated with AAV-6 mediated NT-3 or IGF-1 
showed a marked improvement in motor behavior, axonal 
maintenance, oligodendroglial support, and neuronal integ-
rity for AMN [365–368].

Rett Syndrome

Rett syndrome (RTT) is a rare genetic neurodevelopmental 
disorder affecting the brain in progression of speech and 
motor skills with a higher incidence in female babies due to 
X-linked gene, MECP2 mutation. Studies on mouse models 
have been conducted by silencing MECP2 by lox-stop cas-
sette insertion, causing a reduction in the mortality as well 
as improvement in neurological signs. Another approach is 
the overexpression of BDNF in MeCP2-mutant mice which 
could reverse locomotor defects, despite limitations for 
the application of gene therapy in RTT; for example, it is 
required that MeCP2 transgene be expressed in mutant cells 
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thereby avoiding its overexpression in the healthy allele. 
Lentiviral-mediated MECP2 delivery has yielded a reversal 
in phenotypic maturation of dendritic cells which needs to be 
proceeded for in vivo studies. IGF-1 is another growth fac-
tor regulating plasticity and synaptic maturation, and inhibi-
tion of this growth factor signaling could regulate aberrant 
levels of MECP2 due to the presence of a binding site in 
RTT patients and MeCP2-null mice [369]. Based on a previ-
ous study demonstrating restoration of synaptic molecules 
in Mecp2 KO mice by the administration of IGF, Castro 
and team made use of recombinant human IGF1 (rhIGF1) 
in symptomatic heterozygous female as well as Mecp2-
null male mice. This study aligns with the previous studies 
and clinical trials with regard to the efficacy and safety of 
rhIGF1 in RTT treatment and the team could observe an 
improvement in behavior, synaptic plasticity, and activation 
of cellular pathway [370]. A novel gene therapy candidate 
for RTT has been developed by Novartis gene therapies by 
the name AVXS-201 which is in queue for USFDA approval 
for proceeding into clinical trials. AVXS-201 is delivered via 
AAV9 where by MECP2 protein will be encoded optimally 
and compensate for the defective mutated MECP2 [371].

MicroRNA‑Based Gene Therapy

About 30% human genes are regulated by non-coding RNAs 
called microRNA (miRNA) which control various cell pro-
cesses and gene expression. CNS and metabolic disorders 
can occur as a result of miRNA dysregulation. miRNA 
can be approached as either diminishing disease induced 
miRNA expression or replacing disease repressed miRNA 
expression. miRNA can downregulate different targets as 
well as enables delivery by multiple drug delivery systems, 
but has a low precision rate. In AD, miR-16 activation via 
liposomal form is targeted in HEK293 cells for reducing 
BACE1 and APP expression. Liposomal-miR-16, 15, and 
195 activates both neuro2a and HTT2 cells thereby reduc-
ing BACE1 and APP expression. miR-132- oligonucleotide 
potentiates ITPKB in mice ameliorating amyloidosis and 
τ-hyperphosphorylation. In PD, miR-155 via striatal injec-
tion in microglial cells could regulate the α-synuclein associ-
ated inflammatory responses. Liposomal miR-96 acts as an 
inhibitor of CACNG5 in SH-SY5Y cells causing elevation of 
nigral cells. In HD, miR-27a stimulates MDR-1 and reduces 
accumulation of mHTT in derived neuronal stem cells. miR-
196a activates HTT in human embryonic renal cells and 
neuroblastoma cells of mice and cause a decrease in mHTT 
expression. In ALS, Src homology-2domain-containing 
SHIP1 and suppressor of cytokine signaling-1 is inhibited by 
miR-155 administrated via intracerebroventricular route in 
SOD1G93Amice leading to prolongation in survival rate and 
slowing down disease progression. A single miRNA targets 

multiple pathways simultaneously offering chances of toxic-
ity. Another limitation of miRNA system can be sex-biased 
and age-influenced. Hence, therapeutic strategies must be 
developed sex specific and patient monitoring post miRNA 
therapy application will be required [3, 372].

CRISPR‑Cas System and Other Gene Editing 
Technology

Complementary to gene therapy strategies, genome edit-
ing has emerged with an aim to regulate or repair endog-
enous gene or else inactivate the toxic gene. However, this 
approach lacked efficient delivery systems, production being 
complex and limited efficacy kept them in halt from clinical 
application in the past few decades. The advancement in 
precise and sophisticated genome editing tools has paved 
the way in drug discovery, genetic diagnosis, and even basic 
biology techniques which were all far approachable. The key 
features in editing involves recognition of a unique target 
sequence within the DNA-binding domain and secondly to 
induce precise modification in genetic or epigenetic level 
using an effector element [373].

CRISPR‑Cas System

Novel gene editing approaches can be utilized in the treat-
ment of neurological disorders which are far more efficient, 
stable, and fast compared to the conventional treatment and 
diagnostic methods and could be beneficial in advancement 
of gene therapy in neurodegenerative diseases. Gene edit-
ing is accurate and involves targeted cleavage of specific 
double stranded sequence of the DNA and utilization of vari-
ous DNA repair pathways. Cleavage is mainly performed 
by nucleases namely, ZFN, TALEN, meganucleases, and 
CRISPR-Cas-9 system [374]. CRISPR is gaining a lot of 
attention these days due to lacunae in effective treatment of 
neurological disorders.

Aβ deposition is considered the hallmark of AD neu-
ropathology. In addition to this are other targets such as 
γ-secretase protease, APPswe APP 3′-UTR deletion, apoli-
poprotein E4 (APOE4) allele, and glia maturation factor 
(GMF) which also requires attention in alleviating AD. Aβ 
deposition being the major cause in AD development can 
be targeted by either overexpressing enzymes capable of 
degrading Aβ or anti-Aβ antibodies. An investigation by 
Hanseul Park and team in suppressing β-secretase 1 (Bace1) 
gene showed Aβ-associated pathological inhibition [374, 
375]. Wong. E. et al. worked on GSAP gene knockout in 
HEK293 cell lines and found that this had direct associa-
tion with γ-secretase activity decrease which in turn caused 
reduction in Aβ generation [374, 376, 377]. Another study 
consisting of in vivo as well as ex vivo by György et al., 
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on the mutation of APPswe by the application of CRISPR/
Cas9 using Streptococcus pyogenes revealed that disruption 
in APPswe lead to fall in Aβ level [374, 378]. Another evalu-
ation by Nagata et al. in editing APP gene by deletion of 
3′-UTR confirmed fall in APP expression which mitigated 
Aβ accumulation in the brain [374, 379]. A definite risk of 
AD by APOE4 allele varies with prevalence of SNP and 
studies on iPSCs of E4 allele carrying AD patients were 
edited to E3/E3 genotype. It was observed that E4 unedited 
neurons caused elevation in τ phosphorylation [374, 380, 
381]. GMF, a proinflammatory molecule when edited using 
CRISPR/Cas9, eliminated microglial activation and sup-
pressed MAPK that are usually found upregulated in AD 
[374, 382].

α-Synuclein is a definite pathology of PD and is encoded 
by SCNA gene which is overexpressed in the presence of 
a common variant [383]. Another target that is involved 
in inducing dopaminergic neuron toxicity for sporadic PD 
include leucine-rich repeat kinase 2 (LRRK2) that induce 
toxicity in the dopaminergic neuron which when edited 
using CRISPR/Cas9 tool showed reduction in the inci-
dence of sporadic PD [384]. p.G2019S is the most common 
mutations found among LRRK2 gene. Editing of LRRK2-
G2019S in hiPSCs and utilizing technologies such as pig-
gyBac transposase revealed reduction in tyrosine hydroxy-
lase (TH) positive neurons which in turn causes reduction 
in LRRK2-G2019S dopaminergic neurons [384]. Another 
approach to PD pathogenesis is targeting the neuroinflamma-
tory pathway which includes PKCδ expression knockdown 
within the dopaminergic neurons causing an obstruction of 
DNA fragmentation which are Mn-induced [385]. A study 
by Gordon et al. on prokineticin 2 (PK2) elimination via pro-
kineticin receptor 2 along with CRISPR/Cas9 demonstrated 
enhanced chances of cell death stimulated by neurotoxicant 
[386]. In an investigation done by Chen et al., hESCs dele-
tion using CRISPR/Cas9 and further inclusion of recombi-
nant α-synuclein pre-formed fibrils (PFFs), wild-type neu-
rons demonstrated susceptibility to pS129-αSyn-positive 
protein gathering indicating Lewy-like pathology observed 
in PD [387]. Selvakumar et al. worked on establishing reduc-
tion in pro-inflammatory mediators within the brain as well 
as microglial activation by knockout of microglial GMF 
using CRISPR/Cas9 technique. This was achieved by a num-
ber of mechanisms involved including lowering of ROS pro-
duction as well as calcium flux thereby weakening oxidative 
stress. In addition to this, NRF2 nuclear translocation also 
decreased. Hence, a reduced expression of cyclooxygenase 2 
(COX2), nitric oxide synthase 2 (NOS2), HO-1, and ferritin 
activation can occur in the microglial cells [388].

Unlike AD and PD, HD does not have a certain cure so far 
and abnormal HTT protein is the pathology behind the dis-
ease progress. Hence, gene therapy can be promising in the 
treatment of HD which is currently investigated by targeting 

DNA transcription or decreasing RNA translation thereby 
reducing abnormal HTT protein level [389]. Two approaches 
in gene therapy, zinc finger proteins and CRISPR/Cas9 via 
direct DNA interaction, can suppress mHTT gene expression 
[390]. In one study, CRISPR/Cas9 is known to effectively 
reduce endogenous mHTT production in striatum, whereas 
in another study identification of SNPs has gone through 
a different approach whereby Cas9 nuclease efficiency is 
enhanced and CRISPR focusses on therapeutic strategy 
[375, 391]. mHTT presence can elevate entry of neuronal 
store-operated calcium (nSOC) and outflow of calcium 
from ER leading to InsP3R1 sensitization. Recent studies 
on the inhibition of transient receptor potential canonical 1 
(TRPC1), a component of nSOC, proved to improve motor 
performance in both in vitro and in vivo and hence can have 
a neuroprotective potential in patients if investigated further 
in clinical trials [392]. Another probable target in HD can 
be 5′ untranslated region (UTR) which plays a crucial role 
in the regulation of HTT protein synthesis. 5′ UTR consists 
of upstream open reading frame (uORF) which is capable 
of regulating downstream ORF translation. uORF disruption 
using CRISPR/Cas9 can reduce mHTT translation within 
MSCs [393]. Kolli and team through their study found that 
mHTT silencing by using CRISPR/Cas9 system could work 
in either way, either by nicking DNA at the boundary of 
exon1-intron or by decreasing mHTT production in bone 
marrow–derived MSCs. CRISPR/Cas9 system has accuracy 
in diagnosis and disease detection, however have limitations 
in HD-associated regions due to detection of high guanine-
cytosine content; hence, detection methods needs to be 
improved [394].

Other Genome Editing Approaches

A permanent alteration or transient modification of the DNA 
sequence can be achieved by base or gene editing for the 
former and epigenetic editing or gene regulation for the later. 
Gene editing causes permanent alteration in DNA sequence 
by insertion, deletion, or substitution via homology-directed 
repair (HDR) pathways which are precise but less efficient 
than non-homologous end-joining (NHEJ). The effector 
domain induces double-strand breaks (DSBs) at the DNA 
sequence target which is to be modified. However, gene edit-
ing has limitations which include chromosomal instability, 
chances of off-target cleavage, target sequence restriction 
as in PAM for CRISPR and 5’-T for TALENS, and hetero-
geneity in NHEJ. Unlike gene editing, base editing does 
not induce DSBs, thereby lessening the possibility of off-
target insertions and deletions. This platform is involved in 
the modification of single nucleotides and can be applied 
for correcting point mutations observed in human genetic 
disorders. The shortcomings are that this platform lacks 
efficiency and product purity; there are only possibility of 
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substitution within the sequence, RNA and DNA level off-
target cleavage, and bystander base editing [373]. Genome 
regulation can be achieved either by epigenome editing or 
transcriptional modulation. Epigenetic editing of the epi-
genetic marks is a long-term modification and enables cell 
reprogramming. However, information regarding epigenetic 
marks for some targeted genes are yet not available. Several 
epigenetic marks will have to be modified simultaneously 
and this might affect a large genome region. Transcriptional 
regulation enables cell reprogramming with low off-target 
effects and expression at physiological level. Hence, the 
efficacy is gene expression level dependent and permanent 
modifications are not achieved. This platform also affects a 
large genomic area [373].

Current Challenges in Gene Therapy

There are several limitations currently faced in gene therapy 
which affects its safety and efficacy. There are barriers such 
as biological barriers as well as immune responses, rate lim-
iting steps in the expression of transgene based on cell type, 
and possible undesirable effects associated with vectors or 
treatment strategies. Overcoming these barriers and limita-
tions greatly enhances the benefits of gene therapy.

The current therapeutic strategies utilize alternative 
routes, alternative serotypes, as well as alternative clinical 
compounds [395] redirection or expansion of vector tropism 
by modifying viral capsid including chemical modification 
such as PEGylation, inclusion of cell penetrating peptides 
and epitopes, utilizing capsid variant, chimeric, hybrid, 
mosaic, and capsid decoys vectors to overcome biological 
as well as physical barriers [395–397].

Higher doses of vector, alternative routes, alternative 
serotypes, utilizing proteasome inhibitors, plasmapheresis, 
host immunosuppression, and developing inert vectors by 
modifying viral capsid, are being employed to overcome 
immune responses [395–397]. Dual or single self-comple-
mentary AAV that does not need host DNA synthesis, hybrid 
vectors, and proteasome inhibitors are being employed to 
overcome transgene expression rate limiting steps. Also, 
tissue-specific promoters, hybrid vectors or trans-splicing, 
replication defective vectors, non-infectious virus, like par-
ticles, exosomes, vexosomes, artificial chromosomes, and 
chromatin insulators are being employed to overcome unde-
sirable effects of vectors.

Even though these approaches improved gene therapy in 
preclinical studies, they are yet to provide benefits to the 
patients. Several novel approaches in gene therapy are being 
studied and developed and can further improve gene therapy 
in future. Developments in tissue engineering technologies 
are providing various new options to deliver therapeutic 
compounds. The biomaterials utilized includes natural as 

well as synthetic and can be manipulated for delivering 
therapeutic compounds [398].

The novel possibility of controlling gene vector delivery 
can greatly improve the safety and efficacy of gene therapy. 
The controlled release strategy can improve residence time 
of therapeutic compound in the targeted tissues, protect viral 
capsid epitopes from host immune reaction, help deliver 
larger genes, minimize vector doses, and improve stability. 
Gene vectors can be immobilized or encapsulated for a sub-
strate mediated or gradient polymeric release.

Delivery strategies such as solid scaffolds provide trans-
fer of vector from the substrate, and hydrogels providing 
vector diffusion are being studied for gene therapy. Solid 
scaffolds including sponge, membranes, minipellets, and 
disks are being developed utilizing collagen and can target 
the skin, muscles, and bones. Alginate as well as gelatin 
scaffolds can be utilized for controlled delivery of viral as 
well as non-viral vectors targeting tumors, cartilage, and also 
as vaccines. Polyethylene glycol (PEG) sponges with LV 
vectors have been studied for spinal cord delivery. PLGA 
scaffolds and poly(lactide-co-glycolide) (PLG) gene delivery 
can deliver viral as well as non-viral vectors in the spinal 
cord, muscles, skin, brain, blood vessels, as well as bone, 
for vaccination as well as anti-inflammatory treatment. Pol-
yurethane scaffolds are studied to deliver viral vectors for 
wound treatment and also to the heart. Poly-ε-caprolactone 
(PCL) scaffolds can be utilized to deliver viral vectors to the 
cartilage, bone, as well as to the brain [398]. Alginate and 
gelatin can deliver viral as well as non-viral vectors for the 
treatment of renal disorders, diabetes, tumors, ischemia, and 
can be utilized to target cartilage and muscles. Fibrin glue 
can deliver vectors targeting tissues such as bone, cartilage, 
blood vessels, and skin. Collagen as well as silk elastin like 
protein can deliver viral as well as non-viral vectors in mus-
cles, blood vessels, bone, skin, and the brain for the therapy 
of tumors and ischemia. Hydrogels consisting of pluronic 
can deliver viral and non-viral vectors targeting cartilage 
and brain for the treatment of tumors. Self-assembling pep-
tide hydrogels can deliver viral vectors targeting cartilage. 
Oligo (poly (ethylene glycol) fumarate) (OPF) hydrogels 
are being studied for controlled release of non-viral vectors. 
Poly(lactic-glycolic) acid (PLGA)-based gels can deliver 
viral as well as non-viral vectors for the treatment of tumors 
and wounds and can target blood vessels and the skin [398].

Selection of vectors is important and AAV vectors are 
less immunogenic compared to other viral vectors. However, 
the nucleic acid sequence and the capsid proteins delivered 
are capable of triggering our immune system by secreting 
neutralizing or non-neutralizing antibodies which in turn 
either eliminates transduced cells or opsonize the viral 
particles thereby diminishing the clinical efficacy of AAV-
mediated therapeutic agents. There comes a challenge of 
how to deliver therapeutic dose of AAV in patients with an 
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immunological memory against AAV. This can be overcome 
by the selection of specific AAV variants that are not yet 
circulated in human population so that there can be lesser 
chances of developing memory responses against T cells 
and neutralizing antibodies. Another option to minimize 
immunological responses can be the selection of specific 
administration routes for different therapeutic strategies [54].

Advancements in DNA sequencing have given the scien-
tific community novel insights on how to deal with numerous 
diseases including genetic mutated neurological diseases. 
Primary bacterial research has paved way for development of 
CRISPR/Cas9 technology which gives scientific community 
possibilities of gene editing from any region of genome. An 
amalgam of personalized and precision medicine can help 
the physicians in choosing targeted therapy based on inves-
tigation of pathological problems prior to clinical symptom 
appearance. Next-generation sequencing (NGS) technol-
ogy is another tool that could ease the diagnostic procedure 
through its accuracy, increased data reliability, and speed. 
Currently there are challenges such as difficulty in the man-
agement of large quantity of information and interpretation 
of the results, time requirement for sample preparation, and 
also necessity for developing a user-friendly software for 
analysis.

Concluding Remarks and Future 
Perspectives

There is unequivocal evidence that gene therapy has cre-
ated new possibilities for treating many neurological disor-
ders. These advances have been particularly prominent for 
treating AD, PD, ALS, SMA, spinocerebellar ataxia, epi-
lepsy, HD, and stroke, wherein limited success is observed 
with conventional therapies. However, all delivery systems 
selected have pros and cons, and therefore, the assessment 
by clinical trials with therapeutic efficiency remains elusive. 
Among the various vectors investigated, AAV9 is economi-
cal with efficient transduction patterns and high neurotropic 
effects. The concept of hybrid vectors is that viral vectors are 
engineered genetically containing quality of more than one 
vector and can be beneficial in maintaining the stability of 
therapeutic DNA, and transgene within the cell. Thus, they 
add up advantages of avoiding repeated administration of 
drugs, and defective gene products can be produced stably. 
Vexosomes make use of this concept and are a novel system 
of gene delivery, whereby exosomes and the viral vector, for 
instance, are the most commonly used AAV, both combining 
delivering both features for an enhanced targeted delivery 
of peptides or the gene of choice to the desired tissue. This 
system suggests significant advantages such as rational dose 
rate to the targeted tissue avoiding viral vector-associated 
toxicity and reduced incidence of injections.

Indeed, an efficacious therapeutic gene can provide 
improvements in delivery methods and new vectors for 
gene therapy. Identifying and examining new therapeutic 
genes to ensure a clear understanding of disease inception 
and development is an area of remarkable interest. Biomark-
ers’ identification is beneficial for early diagnosis and early 
intervention and will allow a proper therapeutic interven-
tion and disease monitoring. Also, therapeutic approaches 
concentrating addition or replacement of genes to target neu-
rodegenerative diseases are evolving rapidly along with the 
advancements in the knowledge of molecular pathophysiol-
ogy of these diseases. The development of iMRI-CED made 
possible the precise delivery of therapy using vectors and 
allows real-time modulation. The neurosurgical field is uti-
lizing these strategies translated from research to the market 
for clinically effective patient care. Acute and chronic CNS 
disorders with various pathologies need a combinatorial 
synergistic therapeutic approach to modulate the different 
pathological processes resulting in neurodegeneration. Cell 
therapy and ex vivo gene therapy together utilizing stem 
cells seem promising to deliver neuroprotective agents to 
the stressed brain. The therapeutic agents diffusing outside 
engraftment areas may result in extensive neuroprotection 
in several neurodegenerative disorders. The in-depth knowl-
edge of disease processes and recent advancements in iPSC 
capable of autologous transplantation and progress in gene 
editing strategies can provide useful and safe gene therapy 
for neurodegenerative disorders in the future, which seems 
promising for treating such affections.
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