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Abstract: More than two billion people around the world are overweight or obese. Even in apparently
healthy people, obesity has a potent effect on their quality of life. Experimental data indicate the role
of infectious agents in systemic inflammation, revealing a correlation between the dietary habits of
people with obesity and the level of systemic inflammation mediators, serum lipid concentration, and
hormonal and immune status. This study aimed to determine the association of immune response and
lipid metabolism gene polymorphisms with the risk of obesity. This study included 560 Caucasian
participants living in Western Siberia (Russian Federation). A total of 52 polymorphic sites in 20 genes
were analyzed using the 5′ TaqMan nuclease assay. Four risk-associated polymorphic variants were
discovered—two variants in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36–2.7,
p = 0.0002 in the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03–2.04, p = 0.033 in the
over-dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86, 95%
CI = 1.07–3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88, 95% CI = 1.52–5.46,
p = 0.001 in the recessive model). Thus, polymorphisms in immune response and lipid metabolism
genes are potentially associated with the modification of obesity risk in the Caucasian population.

Keywords: genetic polymorphism; obesity; inflammation; immunity; lipid metabolism

1. Introduction

Despite specific public health policies targeting the obesity epidemic, more than two
billion people around the world are overweight or obese [1]. It is predicted that one-fifth
of the working-age population will be obese by 2025; the increase in the number of obese
patients is accompanied by significant socio-economic losses [2], which determine the
improvement of treatment and diagnosis of this pathology, as well as the assessment of
individual susceptibility to its development.

Obesity is a multifactorial disease characterized by excessive accumulation of adipose
tissue, accompanied by a low-grade chronic inflammation. The triggers of this inflam-
mation are poorly studied, but it is known that the degree of inflammation correlates
with the severity of obesity-associated pathologies, which suggests that understanding
the inflammatory response may improve the treatment strategies of such diseases [3,4]. In
addition to inflammation, impaired lipid metabolism can be a trigger of obesity [5,6].

It is known that the activity of molecules involved in inflammation and lipid metabolism
is genetically determined. Genome-wide association studies (GWAS) allow identifying
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genetic variants associated with susceptibility to overweight and obesity [7]. In adults,
the strongest associations with the risk of obesity were discovered for single-nucleotide
polymorphisms (SNPs) in the FTO, MC4R, TMEM18, TNNI3K, SEC16B, GNPDA2, POMC,
RPGRIP1L, IRX3, and IRX5 genes [8–11]. Moreover, it was shown that the genetic suscepti-
bility to obesity is modified in a population-related manner [12–14]. Despite the previously
obtained results, some issues related to the genetics of obesity, including the role of SNPs
in genes involved in the inflammation and lipid metabolism pathways mediating obe-
sity, are still poorly investigated, and the available results are contradictory. Therefore,
understanding the role of genetic factors controlling the different pathways underlying
the pathogenesis of obesity, particularly inflammation and lipid metabolism, plays a very
important role in the development of personalized prevention strategies, especially in
at-risk groups.

This study aimed to determine risk-associated polymorphic variants in immune
response and lipid metabolism genes in obese middle-aged and elderly Caucasian patients.

2. Materials and Methods
2.1. Group Description

The present study included 560 Caucasian individuals aged 44 to 75 years (mean
age of 59 years) that were long-term residents (at least three generations) in Western
Siberia (Russian Federation) and undergoing a screening examination at the Research
Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russian Federation).
Patients with cancer, autoimmune and mental diseases, and acute or exacerbated chronic
infections associated with the inflammatory process were excluded from the study to avoid
confounding effects. According to the World Health Organization age standards (2015),
the patients included in this study were classified into two age groups: middle-aged (age
≤60 years) and elderly (age >60 years).

Obesity was defined as a body mass index (BMI) of 30 kg/m2 or greater. In the studied
group, the mean BMI was 28 kg/m2, ranging from 17 kg/m2 to 41 kg/m2. According
to this stratification, 220 individuals (39%) were obese, and 340 individuals (61%) had a
normal BMI. The complete characteristics of patients included in this study are presented
in Table 1.

Table 1. Characteristics of patients included in the study.

Index Number (%)

Male 319 (57)

Female 241 (43)

Age ≤60 years (middle-aged patients) 382 (68)

Age >60 years (elderly patients) 178 (32)

BMI ≥30 kg/m2 220 (39)

BMI ≥30 kg/m2 in middle-aged patients 156 (41)

BMI ≥30 kg/m2 in elderly patients 64 (36)

The design of this study was approved by the Local Ethical Committee of the Research
Institute for Complex Issues of Cardiovascular Diseases (Kemerovo, Russian Federation).
All individuals included in this study provided written informed consent to participate
in the examination. This study was performed in accordance with the World Medical
Association Declaration of Helsinki (ethical principles for medical research involving
human participants with amendments in 2000) and Good Clinical Practice.
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2.2. Molecular Genetic Testing

Genomic DNA was isolated using the routine phenol–chloroform extraction method
from whole blood collected from the cubital vein in vacuum tubes with K3EDTA and stored
at −80 ◦C until the next stage of the experiment.

SNPs were selected according to the following criteria: (i) location within immune
response and lipid metabolism genes; (ii) minor allele frequency >5% in Caucasian popula-
tions; (iii) functional consequences and related studies on their role in obesity pathogenesis.
Accordingly, we selected 52 SNPs in 20 genes. The complete characteristics of the selected
SNPs are presented in Table 2.

Table 2. Characteristics of the studied polymorphic variants.

Gene Reference SNP
Number

Chromosomal
Position

Nucleotide
Change Variant Type

TLR1
rs5743611 chr4:38798593 C > G Missense variant

rs5743551 chr4:38806033 T > A, C, G 5’ UTR variant

TLR2 rs5743708 chr4:153705165 G > A Missense variant

TLR4
rs4986791 chr9:117713324 C > T Missense variant

rs4986790 chr9:117713024 A > G, T Missense variant

TLR6
rs5743810 chr4:38828729 A > C, G, T Missense variant

rs3775073 chr4:38828211 T > C, G Missense variant

IL1RL1
rs4988956 chr2:102351547 G > A Missense variant

rs11685424 chr2:102310521 G > A Upstream transcript variant

IL1B
rs1143634 chr2:112832813 G > A Synonymous variant

rs16944 2:112837290 A > G Upstream transcript variant

IL6R
rs2228145 chr1:154454494 A > C, T Missense variant

rs2229238 chr1:154465420 T > A, C 3’ UTR variant

IL6

rs1800796 chr7:22726627 G > A, C Intron variant

rs1554606 chr7:22729088 T > A, G Intron variant

rs2069827 chr7:22725837 G > C, T Upstream transcript variant

CXCL8
rs2227306 chr4:73741338 C > T Intron variant

rs4073 chr4:73740307 A > C, G, T Upstream transcript variant

IL10

rs1800871 chr1:206773289 A > G Upstream transcript variant

rs1800872 chr1:206773062 T > G Upstream transcript variant

rs1800896 chr1:206773552 T > C Upstream transcript variant

IL12RB1 rs375947 chr19:18069641 A > G Missense variant

IL12B rs3212227 chr5:159315942 T > G 3’ UTR variant

IL18RAP
rs917997 chr2:102454108 T > A, C, G Not announced

rs2058659 chr2:102438096 G > A Intron variant

IL18R1

rs13015714 chr2:102355405 G > A, T Upstream transcript variant

rs1974675 chr2:102369915 G > A Intron variant

rs6758936 chr2:102374909 G > A Intron variant

rs3755276 chr2:102361999 C > T Intron variant
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Table 2. Cont.

Gene Reference SNP
Number

Chromosomal
Position

Nucleotide
Change Variant Type

IL18

rs187238 chr11:112164265 C > A, G Upstream transcript variant

rs360719 chr11:112165426 A > G Upstream transcript variant

rs1946518 chr11:112164735 T > G Upstream transcript variant

IL33 rs7025417 chr9:6240084 T > C, G Intron variant

TNF

rs1799964 chr6:31574531 T > C Upstream transcript variant

rs361525 chr6:31575324 G > A Upstream transcript variant

rs1800629 chr6:31575254 G > A Upstream transcript variant

CRP

rs3093077 chr1:159709846 A > C, G, T Not announced

rs1800947 chr1:159713648 C > A, G, T Synonymous variant

rs1130864 chr1:159713301 G > A Intron variant

rs1205 chr1:159712443 C > T 3’ UTR variant

APOE

rs429358 chr19: 44908684 T > C Missense variant

rs769452 chr19:44907853 T > A, C Missense variant

rs7412 chr19:44908822 C > T Missense variant

APOB
rs1042031 chr2:21002881 C > A, T Missense variant/Stop gained

rs6725189 chr2:20996129 G > T Not announced

LPA rs10455872 chr6:160589086 A > G Intron variant

LIPC rs1800588 chr15:58431476 C > G, T Intron variant

CXCR1 rs16858811 chr2:218165120 A > C Missense variant

CXCR2 rs1126579 chr2:218136011 T > C 3’ UTR variant

INS rs689 chr11:2160994 A > G, T Intron variant
IGF1R rs2229765 chr15:98934996 G > A, T Missense variant

LEP rs7799039 chr7:128238730 G > A, C Not announced

LEPR
rs1137101 chr1:65592830 A > G, T Missense variant

rs1137100 chr1:65570758 A > G, T Missense variant

IL1F9 rs17659543 chr2:112958729 C > T Not announced

Molecular genetic testing was performed by allele-specific real-time polymerase chain
reaction (real-time PCR) with fluorescently labeled TaqMan probes (Applied Biosystems,
Waltham, MA, USA). Per each analyzed sample, 10 µL of reaction mixture containing
1.25 µL of appropriate TaqMan probe (Applied Biosystems, Waltham, MA, USA), 5 µL of
TaqMan™ Universal PCR Master Mix (Applied Biosystems, Waltham, MA, USA), 1.75 µL
of DNase-free water, and 2 µL of 100 ng genome DNA template was prepared. The
amplification was performed using the ViiA 7 Real-Time PCR System (Applied Biosystems,
Waltham, MA, USA) in 96-well PCR plates as follows: 10 min at 95 ◦C (one cycle), 15 s at
95 ◦C (one cycle), and 60 s at 60 ◦C (40 cycles). As a negative control, a reaction mixture
without the genomic DNA template was used. Results of genotyping were analyzed using
the QuantStudio™ Real-Time PCR Software v.1.3 (Applied Biosystems, Waltham, MA,
USA). The quality of the PCR was evaluated by repeated genotyping of 10% of the samples.

2.3. Statistical Analysis

Statistical analysis was performed using STATISTICA 10.0 Software (StatSoft, Tulsa,
OK, USA). Quantitative data were tested using the Yates’ chi-square test or the Fisher exact
test. The genotyping results were analyzed using the SNPStats web tool. The most likely
inheritance model for each specific gene polymorphism was determined using Akaike’s
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information criterion (AIC). The results are presented as the odds ratio (OR) and the 95%
confidence interval (CI) calculated using five inheritance models (codominant, dominant,
recessive, over-dominant, and log-additive). The differences were considered statistically
significant at p < 0.05.

3. Results

Four SNPs associated with an increased risk of obesity were discovered—two variants
in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36–2.7, p = 0.0002 in
the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03–2.04, p = 0.033 in the over-
dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86,
95% CI = 1.07–3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88,
95% CI = 1.52–5.46, p = 0.001 in the recessive model). It was inferred that the A/A genotype
(recessive model) of the TNF gene (rs1800629) was associated with a high risk of presenting
an obesity phenotype (OR = 10.29, 95% CI 1.22–86.59, p = 0.0081). However, reliable conclu-
sions concerning the pathogenetic effect of this SNP could not be drawn, since this genotype
was discovered in only 0.3% of nonobese patients. Moreover, the recessive models of the
CXCL8 gene (rs4073 and rs2227306) were characterized by a protective effect (OR = 0.56,
95% CI = 0.37–0.86, p = 0.0065 and OR = 0.49, 95% CI = 0.31–0.79, p = 0.0025, respectively
(Table 3).

Table 3. Association of SNPs with risk of obesity, adjusted by gender and age.

Gene Model Genotype No Obesity,
N (%)

Obesity, N
(%) OR (95% CI) p AIC

IL6R
rs2229238

Codominant

C/C 189 (55.9) 88 (40) 1.00

0.0009 741.5T/C 123 (36.4) 112 (50.9) 1.97 (1.37–2.83)

T/T 26 (7.7) 20 (9.1) 1.66 (0.88–3.14)

Dominant
C/C 189 (55.9) 88 (40) 1.00

0.0002 739.8
T/C-T/T 149 (44.1) 132 (60) 1.92 (1.36–2.71)

Recessive
C/C-T/C 312 (92.3) 200 (90.9) 1.00

0.56 753.3
T/T 26 (7.7) 20 (9.1) 1.20 (0.65–2.21)

Over-dominant
C/C-T/T 215 (63.6) 108 (49.1) 1.00

0.0006 741.9
T/C 123 (36.4) 112 (50.9) 1.83 (1.29–2.58)

Log-additive - - - 1.53 (1.17–2.01) 0.0016 743.7

CXCL8
rs4073

Codominant

T/T 91 (26.8) 71 (32.3) 1.00

0.022 748.8A/T 154 (45.4) 109 (49.5) 0.90 (0.61–1.34)

A/A 94 (27.7) 40 (18.2) 0.53 (0.33–0.86)

Dominant
T/T 91 (26.8) 71 (32.3) 1.00

0.15 752.4
A/T-A/A 248 (73.2) 149 (67.7) 0.76 (0.53–1.11)

Recessive
T/T-A/T 245 (72.3) 180 (81.8) 1.00

0.0065 747
A/A 94 (27.7) 40 (18.2) 0.56 (0.37–0.86)

Over-dominant
T/T-A/A 185 (54.6) 111 (50.5) 1.00

0.32 753.5
A/T 154 (45.4) 109 (49.5) 1.19 (0.85–1.67)

Log-additive - - - 0.74 (0.58–0.94) 0.013 748.3
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Table 3. Cont.

Gene Model Genotype No Obesity,
N (%)

Obesity, N
(%) OR (95% CI) p AIC

CXCL8
rs2227306

Codominant

C/C 103 (30.3) 77 (35) 1.00

0.0098 748C/T 160 (47.1) 115 (52.3) 0.94 (0.64–1.38)

T/T 77 (22.6) 28 (12.7) 0.48 (0.28–0.81)

Dominant
C/C 103 (30.3) 77 (35) 1.00

0.21 753.7
C/T-T/T 237 (69.7) 143 (65) 0.79 (0.55–1.14)

Recessive
C/C-C/T 263 (77.3) 192 (87.3) 1.00

0.0025 746.1
T/T 77 (22.6) 28 (12.7) 0.49 (0.31–0.79)

Over-dominant
C/C-T/T 180 (52.9) 105 (47.7) 1.00

0.25 754
C/T 160 (47.1) 115 (52.3) 1.22 (0.87–1.71)

Log-additive - - - 0.73 (0.57–0.94) 0.012 749

TNF
rs1800629

Codominant

G/G 261 (77) 167 (75.9) 1.00

0.028 749.2G/A 77 (22.7) 47 (21.4) 0.93 (0.62–1.41)

A/A 1 (0.3) 6 (2.7) 10.14 (1.20–85.48)

Dominant
G/G 261 (77) 167 (75.9) 1.00

0.83 754.3
G/A-A/A 78 (23) 53 (24.1) 1.05 (0.70–1.56)

Recessive
G/G-G/A 338 (99.7) 214 (97.3) 1.00

0.0081 747.3
A/A 1 (0.3) 6 (2.7) 10.29 (1.22–86.59)

Over-dominant
G/G-A/A 262 (77.3) 173 (78.6) 1.00

0.63 754.1
G/A 77 (22.7) 47 (21.4) 0.90 (0.60–1.37)

Log-additive - - - 1.17 (0.81–1.69) 0.41 753.6

IL18
rs1946518

Codominant

G/G 111 (32.6) 63 (28.9) 1.00

0.066 748.3T/G 158 (46.5) 122 (56) 1.32 (0.89–1.95)

T/T 71 (20.9) 33 (15.1) 0.78 (0.46–1.31)

Dominant
G/G 111 (32.6) 63 (28.9) 1.00

0.45 751.2
T/G-T/T 229 (67.3) 155 (71.1) 1.15 (0.79–1.68)

Recessive
G/G-T/G 269 (79.1) 185 (84.9) 1.00

0.062 748.3
T/T 71 (20.9) 33 (15.1) 0.65 (0.41–1.03)

Over-dominant
G/G-T/T 182 (53.5) 96 (44) 1.00

0.033 747.2
T/G 158 (46.5) 122 (56) 1.45 (1.03–2.04)

Log-additive - - - 0.93 (0.73–1.20) 0.59 751.5

LPA
rs10455872

Codominant

A/A 315 (92.7) 191 (87.6) 1.00

0.032 746.6A/G 25 (7.3) 25 (11.5) 1.64 (0.92–2.95)

G/G 0 (0) 2 (0.9) NA (0.00-NA)

Dominant
A/A 315 (92.7) 191 (87.6) 1.00

0.049 747.6
A/G-G/G 25 (7.3) 27 (12.4) 1.79 (1.00–3.17)

Recessive
A/A-A/G 340 (100) 216 (99.1) 1.00

0.042 747.3
G/G 0 (0) 2 (0.9) N/A (0.00-N/A)
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Table 3. Cont.

Gene Model Genotype No Obesity,
N (%)

Obesity, N
(%) OR (95% CI) p AIC

Over-dominant
A/A-G/G 315 (92.7) 193 (88.5) 1.00

0.1 748.8
A/G 25 (7.3) 25 (11.5) 1.62 (0.91–2.92)

Log-additive - - - 1.86 (1.07–3.21) 0.026 746.5

LEPR
rs1137100

Codominant

A/A 181 (53.4) 97 (44.5) 1.00

0.0021 740.4A/G 141 (41.6) 94 (43.1) 1.24 (0.87–1.78)

G/G 17 (5) 27 (12.4) 3.19 (1.64–6.18)

Dominant
A/A 181 (53.4) 97 (44.5) 1.00

0.036 746.2
A/G-G/G 158 (46.6) 121 (55.5) 1.44 (1.02–2.03)

Recessive
A/A-A/G 322 (95) 191 (87.6) 1.00

0.001 739.8
G/G 17 (5) 27 (12.4) 2.88 (1.52–5.46)

Over-dominant
A/A-G/G 198 (58.4) 124 (56.9) 1.00

0.76 750.6
A/G 141 (41.6) 94 (43.1) 1.06 (0.75–1.49)

Log-additive - - - 1.53 (1.16–2.00) 0.0021 741.2

Note: Statistically significant results after applying Akaike’s information criterion (AIC) are highlighted in bold.

After stratification by gender, we found that the T/C genotype in the IL6R gene
(rs2229238) and the G/G genotype in the LEPR gene (rs1137100) were associated with
an increased risk of obesity only in males (OR = 2.27, 95% CI = 1.40–3.70, p = 0.0003 and
OR = 2.80, 95% CI = 1.27–6.17, p = 0.028, respectively), while the T/G genotype in the IL18
gene (rs1946518) was associated with an increased risk of obesity only in females (OR = 2.02,
95% CI = 1.07–3.83, p = 0.03). A protective effect was shown for the T/T genotype in the
CXCL8 gene (rs2227306) in females (OR = 0.44, 95% CI = 0.20–0.95, p = 0.04) and the G/G
genotype in the IL1RL1 gene (rs11685424) in males (OR = 0.46, 95% CI = 0.23–0.94, p = 0.023)
(Table 4).

Table 4. Association of SNPs with risk of obesity in groups stratified by gender.

Gene Gender Genotype No
Obesity, N Obesity, N OR (95%CI) p

IL6R
rs2229238

Male

C/C 112 43 1.00

0.002T/C 73 64 2.27 (1.40–3.70)

T/T 15 10 1.74 (0.73–4.17)

Female

C/C 77 45 1.00

0.08T/C 50 48 1.65 (0.96–2.83)

T/T 11 10 1.57 (0.62–4.00)

CXCL8
rs2227306

Male

C/C 66 42 1.00

0.5C/T 92 61 1.04 (0.63–1.72)

T/T 44 14 0.51 (0.25–1.04)

Female

C/C 37 35 1.00

0.04C/T 68 54 0.83 (0.46–1.49)

T/T 33 14 0.44 (0.20–0.95)
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Table 4. Cont.

Gene Gender Genotype No
Obesity, N Obesity, N OR (95%CI) p

IL1RL1
rs11685424

Male

A/A 58 37 1.00

0.023G/A 91 65 1.12 (0.67–1.89)

G/G 51 15 0.46 (0.23–0.94)

Female

A/A 45 30 1.00

0.43G/A 67 49 1.11 (0.61–2.01)

G/G 26 24 1.39 (0.68–2.87)

IL18
rs1946518

Male

G/G 70 43 1.00

0.48T/G 94 59 1.01 (0.61–1.66)

T/T 38 15 0.63 (0.31–1.28)

Female

G/G 41 20 1.00

0.03T/G 64 63 2.02 (1.07–3.83)

T/T 33 18 1.10 (0.50–2.41)

LEPR
rs1137100

Male

A/A 105 53 1.00

0.028A/G 83 45 1.07 (0.66–1.75)

G/G 13 18 2.80 (1.27–6.17)

Female

A/A 76 44 1.00

0.004A/G 58 49 1.48 (0.87–2.53)

G/G 4 9 4.04 (1.17–13.94)
Note: Statistically significant results are highlighted in bold.

In the group of middle-aged patients (age ≤60 years), the G/G genotype in the LEPR
gene (rs1137100) was associated with a fourfold increased risk of obesity (OR = 4.23, 95%
CI = 1.74–10.28, p = 0.03). The same tendency was shown for the T allele in the IL6R gene
(rs2229238). Among elderly patients (age >60 years), a risk association was shown for
the G/A genotype in the CRP gene (rs1130864) (OR = 1.98, 95% CI = 1.03–3.83, p = 0.01)
and for the C allele in the TLR2 gene (rs3804099). Furthermore, the middle-aged patients
with the A/A and T/T genotypes in the CXCL8 gene (rs4073 and rs2227306, respectively)
had a twofold decreased risk of obesity (Table 5). In contrast, the C allele in the IL6R
gene (rs2228145) was associated with a decreased risk of obesity in middle-aged patients,
whereas this allele acquired was associated with an increased risk of obesity development
in elderly patients (Table 5).

Table 5. Association of SNPs with obesity risk in groups stratified by age.

Gene Age Genotype No
Obesity, N Obesity, N OR (95%CI) p

IL6R
rs22281454

≤60 years

A/A 94 88 1.00

0.004A/C 107 59 0.58 (0.38–0.90)

C/C 24 9 0.40 (0.18–0.90)

>60 years

A/A 63 25 1.00

0.027A/C 40 32 2.03 (1.05–3.91)

C/C 10 7 1.70 (0.58–4.98)
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Table 5. Cont.

Gene Age Genotype No
Obesity, N Obesity, N OR (95%CI) p

IL6R
rs2229238

≤60 years

C/C 130 59 1.00

0.015T/C 82 81 2.21 (1.43–3.41)

T/T 14 16 2.53 (1.16–5.53)

>60 years

C/C 59 29 1.00

0.49T/C 41 31 1.54 (0.80–2.93)

T/T 12 4 0.67 (0.20–2.25)

CXCL8
rs4073

≤60 years

T/T 59 50 1.00

0.027A/T 100 79 0.93 (0.58–1.51)

A/A 67 27 0.46 (0.26–0.83)

>60 years

T/T 32 21 1.00

0.07A/T 54 30 0.84 (0.41–1.71)

A/A 27 13 0.74 (0.31–1.75)

CXCL8
rs2227306

≤60 years

C/C 65 54 1.00

0.04C/T 110 82 0.89 (0.56–1.40)

T/T 51 20 0.45 (0.24–0.86)

>60 years

C/C 38 23 1.00

0.05C/T 50 33 1.08 (0.55–2.14)

T/T 26 8 0.52 (0.20–1.36)

CRP
rs1130864

≤60 years

G/G 115 79 1.00

0.19G/A 98 62 0.91 (0.59–1.39)

A/A 13 15 1.70 (0.77–3.78)

>60 years

G/G 55 22 1.00

0.01G/A 47 37 1.98 (1.03–3.83)

A/A 12 5 1.04 (0.33–3.29)

LEPR
rs1137100

≤60 years

A/A 125 70 1.00

0,03A/G 93 67 1.29 (0.84–1.98)

G/G 8 18 4.23 (1.74–10.28)

>60 years

A/A 56 27 1.00

0.15A/G 48 27 1.14 (0.59–2.20)

G/G 9 9 2.12 (0.75–5.98)

TLR2
rs3804099

≤60 years

T/T 86 64 1.00

0.36T/C 106 68 0.86 (0.55–1.34)

C/C 34 24 0.95 (0.52–1.77)

>60 years

T/T 56 16 1.00

0.01T/C 41 30 2.55 (1.23–5.28)

C/C 17 17 3.35 (1.39–8.04)
Note: Statistically significant results are highlighted in bold.
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4. Discussion

Chronic inflammation is involved in the pathogenesis of many diseases including obe-
sity, type 2 diabetes mellitus, and atherosclerosis [15]. Danger signals caused by molecular
patterns of microbial agents and endogenous damage factors (PAMPs and DAMPs) trigger
the assembly of innate immunity intracellular sensors, which leads to the activation of
caspase-1 and the production of proinflammatory cytokines IL1β and IL18 [16]. Interleukin-
18 (IL18) is an important proinflammatory cytokine involved in the pathogenesis of acute
coronary events and type 2 diabetes mellitus [17], and it is associated with the modification
of obesity and metabolic syndrome risk, although the underlying mechanisms remain
unclear [18]. It is known that IL18R and IL18 expression in adipose tissue is enhanced
in nondiabetic obesity, and it is associated with a proinflammatory gene signature and
insulin resistance in such patients [19]. Polymorphic variant rs1946518 in the IL18 gene is
located in the promoter region and is associated with type 1 and 2 diabetes mellitus [20,21].
In was shown that the NLRP3 inflammasomes regulate adipose tissue metabolism via
promoting IL18 secretion [22]. Despite the fact that this SNP was not associated with a
metabolic syndrome in a northern Iranian population [23], we found an association of this
polymorphic variant with a risk of obesity in females. We suppose that the T/G genotype
of the IL18 gene (rs1946518) is associated with increased activity of proinflammatory IL18,
which interacts with the IL18Rα/β heterodimer receptor complex expressed mainly by
immune cells (e.g., macrophages, dendritic cells, T and B lymphocytes), in addition to
endothelial and smooth muscle cells, thus stimulating these cells in an autocrine/paracrine
manner [19,24]. An increased number of these cells, especially macrophages, can be found
in the expanding adipose tissue in obese patients [25].

Interleukin-6 (IL6) is a pleiotropic cytokine involved in both immune and nonimmune
events in numerous cells and tissues outside of the immune system [26]. IL6 activates an
intracellular signaling cascade leading to inflammation via binding to its receptor IL6R [27].
It was reported that IL6R gene polymorphism is associated with BMI and obesity [28–30].
The results herein describing an increased risk of obesity in middle-aged males carrying the
C/T genotype of the IL6R gene (rs2229238) are consistent with the findings of an association
between the C/T genotype of this gene and an increased risk of obesity in schoolboys from
Taiwan [31]. We suppose that the C/T genotype is associated with an elevated serum IL6R
concentration and an increased level of the IL6/IL6R complex, resulting in greater IL6
signal transduction and IL6 production, with an effect on adipocytes and immune cells in
adipose tissue, as well as on insulin-targeting cells in peripheral tissues [7,31].

Lipoprotein(a), encoded by the LPA gene, is a serine protease with inhibition activity
toward tissue plasminogen activator I. The encoded protein is proteolytically cleaved,
resulting in fragments that can attach to atherosclerotic lesions and promote thrombo-
genesis. Elevated plasma levels of this protein are linked to atherosclerosis [32]. LPA
genetic polymorphism is associated with different cardiovascular pathologies, e.g., coro-
nary artery disease, aortic valve stenosis, and valvular calcification [33–36]. In the presented
research, we determined for the first time an association between LPA gene polymorphism
(rs10455872) and obesity risk according to the log-additive inheritance model, regardless of
gender and age. We hypothesize that the log-additive inheritance model was characterized
by some defects in the expression of lipoprotein(a) linked to apoprotein B-100, thus leading
to an increase in its synthetic rate and, consequently, an elevated obesity risk.

The protein encoded by the LEPR gene is a receptor for leptin (an adipocyte-specific
hormone regulating lipid metabolism). Mutations in this gene are associated with obesity
and pituitary dysfunction. LEPR gene polymorphism is associated with early onset of
severe obesity and hyperphagic eating behavior [37]. The G/G genotype of the LEPR gene
(rs1137100) is potentially associated with increased expression of the leptin receptor located
in hypothalamic tissue, which has a significant role in controlling energy homeostasis
and lipid metabolism. The increased expression of the leptin receptor results in more
active binding to leptin, whose elevated secretion by adipocytes is associated with the
increased obesity risk. Our results are consistent with the literature data showing that the
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minor allele of the LEPR gene (rs1137100) is more frequent in obese patients from different
populations [38,39].

An increased serum level of inflammatory markers and acute phase proteins, including
C-reactive protein (CRP), is observed in obese patients [40]. It has been suggested that CRP
has a direct role in the regulation of adiposity via affecting the action of adipokines [41].
Human CRP can dissociate into a physiologically active and proinflammatory monomeric
form, which can bind to cell surface receptors [42] and is potentially involved in the
pathogenesis of inflammatory diseases [43]. An association was revealed between CRP
and leptin level [44], and a direct effect of leptin on CRP production by hepatocytes was
discovered. Therefore, CRP is potentially involved in lipid metabolism via an adipo-
hepato axis (leptin produced by adipocytes enhances CRP expression, which in turn may
antagonize leptin action by limiting its tissue availability) [45]. Our results demonstrate
that genetically determined changes in CRP production can affect the adipo-hepato axis,
leading to the defects in lipid metabolism and an increased risk of obesity, but only in
elderly individuals.

Defects in the relationship between adipocytes and macrophages play an important
role in the initiation of adipose tissue inflammation, thereby triggering obesity [46–48].
Metabolic disorders lead to disbalance between pro- and anti-inflammatory regulators
of macrophages toward the formation of proinflammatory M1-macrophages, which is
linked to adipocyte dysfunction and the development of chronic inflammation in adipose
tissue [48]. Toll-like receptors (TLRs) represent a possible pathophysiological link between
obesity and inflammation. TLRs are widely represented on the surface of immune cells
(macrophages, dendritic cells, neutrophils, basophils, B and T lymphocytes, natural killer
cells) and nonimmune cells (fibroblasts, epithelial cells, keratinocytes) [49]. Moreover,
adipocytes also express TLRs that actively participate not only in antibacterial defense, but
also in the initiation of chronic inflammation of adipose tissue [50]. Enhanced lipolysis in
adipocytes leads to an increase in the level of unsaturated fatty acids, which, through TLRs,
promote the differentiation of macrophages into an M1 phenotype [51]. We found that the
C allele of the TLR2 gene (rs3804099) was associated with a threefold increase in risk of
obesity in elderly patients due to more active TLR-promoted inflammation.

Our most interesting results were the sex- and age-specific associations of immune
response and lipid metabolism gene polymorphisms with the risk of obesity in the studied
cohort. The gender dimorphism of biological and physiological functions is caused by
gender-based chromosomal differences in gonadal hormone secretion. In humans, the
level of gonadal hormones not only varies between males and females, but also changes
depending on age, and this physiological alteration can influence the function of gonadal.
hormone-sensitive genes [52]. Gonadal hormones can significantly modulate cell signal-
ing pathways and control gene regulation and expression. It was shown that gonadal
hormones may modify the immune response via regulating the production of pro- and
anti-inflammatory cytokines and TLR expression [53–56]. Moreover, lipid metabolism
also varies according to gender and age. Recently, a gender-specific association of FTO
gene polymorphism with risk of obesity was revealed [57]. Therefore, the gender- and
age-modulated associations of SNPs in the inflammatory response and lipid metabolism
genes with obesity risk identified in the present study suggest the role of gene–gender
interactions in the development of this pathology. It should be noted that our results need
to be replicated in different populations with a larger sample size.

5. Conclusions

Genetic polymorphisms in the immune response and lipid metabolism genes are
associated with increased obesity risk in middle-aged and elderly Caucasian patients in
a gender- and age-depended manner. The obtained results can be used to assess the
personalized risk of obesity in healthy donors during medical examination or screening, as
well as to develop appropriate early prevention strategies targeting obesity in at-risk groups.
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