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Abstract: Water is a vital resource that is required for social and economic development. A rapid
increase in industrialization and numerous anthropogenic activities have resulted in severe water
contamination. In particular, the contamination caused by heavy metal discharge has a negative
impact on human health and the aquatic environment due to the non-biodegradability, toxicity, and
carcinogenic effects of heavy metals. Thus, there is an immediate need to recycle wastewater before
releasing heavy metals into water bodies. Hydrogels, as potent adsorbent materials, are a good
contenders for treating toxic heavy metals in wastewater. Hydrogels are a soft matter formed via the
cross-linking of natural or synthetic polymers to develop a three-dimensional mesh structure. The
inherent properties of hydrogels, such as biodegradability, swell-ability, and functionalization, have
made them superior applications for heavy metal removal. In this review, we have emphasized the
recent development in the synthesis of hydrogel-based adsorbent materials. The review starts with a
discussion on the methods used for recycling wastewater. The discussion then shifts to properties,
classification based on various criteria, and surface functionality. In addition, the synthesis and
adsorption mechanisms are explained in detail with the understanding of the regeneration, recovery,
and reuse of hydrogel-based adsorbent materials. Therefore, the cost-effective, facile, easy to modify
and biodegradable hydrogel may provide a long-term solution for heavy metal removal.

Keywords: hydrogels; heavy metals removal; wastewater

1. Introduction
1.1. Problem Statement

Water is essential for all living organisms on the planet. Although, it occupies 71%
of the total surface area of the earth, only 3% of water is available as freshwater and
less than 1% is potable. The remaining percentage of water is inaccessible in different
forms such as ice, glaciers, and snow on the south and north poles [1]. Water plays a
significant part in the hydrological cycle, food-processing industries, chemical weathering,
domestic usage, agricultural irrigation, and so on. Therefore, there is an increasing need
for freshwater, but the availability is limited. Freshwater is contaminated by discarding
waste in various water bodies in the form of marine dumping, oil leakage, industrial waste,
sewage waste, etc. Different pollutants present in wastewater are summarized in Figure 1.
Among them, heavy metals are found to be the most common pollutant in contaminated
water, which deteriorates the sustainable environment. Water contamination by heavy
metals has harmed human health all around the world due to the fast development in
industries, economics, and population [2].
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Figure 1. Different pollutants in contaminated water.

1.2. Heavy Metals and Their Hazardous Effect

Heavy metals are referred to as metals with a density of 5 gm/cm3 and are poisonous,
toxic, and hazardous even at very low concentrations. The sources of heavy metal contami-
nation into water are categorized in two ways: (1) natural ways like soil erosion, rainfall,
dissolution of soluble salts, etc., and (2) artificial ways like industrial waste, and urban
wastewater [3]. Heavy metals include mercury (Hg), zinc (Zn), arsenic (As), cadmium
(Cd), silver (Ag), iron (Fe), lead (Pb), tin (Sn), and the platinum group of metals. Heavy
metals are non-biodegradable elements [4] that cause detrimental effects on the natural
ecosystem and human health when their concentration goes beyond permissible limits.
For instance, persistent intake of inorganic arsenic causes lung, bladder, skin, and kidney
cancer in humans via consumption of drinking water [5]. Mercury accumulation in the
food chain shows a negative impact on human health such as kidney and pulmonary
function impairment, chest pain, and damage to the central nervous system [6]. Some other
examples are listed in Table 1.

Heavy metals are not degraded by natural mechanisms and hence persist in the
environment for a long duration of time. They may be converted into insoluble compounds
or other forms. Water, air, and soil are the three key environmental compartments that
get affected by heavy metal contamination (Table 1). Runoffs from cities, villages, towns,
and factories transport the heavy metals that accumulate in a flowing stream. Even if
a low concentration is transferred to water streams, it is extremely harmful to humans
and the natural ecosystem [7]. Air pollution is caused by dust and particulate matters
such as PM2.5 and PM10 which are discharged by various natural and anthropogenic
processes. Soil erosion, dust storms, rock weathering, and volcanic eruptions are examples
of natural processes that release particulate matter in the air, whereas anthropogenic
activities are mainly transport-related and industrial. These particulate matters cause
corrosion, haze, and eutropication, and lead to the formation of acid rains [8]. Heavy metals
pollute soil by damping wastes like animal manures, pesticides, fertilizers, sewage sludge,
spillage of petroleum distillates, etc. The use of this untreated waste has resulted in a high
concentration of heavy metals in agricultural fields, which affects the entire biosphere. They
are directly absorbed by plants, causing a risk to the plant and the food chain that consumes
it. They affect soil qualities such as color, pH, and porosity and also pollute water [9].
Therefore, it is urgent and necessary to remove toxic heavy metals from contaminated
wastewater. A variety of wastewater recycling techniques have been developed, which are
further discussed in this review article.
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Table 1. Toxic effects of different heavy metals on human health [10,11].

Heavy
Metals Leading Source Path of Entry Toxic Effects on Human Health Environmental

Hazards
MCL

(mg/L)

Lead (Pb)

Mining, automobile
emissions, smoking,

pesticide, paint,
burning of coal

Ingestion and
inhalation

Damages the central nervous
system, fetal brain, kidney,

reproductive system, liver, basic
cellular processes, and causes

diseases, namely, anemia, nephrite
syndrome, hepatitis, etc.

Soil and water
pollution 0.015

Cadmium
(Cd)

Pesticide fertilizer,
electroplating, Cd-Ni

batteries, welding

Ingestion and
inhalation

Irritation of respiratory system,
damages liver, kidney, and lungs

Soil and water
pollution 0.005

Nickel (Ni) Electrochemical
industries Inhalation

Causes lung, kidney, and
gastronomical pain, renal edema,

pulmonary fibrosis, and
skin dermatitis

Soil and water
pollution 0.1

Zinc (Zn)
Plumbing, refineries,

metal plating,
brass manufacture

Ingestion,
inhalation, and

through skin

Vomiting, pain in the stomach, skin
irritation, nausea, and anemia

Soil and water
pollution 0.8

2. Methods Used for Recycling Wastewater

Over the years, numerous methods have been developed to remediate heavy metal-
contaminated wastewater before discharging it into the environment. Heavy metals can
be removed from wastewater by using a variety of methods, including ion exchange,
coagulation-flocculation, flotation, membrane filtration, chemical precipitation, and adsorp-
tion (Figure 2). However, each method has its own set of advantages and disadvantages
(Summarized in Table 2).
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Among the presented methods in Figure 2, adsorption is considered to be one of
the most efficient, low-cost, and simple-to-operate methods to remove heavy metals from
contaminated water when compared with other methods [12]. Moreover, the adsorption
process is technologically feasible and attractive, as the adsorbent material can be reused
and regenerated. In this process, no secondary waste is generated during the removal of
heavy metals [13]. The process also has the advantage of removing low concentrations
of heavy metals from the solution with low energy consumption [14,15]. Adsorption is a
mass transfer surface phenomenon that leads to the binding of molecules from liquid bulk
(adsorbate) onto the solid surface (adsorbent) [16]. This binding occurs due to the presence
of residual imbalance forces that attracts and retains molecules on the surface of the solid
or liquid phase [17]. The adsorbent adsorbs the adsorbate via bonding interactions like a
covalent bond or Van der Waals forces [18].

Over the years, researchers have developed adsorbent materials for the removal
of toxic heavy metals from wastewater like rice husk bio-char, sugar beet pulp, TiO2,
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activated carbon, clay, etc. [19–23]. However, these adsorbent materials suffer from certain
disadvantages such as their difficulty separating from the water after the decontamination
process, higher production cost, economic unsustainability for large-scale applications, and
many other reasons [24]. This calls for the immediate development of an adsorbent material
that is cost-effective, easy to handle, biodegradable, and biocompatible adsorbent material
to purify contaminated water. In recent years, hydrogels have gained tremendous attention
as the potential adsorbent material owing to their excellent water affinity, controllable
swelling behavior, high porosity, better mechanical properties, and easy handling; these are
the main factors for the reuse of adsorbent material. Hydrogel-based material has shown
substantial attention for applications in different fields, such as biomedicine, agriculture,
food additives, drug delivery, wound dressing, regenerative medicine, and cosmetics. Even
though hydrogel-based adsorbents have a long history in a few of the above-mentioned
fields, their application for contaminant removal from wastewater has been only reported
over the last decade. Our emphasis will be on the application of hydrogel-based material
for the removal of toxic and hazardous heavy metals from wastewater.

Table 2. Advantages and disadvantages of various methods used for recycling wastewater.

Methods Advantages Disadvantages References

Ion exchange Does not produce a large amount of sludge,
easy regeneration of resins

High operational cost, selective towards
certain metal ions [25]

Chemical
precipitation Low capital cost, simple process

Produces a large amount of sludge,
ineffective in treating low concentration of

heavy metal ions
[26]

Coagulation-
flocculation

Easy to employ, inexpensive, low
energy consumption

Complete removal of heavy metals is
difficult, generation of a large quantity

of sludge
[27]

Flotation Economically efficient Low elimination efficiency, [28,29]
Membrane
filtration

Small space requirement, high efficiency,
high separation selectivity

complex process, high operational
expense due to membrane fouling [30]

Adsorption
Technologically feasible, effective, low-cost

adsorbent, no waste generation, easy
operation conditions

Low selectivity [3,13]

3. Hydrogels for Removal of Heavy Metals

In 1894, the term “hydrogel” was first coined by Bemmelen to explain colloidal
gels [31]. DuPont scientists reported the first synthetic hydrogel, poly (2-hydroxyethyl
methacrylate) (PHEMA), in 1936 [32]. Witcher and Lim were the first to report the use
of PHEMA for the application of contact lenses in 1960 [33]. Since then, hydrogels have
been an intriguing topic for researchers, and they now represent a developing and active
research field aimed at providing better solutions for various needs in many applicative
fields. The use of hydrogels for the extraction of heavy metals from wastewater is becoming
more popular, as they can capture and store different heavy metals found in wastewater
within their network structure. Hydrogels are regarded as hydrophilic gels, which consists
of chemically reactive functional groups and physically distinct three-dimensional (3D)
network [34]. The porous three-dimensional network of hydrogel allows absorption and
retention of a large volume of water without dissolving [35]. The hydrophilic groups in the
polymeric network enable the formation of a flexible structure, which allows easy diffusion
of solute into the three-dimensional framework of gels and forms a stable complex with
the functional group present on a long polymeric chain [36]. Due to distinct properties
like hydrophilicity, biocompatibility, biodegradability, viscoelasticity, and superabsorbancy,
hydrogel adsorbents can play a prime role in the capture of heavy metals from contaminated
water (Figure 3a) and can discharge these hazardous pollutants upon changes in the external
environment (change in pH, temperature, etc.) (Figure 3b) [34,37].
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In recent years, hydrogel adsorbents have shown a high potential for the effective
elimination of heavy metals. Hydrogel absorbs heavy metals in a three-dimensional
interstitial structure ensuring more sites per unit volume [38]. Unlike other adsorbents,
hydrogels adsorb heavy metals in a three dimensional, highly porous network that leads to
high adsorption efficiency [37]. Adsorption or desorption of heavy metals is mainly due
to the surface chemistry and presence of hydrophilic functional groups (–COOH, –NH2,
–OH, –SO3H, etc.) that act as a complexing agent for heavy metal removal from aqueous
media [36,37]. Moreover, hydrogels can be modified by the addition of new functional
groups or the preparation of composites with natural or synthetic sources to enhance heavy
metal absorption capacities [39]. The swelling behavior of hydrogels is associated to an
extent with hydrophilic functional groups present in the polymer backbone, the degree
of cross-linking, the elasticity of the network, and the porosity of the polymer [40]. The
hydrophilic polymers in hydrogel can swell up to several times their original volume in
aqueous media and hold large content of water about 400 times its original weight [41].
Hydrogels are insoluble in water which leads to easy regeneration because of the presence
of chemically cross-linked polymers, which enhance their mechanical strength as well as
decreases the swelling ratio. Therefore, it is necessary to balance the amount of crosslinking
and swelling ratio to obtain a stronger hydrogel [42]. Some other advantages of hydrogels
are that they can be synthesized with the desired charges, controllable sizes, and functional
groups [43]. The three most important parameters on which the capacity of cross-linked
hydrogel synthesized depend are: (a) polymer volume fraction of hydrogel in swollen
shape, which determines the quantity of fluid absorbed into hydrogel network, (b) the
average molecular weight between two cross-links, which determines the degree of cross-
linking for the prepared hydrogel, and (c) the network mesh size, which determines the
degradability, mechanical strength, and diffusivity of releasing components into hydrogel
structure [44].

An ideal hydrogel should have the following characteristics to be widely applied for
the effective removal of heavy metals from polluted wastewater [24].

• Cost-effective
• High adsorption capacity to absorb heavy metals from wastewater
• High adsorption rate (determined by porosity and particle size)
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• Biodegradable
• Easy to modify
• The low content of the unreacted residual monomer
• High stability and durability during swelling and storage
• Non-toxic, colorless, and odorless
• pH neutrality after swelling in aqueous media
• Deswelling capabilities and re-watering (able to release back the stored water)

4. Properties of Hydrogel

An ideal hydrogel has distinctive characteristic properties such as swelling or deswelling
in the presence of external stimuli, responsiveness to the change in temperature, pH, light,
etc., and biodegradability.

4.1. Swelling or Deswelling of Hydrogels

Hydrogels are the cross-linked polymer that swells and imbibes water when im-
mersed in the aqueous media. These three-dimensional structures can swell up to several
times their dry weight [45]. Hydrogels can respond to external stimuli (temperature, pH,
light, salt, magnetic fields, biomolecules, and ionic strength) by shrinking, swelling, and
discoloration [46]. Factors affecting swelling kinetics and equilibrium are the chemical
structure of the polymers, cross-linking ratio, synthesis state, and ionic media. Chemical
structure affects the swelling of hydrogel; hydrophilic groups swell more in comparison to
hydrophobic groups. Cross-linking also has a significant effect on swelling behavior, as a
highly cross-linked polymer network will show less swelling and vice versa. The swelling
behavior of hydrogels is also affected by temperature and pH [47]. Temperature-sensitive
hydrogels undergo swelling or de-swelling (change in volume) with the change in the
temperature. These hydrogels swell below the low critical solution temperature and shrink
above the low critical solution temperature [48]. pH-sensitive hydrogels undergo swelling
or deswelling by varying pH levels. These hydrogels consist of ionizable acidic and basic
groups connected to the polymer backbone that can add or release protons by varying pH
levels. At the high pH value, the acidic groups on polymer chains deprotonate whereas at
low pH values, the basic groups get protonated [49].

Swelling in hydrogels takes place in three steps:—(a) the diffusion of water into
the three-dimensional network of hydrogel, (b) loosening of the polymeric chains, and
(c) expansion of hydrogel structure. A hydrogel in swollen form is referred to as the rubbery
state and the dry form as the glassy state. When dry hydrogel comes in contact with the
solvent, the free space in a polymer network permits the solvent to enter the hydrogel
matrix easily. This transforms the dry or glassy state into a swollen or rubbery state.
The de-swelling of hydrogel occurs when water is removed from a hydrogel matrix [47].
Experimentally, the swelling ratio can be calculated by the following formula [50].

Swelling ratio = [(Ws −Wd)÷Wd]× 100

where, Ws and Wd are the weight of the swollen and dry hydrogel, respectively.

4.2. Stimuli-Responsive Hydrogels

Gels that respond to changes in the external environment (temperature, pH, magnetic
field, electric field, etc.) are termed stimuli-responsive hydrogels. These hydrogels have
characteristics to transform their shape (from solution to gel) based on the application [51].
Furthermore, stimuli-responsive hydrogels are categorized into three classes: chemical,
physical, and biological. pH, solvency, ionic strength, and electrochemical field are typical
chemical stimuli. Physical stimuli include temperature, magnetic field, electric field, light,
mechanical force, and ultrasound. Biological stimuli include enzymes, glucose, antigen,
ligands, etc. (Figure 4) [52]. Multi-responsive hydrogels are the kind of hydrogels that
respond to two or more stimuli [53].
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4.3. Biodegradable

Biodegradability refers to the ability of the hydrogel to break down into harmless
and non-toxic end products by bacteria or other organisms. Hydrogels’ biodegradability
is determined by the functional groups present in the system as well as the method of
synthesis. The degradation process involves solubilization and hydrolysis of biological
entities of hydrogel into safer end products. Biodegradable polymers include a wide range
of hydrophilic synthetic and natural polymers. Due to diffusion, these polymers absorb an
ample amount of water and expand to a large extent. The breakdown of these polymers
is influenced by various parameters such as molecular weight, hydrophilicity, and the
interaction of the polymer with water. Other environmental conditions like temperature
and pH also influence the breakdown of polymers via solubilization.

Chemical hydrolysis can be used to degrade a variety of polymers that cannot be
destroyed by simple hydrolysis. These polymers do not produce hydrogel; rather they
mix with hydrogel to form a hydrophilic monomer, which is then combined to form
a biodegradable hydrogel. The formed hydrogel undergoes degradation via chemical
hydrolysis via ester bonds. Furthermore, hydrogels can be degraded by enzyme hydrolysis
and this category of hydrogels involves polymers such as proteins, polysaccharides, and
synthetic polypeptides. Enzyme hydrolysis takes place by a set of hydrolases that catalyze
the hydrolysis of C-N, C-O, and C-C bonds. Peptidases and proteinases are hydrolases that
degrade polypeptide and protein hydrogels, respectively. Moreover, glycosidase is the sole
enzyme that degrades polysaccharide hydrogels [47].

5. Classification of Hydrogel

Hydrogels are classified depending on their source, nature of cross-linking, chain
composition, ionic charge, response to external stimuli, configuration, and size. The most
important parameters for the classification of hydrogels are depicted in Figure 5.
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5.1. Based on Source

Hydrogels can be classified as natural, synthetic, and hybrid.

(a) Natural hydrogels are synthesized by using natural sources including chitosan,
agar-agar, cellulose, lignin, gelatin, alginate, dextran, collagen, and many other
materials [54].

(b) Synthetic hydrogels are prepared by using synthetic polymers namely hydroxy methyl
methacrylate (HEMA), acrylic acid (AA), vinyl acetate (VAc), ethylene glycol (EG),
ethyleneglycoldimethacrylate (EGDMA), methacrylic acid, N-vinyl 2-pyrrolidone
(NVP), and many other materials [54].

(c) Hybrid hydrogels are made by combining natural and synthetic sources [55]. Zhang et al.
prepared chitosan-g-poly (acrylic acid)/attapulgite/sodium humate hydrogel for
effective removal of Pb2+ [56].

5.2. Based on the Nature of Chain Composition

Hydrogels can be classified into three principal classes: homo-polymeric hydrogels,
co-polymeric hydrogels, and multipolymer hydrogels.

(a) Homo-polymeric hydrogels are cross-linked polymer-network originating from a
single type of monomer unit [57]. The structural unit of these hydrogels depends on
the type of monomer, cross-linker, and polymerization technique [58].

(b) Co-polymeric hydrogels are composed of two or more types of monomer units with at
least one hydrophilic monomer, arranged in a random, block, and irregular structure
along the backbone of the polymer network [59]. These hydrogels are prepared by
cross-linking or polymerization between both the monomers by using a cross-linker
and initiator. An example of such hydrogels is chitosan, k-carrageenan, carboxymethyl
cellulose composite hydrogel which is used to remove metal ions.

(c) Multipolymer hydrogels are cross-linked polymer-network prepared by three or
more monomer units via cross-linking and polymerization reactions. For example,
Kim et al. synthesized chitosan-based multicomponent functional gel comprising
multiwall carbon nanotubes, polyaniline, poly (acrylic acid), and poly (4-amino
diphenyl amine) [60].

(d) Interpenetrating polymeric hydrogels are comprised of two independent, intertwined
polymer networks, having natural and/or synthetic polymer components. In a
semi-interpenetrating polymer hydrogel, one polymer has a linear network that
diffuses into another cross-linked network. There is no chemical bonding between the
polymers [54].
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5.3. Based on the Nature of Cross-Linking

Hydrogels can be classified into two categories: physically cross-linked hydrogels and
chemically cross-linked hydrogels.

(a) Physically cross-linked hydrogels have a transient junction that arises due to physical
interaction such as hydrogen bond, ionic interaction, and hydrophobic interaction.

(b) Chemically cross-linked hydrogels have permanent junctions that arise due to covalent
bonds [50].

5.4. Based on the Reaction of Hydrogel with the External Stimulus

Hydrogels can be classified into two distinct categories: traditional hydrogels and
environmentally sensitive hydrogels.

(a) Traditional hydrogel is not reactive to environmental changes
(b) An environment-sensitive hydrogel can detect changes caused by chemical (pH,

concentration), biochemical (antigen, enzyme, ligand), and physical (temperature,
pressure, light) factors [50].

5.5. Based on the Configuration

On the basis of the physical structure and chemical composition, hydrogels can be
classified as amorphous, semi-crystalline (mixture of crystalline and amorphous phases),
and crystalline [41].

5.6. Based on the Size

Hydrogels can be classified into two classes: macrogel and microgel. The macrogel
is further classified as a porous sponge, columnar, membranous, fibrous, and spherical
according to its morphology. The prepared microgel also can be classified into nanometer
and micron [50].

5.7. Based on Ionic Charge

Hydrogels can be classified into four categories based on the electric charge placed on
the cross-linked network: neutral, ionic, ampholytic, and zwitterionic.

(a) Neutral hydrogels are also known as non-ionic hydrogels. These hydrogels contain
no charge on side groups or polymer backbone.

(b) Ionic hydrogels are further classified as anionic and cationic. Anionic hydrogels carry
negatively charged functional groups like sulfonyl, carboxyl, etc. and at high pH
values show an increase in swelling behavior. Cationic hydrogels carry positively
charged functional groups like amines, thiol, etc., and at low pH values exhibit an
increase in swelling behavior.

(c) Ampholytic or amphoteric hydrogels contain acidic as well as basic groups.
(d) Zwitterionic hydrogels contain cationic and anionic groups in their structure [61,62].

6. Surface Functional Groups of Hydrogel

A group of atoms in a compound responsible for chemical reactions is known as the
functional group. Functional groups play a significant role in determining the chemical
reactivity of the molecule as well as the type and strength of intermolecular forces. The
paramount functional groups incorporated in a three-dimensional network of hydrogels
for metal adsorption are classified into three groups:—(a) nitrogen-containing functional
groups, (b) oxygen-containing functional groups, and (c) sulfur-containing functional
groups [63]. Table 3 summarizes hydrogels containing different functional groups and
removed heavy metals.
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6.1. Nitrogen-Containing Functional Groups
6.1.1. Amine Group

The amine group contains a nitrogen atom that has a lone pair of electrons, that readily
attach to cationic metal ions. The methods used to functionalize the amine group on the
hydrogel surface are atom-transfer radical polymerization, formaldehyde treatment, and
gamma ray-induced polymerization [63].

6.1.2. Amide Group

The general formula for the amide group is –CONH. In general, amine groups are more
often functionalized on the hydrogel surface than amide groups. Moreover, monomers like
2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt have an amide group in the
polymer backbone, that complexes with heavy metals Cu(II) and Ni (II) [64].

6.1.3. Quaternary Ammonium Groups

Quaternary ammonium groups [R-N+(CH3)3] show strong attraction toward metal
oxyanions (Cr2O7

2−, HCrO4
−, AsO4

3− and CrO4
2−) [65]. Quaternary ammonium groups

are highly stable and unaffected by pH change. Hence, they can captivate oxyan-
ions of metals irrespective of the pH of the medium. Monomers, namely, (vinylben-
zyl)trimethyl ammonium chloride, (3-acrylamidopropyl)trimethyl ammonium chloride
and 2,3-epoxypropyltrimethylammonium chloride contains quaternary ammonium group
as an active functional group in hydrogel preparation [66,67]. By ion exchange, hydro-
gels that consist of these monomers led to the exchange of the chloride (Cl¯) ions with
oxyanions of metals.

6.2. Oxygen-Containing Functional Groups
6.2.1. Hydroxyl Group

A hydroxyl (R-OH) group is composed of one oxygen atom bonded to one hydrogen
atom. According to the International Union of Pure and Applied Chemistry (IUPAC), the
word “hydroxyl” refers to a hydroxyl radical. A hydroxyl group can easily remove the
proton to attract metal cations.

6.2.2. Carboxyl Group

A carboxyl (R-COOH) group is composed of an electronegative oxygen atom that
is double-bonded to the carbon atom and singly bonded to the –OH group. According
to literature, the carboxyl group is found to be the most prominently used group to ad-
sorb heavy metals onto the hydrogel surface. A carboxyl group gets ionized by giving
an H+ ion from its R-OH group at alkaline pH, forming RCOO− ion that readily attracts
the divalent metal cations. To functionalize the carboxyl group onto the hydrogel sur-
face, different methods used in post-treatment are surface grafting, etherification, and
2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation, whichconverts
a primary hydroxyl group into a carboxyl group [63].

6.3. Sulfur-Containing Groups
6.3.1. Thiol Group

The thiol (R-SH) group plays an important role in functionalizing the hydrogel surface
for heavy metal adsorption [68]. The thiol group acts as a Lewis base and interacts with
the heavy metal (Lewis acid) by forming a coordinate bond [69]. From the literature, it is
demonstrated that the thiol group shows strong bonding with mercury (Hg). The bonding
can be well explained by Hard-Soft-Acid-Base (HSAB) theory, where mercury acts as a
soft acid and prefers to bind with the thiol group (soft base) [70]. In an article by Kumar
et al. the thiol group prefers to form a stable complex with highly polarizable soft heavy
metals like mercury (Hg), gold (Au), and silver (Ag); and to a lesser extent with cadmium
(Cd) and zinc (Zn), failing to form a coordinate bond with lighter metals like sodium (Na),
calcium (Ca), and magnesium (Mg) [71].
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6.3.2. Sulfonic Acid Group

A sulfonic acid (R-SO3H) group is a sulfur-containing functional group that contains
an electronegative sulfur atom that is double bonded to two oxygen atoms and single
bonded to the –OH group. Sulfonic acid turns into sulfonate group (R-SO3

−) on disassoci-
ation of hydrogen atom. Functionalizing a sulfonate group onto the surface of hydrogel
makes the surface negatively charged, irrespective of the pH of the medium. A monomer
2-acrylamido-2-methyl propane sulfonic acid (AMPS) has been used to synthesize hydrogel
via 60cobalt gamma-ray irradiation for the adsorption of Co2+, Mn2+, Cu2+,and Fe3+ [72].

6.4. Other Functional Groups
6.4.1. Amidoxime Group

The general formula for the amidoxime group is (R-C(NH2)=N-OH). The amidoxime
group forms stable complexes with many heavy metals such as Co2+, Cu2+, Ni2+, and Pb2+

but shows a strong affinity towards uranium. Therefore, hydrogel-based adsorbent material
has been functionalized with the amidoxime group for the adsorption of uranium [73,74].
Guibal and coworkers synthesized amidoxime grafted chitosan magnetic hydrogel for
sorption of uranium (U6+) and europium (Eu3+) [75]. Zeng et al. prepared amidoxime-
modified hydrogel via graft copolymerization for adsorption of Cu2+. The maximum
adsorption capacity of 40.7 mg/g at pH 5 was achieved over the contact time of 25 h [76].

6.4.2. Phosphate-Containing Functional Group

Phosphate-containing functional groups, namely phosphine, phosphate, and phospho-
ramide are used to functionalize hydrogel surface. However, phosphate-based functional
groups are more popular for functionalizing hydrogel for biomedical areas rather than
metal adsorption. There are very few papers reported for metal adsorption. Liao et al.
prepared phosphate functionalized graphene hydrogel for electrosorption of U6+. The
maximum electrosorption capacity of 545.7 mg/g at 1.2 V and pH 5 was obtained [77].

6.4.3. Chelating Group

The chelating agent such as aminopolycarboxylic acids (APCAs) helps in enhanc-
ing the adsorption affinity of the hydrogel by chelation [78]. Because there are many
nitrogen- and oxygen-containing functional groups present in the aminopolycarboxylic
acid structure. Especially, the nitrogen-containing functional group shows strong bonding
interaction with divalent metal cations [79,80]. The four common aminopolycarboxylic
acids for metal adsorption are ethylenediaminetetra acetic acid (EDTA), iminodiacetic
acid (IDA), diethylenetriaminepentaacetic acid (DTPA), and nitrilotriacetic acid (NTA).
Many biosorbents have been functionalized with EDTA because of their chemical stability,
chelating ability, and low price [81]. IDA is a tridentate ligand forming a metal complex
by chelation [82]. No studies have been reported for hydrogel surface modification by
an NTA chelating agent. DTPA possesses five carboxylate groups, which show a high
binding affinity for heavy metals after grafting on the hydrogel surface. For example,
Huang et al. prepared DTPA-modified chitosan/alginate hydrogels for removal of Cu2+

from electroplating wastewater [83].
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Table 3. Different hydrogel-based functionalized adsorbent materials for the removal of heavy metals.

Hydrogel Active Functional Group Heavy Metals Removed References

Graphene oxide-chitosan-poly(acrylic acid)
(GO-CS-AA) hydrogel nanocomposite R-COOH Pb2+ [84]

Hydrous ferric oxide-Poly(trans-aconitic
acid/2-hydroxyethyl acrylate

(HFO-P(TAA/HEA)) hydrogel
R-OH Cu2+, Cd2+, Pb2+ and Ni2+ [85]

Chitosan-sodium lignosulfonate-acrylic acid
(CS-SLS-AA) hydrogel R-NH2 Co2+ and Cu2+ [86]

Poly(3-acrylamidopropyl) trimethyl ammonium
chloride/7-Fe2O3

R-N+(CH3)3 Cr4+ [87]

Sulfathiazole-based novel UV-curved hydrogel R-SH Hg2+, Cd2+ and Zn2+ [88]
Magnetic anionic hydrogel (nFeMAH) R-SO3Na Cu2+ and Ni2+ [64]

Poly(2-acrylamido-2-methyl-1-propane sulfonic
acid) magnetic hydrogel R-SO3H Cd2+, Co2+, Fe2+,

Pb2+,Cu2+, Cr2+ and Ni2+
[39]

Acrylamide/crotonic acid (AAm/CA) hydrogel R-COOH, and R-CONH2 Hg2+ [89]

Glucan/chitosan hydrogel R-OH and R-NH2
Co2+, Cu2+, Cd2+, Ni2+

and Pb2+ [90]

Malic acid enhanced chitosan hydrogel
beads (mCHBs) R-COOH and R-NH2 Cu2+ [91]

Carboxymethyl cellulose/polyacrylamide
(CMC/PAM) composite hydrogel

R-OH, R-COOH and R-NH2 Cd2+, Pb2+ and Cu2+ [92]

Chitosan poly(acrylic acid)
supermacroporous hydrogel R-OH, R-COOH and R-NH2 Cu2+ and Pb2+ [93]

Lignosulfonate-modified graphene hydrogel R-C=O, R-OH and R-COOH Pb2+ [94]
Polyacrylonitrile-chitosan-graphene oxide (PCG)

hydrogel composite R-C(NH2)=N-OH U6+ [73]

7. Synthesis of Hydrogel

A plethora of issues arising from the overuse of non-biodegradable materials and
fossil resources have shifted researchers’ focus to renewable and environmentally friendly
materials. In the present time, polymers are extensively used in different areas, namely
agriculture, biomedical applications, wastewater treatment, and food packaging [95–98].
Similarly, for the removal of toxic heavy metals from wastewater by adsorption, polymeric
hydrogels are the most promising adsorbent material due to their increased surface area,
good solubility in organic solvents, improved functionality, low-priced, biodegradability,
recyclability, enhanced adsorption capacity, and ease of fabrication. In addition, the excel-
lent hydrophilic character makes these hydrogels suitable for wastewater treatment [35,99].
However, the effectiveness of the adsorbent material is highly dependent on the physico-
chemical properties of the adsorbent [100]. As a result, the first and most important step
in developing an effective adsorption process is to synthesize a suitable hydrogel-based
adsorbent material with high absorptivity of heavy metals present in wastewater.

The essential chemicals required for the synthesis of the hydrogel are a monomer, an
initiator, and a cross-linker. Acryl amide (AAm), polyvinyl alcohol (PVA), polyvinyl pyrroli-
done, acrylic acid (AA), 2-dimethylamino ethyl methacrylate (DMAEM), polyethylene
glycol methyl ether methacrylate (PEGMEM), (3-Acrylamidopropyl) trimethylammonium
chloride (APTMACI), N-isopropylacrylamide, 2-acrylamido-2-methyl-1-propan-sulfonic
acid (AMPS), and 4-vinyl pyridine, 2-hydroxyethylmetacrylate are the examples of some
monomers used in hydrogel synthesis [38,39,101–106]. Distinct monomers have different
properties in terms of adsorption capacity, physical strength, and so on. In the synthesis
of hydrogels, researchers were able to develop a solution to overcome the limitation of
specific monomers. For example, to reduce the physical weakness of biopolymer chitosan,
Sun et al. [107] and Liu et al. [108] used cellulose as the blending polymer in the synthesis
of chitosan-based hydrogel for heavy metal adsorption.
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Cross-linkers or cross-linking agents play a crucial role in the synthesis of polymeric
hydrogels because they help to build up the polymeric three-dimensional network by
stabilizing the binding sites amid the functional monomer and adsorption target molecule.
Therefore, cross-linkers influence the polymers’ hydrophilic or hydrophobic properties,
selectivity, mechanical stability, and morphology [109]. A cross-linker of organic or inor-
ganic nature can be used in the synthesis process. Moreover, inorganic cross-linkers are
mainly used to synthesize hydrogel adsorbents as organic cross-linkers that have certain
disadvantages in terms of lower mechanical strength and thus cannot withstand stressed
conditions; additionally, they also have a lower swelling capacity [41,110]. Furthermore, the
characteristic properties of a hydrogel can differ depending on whether the cross-linking
between the chains is covalent or non-covalent. Permanently cross-linked junctions exist in
hydrogels that have been cross-linked with covalent bonds. Hydrogels cross-linked with
non-covalent bonds (ionic interaction, hydrophobic interaction, or hydrogen bonding), on
the other hand, have transient junctions [41,50].

For polymerization reaction, a cross-linker must have more than one active func-
tional group to help linear polymer chains to join with other chains to form a stable
three-dimensional structure. A low degree of cross-linking, in particular, corresponds to a
small quantity of cross-linker, resulting in poor mechanical strength of polymeric material.
As a result, the three-dimensional structure of hydrogel distorts during the application, and
adsorption sites are disrupted, giving rise to a high number of non-specific perforations.
When the degree of cross-linking is high, a densely packed three-dimensional mesh struc-
ture is generated, having excellent mechanical strength and an unexpectedly high mass
transfer number. Resulting in the reduction of adsorption sites, as well as the degree of
swelling of the hydrogel, causing heavy metals to barely penetrate the hydrogel surface.
Therefore, it is optimal to maintain the quantity of the cross-linker in the specified range.
Polymers having a cross-link ratio greater than 80% are generally used [109,111,112].

In the synthesis of hydrogels, an initiator is a chemical that helps to initiate the
polymerization process. Table 4 summarizes various hydrogel-based adsorbents and the
monomers, initiators, and cross-linkers used in their synthesis process.

Table 4. Different hydrogel adsorbents and associated monomers, cross-linker, and initiators in the
synthesis process.

Hydrogel Monomer Cross-Linker Initiator/Accelerator References

Poly(2-acrylamido-2-
methyl-1-propansulfonic
acid-co- vinylimidazole)

hydrogel

2-acrylamido-2-methyl-1-
propansulfonicacid

(AMPS), N- vinyl imidazole

N,N′

methylenebisacrylamide
(MBA)

2,2′-azobis(2-methyl
propionamide) (MPA)

dihydrochloride
[37]

Cationic hydrogel
(3-acrylamidopropyl)
trimethylammonium
chloride (APTMCI)

N,N′

methylenebisacrylamide
(MBA)

Ammoniumpersulfate
(APS)/N,N,N′,N′-

tetramethylenediamine
(TEMED)

[38]

Hydrogel biochar composite Acrylamide (AAm)
N,N′

methylenebisacrylamide
(MBA)

Ammonium persulfate
(APS) [101]

Fe2O3 nanoparticles
functionalized polyvinyl

alcohol/chitosan magnetic
composite hydrogel

Polyvinyl alcohol (PVA) Glutaraldehyde vapor Glacial acetic acid [102]

Methacrylate-based
hydrogel

Polyethylene glycol methyl
ether methacrylate

(PEGMEM),
2-dimethylamino ethyl

methacrylate

N,N′

methylenebisacrylamide
(MBA)

Ammonium persulfate
(APS) [104]
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Table 4. Cont.

Hydrogel Monomer Cross-Linker Initiator/Accelerator References

(p-4-VP-co-HEMA)
composite hydrogel

4-vinyl pyridine (4-VP), 2-
hydroxyethylmetacrylate

(HEMA)

N,N′

methylenebisacrylamide
(MBA)

Ammonium persulfate
(APS), N,N,N′,N′-

tetramethylenediamine
(TEMED)

[106]

Chitosan-cellulose hydrogel Chitosan Cellulose - [107]

Superabsorbent polymer
hydrogels

Acrylic acid (AA),
acrylamide (AAm)

N,N′

methylenebisacrylamide
(MBA)

Ammoniumpersulfate
(APS) [113]

Poly(N-
hydroxymethylacrylamide)

hydrogel

N-
hydroxymethylacrylamide

Polyethylene glycol (400)
diacrylate

Ammonium persulfate
(APS)/N,N,N′,N′-

tetramethylenediamine
(TEMED)

[114]

EDTA Functionalized
Chitosan/Polyacrylamide
double network hydrogel

Chitosan, acrylamide
N,N′

methylenebisacrylamide
(MBA)

Potassium persulfate
(KPS) [115]

N-vinyl-2-
pyrrolidone/Itaconic

acid hydrogel

Itaconic acid (IA),
N-vinyl-2-pyrrolidone

N,N′

methylenebisacrylamide
(MBA)

Ammoniumpersulfate
(APS/N,N,N′,N′-

tetramethylenediamine
(TEMED)

[116]

Polyampholyte hydrogel Methyl methacrylate
(MMA), acrylic acid (AA)

N,N′

methylenebisacrylamide
(MBA)

Ammonium persulfate
(APS)/N,N,N′,N′-

tetramethylenediamine
(TEMED)

[117]

Poly(acrylic acid)
hydrogel adsorbent Acrylic acid (AA)

Calcium hydroxide
(Ca(OH)2)

nano-spherulites (CNS)

Ammonium persulfate
(APS)/N,N,N′,N′-

tetramethylenediamine
(TEMED)

[118]

Magnetic chitosan
hydrogel beads Chitosan Glutaraldehyde - [119]

Hydrogel-based on novel
cross-linker

Chitosan, acrylic acid,
glucose

Allyl
pentaerythritol(AP)15/allyl
mannitol (AP)14/allyl sorbitol

Potassium persulfate
(KPS) [120]

Hydrogels are synthesized via two routes: Chemical and physical.

7.1. Synthesis via the Chemical Route

Polymer chains in chemically cross-linked hydrogels are formed by covalent bonds.
The subsequent sections describe various methods for the synthesis of the hydrogel by
chemical modification.

7.1.1. Chemical Route of Cross-Linking via Free Radical Polymerization

Free radical polymerization is one of the well-studied approaches for the synthesis
of hydrogel in the presence of cross-linking agent N, N′ methylene bisacrylamide (MBA).
The method involves three steps namely, initiation, polymeric chain propagation, and
termination. In this process, the first step involves the generation of free radicals by using
an initiator such as ammonium persulfate (APS), potassium persulfate (KPS), etc. in the
vicinity of temperature, light, redox reaction, or ultraviolet or gamma radiation [121,122].
After that, in the second step, the free radical will react with the monomer to produce a
radical monomer, which then reacts with the other monomers present in the solution to
form polymeric chains. The cross-linker is added during the propagation of the polymeric
chain, resulting in the formation of a three-dimensional structure of hydrogel. In the last
step, the polymeric chain is terminated via disproportionation or combination reaction.
The combination reaction connects two growing chains into one long polymeric chain.
However, in the case of disproportionation reaction, a hydrogen atom is abstracted from
the end of one growing chain and added to the other growing chain. As a result, a polymer
with the unsaturated end group and a saturated end group is obtained. To speed up
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the process, an accelerating agent such as N,N,N′,N-tetramethylene diamine is added to
the reaction mixture [123]. For instance, Shah et al. prepared superabsorbent polymer
hydrogels containing acrylamide and acrylic acid as monomers via one-step free-radical
polymerization. In this work, they aimed to remove multi-metals (Ni2+, Cd2+, Co2+, and
Cu2+) from an aqueous medium [113].

7.1.2. Chemical Route of Cross-Linking via High Energy Irradiation

The hydrogel synthesis via ultraviolet light radiation, electron beams, and 7-radiation
is carried out at ambient or sub-ambient temperatures without the requirement of initia-
tors, catalysts, or cross-linkers [124]. This synthetic route outperforms chemically initi-
ated processes in regards to one-step hydrogel formation with no waste generation as a
byproduct [125]. In this method, the density of cross-linking is estimated by duration and
dose of irradiation. Polyethylene glycol (PEG), polyvinyl alcohol (PVA), alginate, chitosan,
gelatin, hyaluronic acid (HA), carboxymethyl cellulose (CMC) are among the natural and
synthetic polymers proposed for the hydrogel synthesis using this method [126,127]. This
cross-linking method is similar to free radical polymerization in terms of three-step hydro-
gel formation: initiator, propagation of polymeric chain, and termination. When the mixture
of the reaction solution is irradiated, a hydroxyl free radical is generated, resulting in the
formation of a free-radical monomer. The hydrogel is synthesized when the network has
reached the critical stage of gelling [128]. Maziad et al. prepared polyacrylic acid/polyvinyl
alcohol based hydrogel to treat water decontamination via gamma radiation. They found
that the hydrogel swelled 273%and had removal capacity of 150 mg/g, 155mg/g, and
193 mg/g for Ni2+, Co2+, and Cu2+ ions, respectively, at acidic pH 5 and after 24 h [129].

7.1.3. Chemical Route of Cross-Linking via Grafting Reactions

In this method, the hydrophilic functional group like carboxyl (–COOH), sulfonic
(–SO3H), amino (–NH2), and acylamino (–CONH2) are grafted on the surface of
hydrogel [92,130]. Grafting the functional groups helps in improving the adsorption or
desorption efficiency, as well as selectivity for specific heavy metals. As a result of this, there
is an increase in surface polarity, hydrophilicity, and enhancement in the number of active
sorption sites [131]. For example, Qi et al. prepared a new salecan polysaccharide-based
hydrogel via graft copolymerization of sodium vinyl sulfonate and acrylamide onto the
salecan for the effective decontamination of Pb2+ from wastewater [132].

7.1.4. Chemical Route of Cross-Linking via Reaction of Functional Groups

The reaction involves the bond formation between the cross-linker and the functional
moieties present in the polymer molecule. Hydrophilic groups such as amine (–NH2 in
chitosan and proteins) and hydroxyl (–OH in cellulose and its derivatives) are bonded
with cross-linking agents (such as glutaraldehyde) having an aldehyde functional group
resulting in aldol product via covalent interaction. Hydrogel synthesis involving the
polymers having hydroxyl groups needs certain specific conditions like methanol as a
quencher, high temperature, and low pH. However, in the case of protein-based hydrogel
no specific conditions are required [112,133,134]. Polymers with ester functional groups,
on the other hand, undergo chemical cross-linking through the condensation process in the
presence of a cross-linking agent, resulting in the formation of Schiff bases [130].

7.2. Synthesis via Physical Route

The physical route of cross-linking is highly favorable to synthesize non-toxic and
environmentally friendly hydrogel as there is no requirement for chemical-based cross-
linking agents [135]. In this process, polymer chains are held by weak interactions like
hydrophobic interaction, ionic interaction, hydrogen bonding, Van der Waals forces, and
π–π interaction [136]. From the literature, it is noted that polysaccharides like dextran,
pullulan, carboxymethyl curdlan, and chitosan are used for the synthesis of hydrogels by
this method [137].
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7.2.1. Synthesis via Freeze-Thaw

Crystallization via the freeze–thaw method is one of the physical processes used to syn-
thesize hydrogel [138]. In this method, crystallization takes place by freezing low molecular
solutes or bulk solvents, which enhances the polymer concentration by decreasing the chain
gap and allowing the chains to align and join to create a three-dimensional structure [139].
In hydrogels, freeze–thaw cycles give rise to porous structures due to the space created by
melting crystals during the thawing stages [140]. By varying the polymer concentration, the
freezing temperature, freeze–thaw time duration, and the number of freezing and thawing
cycles, the mechanical characteristics of the freeze–thawed hydrogel may be adjusted [139].

Hydrogels synthesized via the freeze–thaw method have greater elastic characteristics
in comparison to those synthesized via chemical methods, attracting widespread interest
across the world [141]. For instance, poly (vinyl alcohol) (PVA)/carboxy methyl cellulose
(CMC) hydrogels are synthesized via the freeze–thaw method and used to absorb heavy
metals such as Ni2+, Cu2+, Zn2+ and Ag2+ [139].

7.2.2. Synthesis via Self-Assembling

Self-assembled hydrogels are prepared by monomeric units that spontaneously self-
assemble by non-covalent interaction into supramolecular fibers [142]. When such fibers
retain proper solvation in liquid (water), they efficiently entangle and immobilize solvent
flow, resulting in a 3D mesh structure. The non-covalent interaction stabilizes hydro-
gel structures by making them softer than those generated by covalently cross-linked
material [143]. These interactions provide self-assembled hydrogel with advantages such
as tolerance to environmental perturbation and self-healing characteristics [144].

7.2.3. Synthesis via Instantaneous Gelation

Another approach for synthesizing hydrogel quickly after a one-step procedure is
instantaneous gelation [39,145]. For example, Zhou et al. synthesized novel chitosan-based
magnetic hydrogel beads comprised of amine-functionalized magnetite nanoparticles, car-
boxylated cellulose nanofibrils, and polyvinyl alcohol incorporated chitosan for adsorption
of Pb2+. The synthesized hydrogel beads exhibited an adsorption efficiency of 171.0 mg/g
and could be regenerated in a weakly acidic solution with an adsorption efficacy of 90%
after 4 cycles [146].

7.2.4. Synthesis via Ionotropic Gelation

Hydrogel synthesis by ionotropic gelation allows the formation of microparticles and
nanoparticles via electrostatic bonding among the two ionic species under suitable conditions,
one of which must be a polymer [147]. For instance, sodium alginate(SA)/hydroxypropyl
cellulose (HPC) hydrogel beads were synthesized with different ratios of 50:50, 75:25, and
100:0 for the removal of Pb2+. According to the results obtained, 75:25 showed better
adsorption capacity in comparison to 50:50 and 100:0. After three hours of contact time,
hydrogel beads showcased adsorption capacity and adsorption percentage of 47.72 mg/g
and 95.45%, respectively [148].

7.2.5. Synthesis via Inverse Emulsion Method

In the inverse emulsion method, the term “water-in-oil” describes the phenomenon
in which water-soluble monomer is dispersed in the continuous phase oil (paraffin oil)
by using an appropriate stabilizing agent, namely non-ionic surfactant Triton X-100, and
after that the systems go through the phase inversion in a coagulation bath to release the
monomer and precipitate out the porous film. This method has an advantage over other
methods such as fine powdered product is obtained and by altering the reaction condition,
the desired particle size can be achieved [149]. For example, a superabsorbent polymer-
based hydrogel consisting of acrylic acid and carboxymethyl cellulose was synthesized by
inverse emulsion polymerization method by using N, N′ methylene bisacrylamide (MBA)
as a cross-linking agent and potassium persulfate (KPS) as an initiator. The maximum
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swelling capacity of 44.0 g/g in 0.9% w/v NaCl solution and 544.95 g/g in deionized
water [150].

8. Characterization Techniques of Hydrogel

After the successful synthesis of hydrogel adsorbent, it becomes inevitable to inves-
tigate the physical, mechanical, structural, and morphological properties of the hydrogel
formed. For this purpose, various characterization techniques such as Fourier transform
infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric
analysis (TGA), zeta sizer, and energy-dispersive X-ray (EDX) are used to characterize the
hydrogel (Table 5).

Table 5. Characterization techniques used for hydrogel adsorbent and information obtained from the
characterization tools.

Characterization Techniques Characteristics

Fourier Transform Infrared Spectroscopy (FTIR) Functional group
Field Emission-Scanning Electron Microscopy (FE-SEM) Surface morphology

Thermo Gravimetric Analysis (TGA) Thermal stability
Zeta Sizer Surface charge

Energy Dispersive X-ray (EDX) Elemental composition

8.1. Functional Group Analysis

The surface functional groups such as hydroxyl, carboxyl, amide, amine, thiol, and
amidoxime, etc. can be identified by using FTIR. Tang et al. synthesized chitosan/sodium
alginate/calcium ion physically cross-linked double network hydrogel (PCDNH) for scav-
enging heavy metal ions. Analysis of FTIR spectra of hydrogels reveals that the peaks
of chitosan at 1591 cm−1 and 1649 cm−1 (bending vibration of N-H and stretching vibra-
tions for C=O of primary amine) disappear after the synthesis of PCDNH because the
−NH2 group is converted to −NH3

+. The symmetric and asymmetric stretching vibration
peaks of −COO− of sodium alginate at 1406 cm−1 and 1594 cm−1 shift to 1404 cm−1 and
1588 cm−1, indicating, the interaction between −COO− with Ca2+ and −NH3

+. A new
peak was observed at 1714 cm−1 corresponding to the partial protonation of −COO− after
the formation of PCDNH (Figure 6a) [151]. Ablouh et al. investigated the adsorption of
Cr6+ and Pb2+ via FTIR analysis for the preparation of Chitosan/Sodium alginate (CSM-SA)
hybrid hydrogel beads. It was noticed that the peak of−NH2 or−OH at around 3250 cm−1

shifted to 3245 cm−1, indicating hydrogen bonding among the H atoms in −NH2 groups
and the O atoms of oxyanions of Cr6+. In addition, there is a slight shift in the peak of COO
from 1600 to 1590 cm−1, indicating the interaction between COO and Cr6+. These shifts
correspond to electrostatic interaction between Cr6+ and NH3

+, COO, and OH groups.
A new peak observed at 682 cm−1 is due to the O-Cr-O band corresponding to Cr species.
After the adsorption of Pb2+, the stretching vibration of OH and COO group shows a strong
shift from 3250 to 3261 cm−1, and 1600 to 1569 cm−1, respectively. This shift is due to the
coordination effect between Pb2+ and O atom, demonstrating ion-exchange among Ca2+

and Pb2+ on the surface of hydrogel (Figure 6b) [152].
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8.2. Thermal Analysis

Thermogravimetric analysis (TGA) is used to determine the thermal stability of a
hydrogel. TGA can also be used to evaluate changes in a material’s physical and chemical
properties as a function of increasing temperature. For example, Kong et al. studied
the thermal stability of the Xylan-g-/p(acrylic acid-co-acrylamide)/graphene oxide (GO)
hydrogel. Figure 7a represents the TGA thermogram of the hydrogel with and without GO.
The weight loss of samples occurred in four phases when the temperature was raised from
room temperature to 700 ◦C: 25–220 ◦C, 220–350 ◦C, 350–400 ◦C, and 400–700 ◦C. In the first
step, weight loss was due to moisture loss and the decomposition of tiny molecules. The
weight loss in the second step was because of the decomposition of long-chain compounds
like polyacrylic acid, polyacrylamide, and xylan. The weight of hydrogels remained
consistent in the last step, which was due to the carbonation of the hydrogels. Furthermore,
the hydrogels with a higher GO loading had a high weight, indicating that GO has a
positive effect on hydrogel thermal stability [153]. Mohamed et al. studied the thermal
properties of a biodegradable N-quaternized chitosan (NQC)/poly (acrylic acid) (PAA)
hydrogel by varying the NQC/PAA ratios to 3:1 (Q1P3), 1:1 (Q1P1), and 1:3 (Q1P3). The
TGA thermogram revealed that the initial decomposition temperatures (IDT) of NQC,
chitosan, PAA, Q3P1, Q1P1, and Q1P3 were observed at 214, 240, 229, 227,246, and 254 ◦C,
respectively. Q1P3 hydrogel had the greatest IDT, indicating that it was the most thermally
stable, owing to greater intermolecular hydrogen bonding between NQC and PAA chains.
The thermal stability of hydrogels increased in the sequence: Q1P3 > Q1P1 > chitosan >
Q3P1 > PAA > NQC (Figure 7b) [154].
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8.3. SEM Analysis

SEM is used to study the surface morphology, topography, and composition of
the hydrogels. The porosity of hydrogel is a key factor attributed to its adsorption
capacity. For instance, Godiya et al. synthesized bio-based carboxymethyl cellulose
(CMC)/poly(acrylamide) (PAM) hydrogel for adsorption of heavy metals. SEM results
demonstrated that CMC/PAM hydrogel has a sponge-like, three-dimensional, and highly
mesoporous surface morphology (Figure 8b) that significantly differs from CMC hydrogel
(Figure 8a). The CMC/PAM hydrogel has a pore size in the range of 5–15 µm in diameter.
The pores developed in the hydrogel will permit guest molecules like water and heavy met-
als to move across the composite structure. The CMC/PAM composite hydrogel retained
its structural robustness after the adsorption of Cu2+ (Figure 8c) [92].
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from Elsevier).

Javed et al. synthesized anionic poly(methacrylic acid)(P(MAA)), neutral poly(acrylamide)
(P(AAm)), and cationic poly(3-acrylamidopropyltrimethyl ammonium chloride)(P(APTMACI))
hydrogels and examined surface morphology by using SEM. SEM micrographs revealed
that the surface P(MAA) was highly porous and rough compared to P(AAm) and P(APTMACI)
(Figure 9a–c). The material with a rougher surface will generally have a higher adsorption
capacity. As shown in Figure 10, SEM micrographs of hybrid hydrogels revealed that heavy
metals nanoparticles were dispersed throughout the matrix without aggregation [155].
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8.4. Zeta Potential Analysis

Zeta potential is useful in determining the surface charge of hydrogel adsorbent.
For example, Hu et al. synthesized carboxymethyl cellulose nanocrystals (CCN)/sodium
alginate (Alg) hydrogel beads for scavenging Pb2+ and used a zeta-sizer to check the
surface charge. Figure 11a depicts the zeta potentials of CCN, Alg, and prepared CCN-
ALg were measured at pH 5.2. The zeta potential results revealed that all the three sam-
ples had negatively charged surfaces with stable dispersion at pH 5.2, with CCN-Alg
being more so than the other two [156]. Bandara et al. studied the surface charge on
chitosan/polyethylenimine/graphene oxide hydrogel beads for the abstraction of sele-
nium from wastewater. Positive zeta potentials were noticed across a wide pH range,
ranging from acidic pH to the isoelectronic point of 10.5, indicating ideal circumstances for
electrostatic interaction with negatively charged species (Figure 11b) [157].
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8.5. EDX Analysis

EDX characterization is used to determine the hydrogel’s elemental composition.
Dil et al., for example, reported the fabrication of a novel porous gelatin-silver/poly
(acrylic acid) (NPGESNC-AcA) nanocomposite hydrogel for Cu2+ removal. Figure 12
represents the element percentage of the synthesized NPGENC-AcA hydrogel before Cu2+

adsorption, which contains 52.3% carbon, 22.8% oxygen, 13.5% sodium, 10.6% nitrogen,
0.8% silver before adsorption of Cu2+. The results showed that silver was deposited in the
nanocomposite hydrogel network, with no additional impurity elements detected in the
spectrum (Figure 12a). EDX analysis for NPGENC-AcA after Cu2+ adsorption consists of
46.6% carbon, 27.3% oxygen, 11.9% nitrogen, sodium 10.5%, 0.6% silver, and 3.1% copper
(Figure 12b) [121].
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9. Adsorption Mechanism of Hydrogel

A thorough understanding of the adsorption mechanism and the removal process of
various contaminants on different hydrogel-based adsorbents is essential for modifying
hydrogels to enhance adsorption efficiency. The interactions such as electrostatic interaction,
ion exchange, coordination interaction, and hydrophobic interaction take place depending
on the surface functional moieties of hydrogels, provided reaction conditions such as
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temperature, pH, ligand, salt concentration, etc., and pollutant chemistry [159]. In literature,
most hydrogel adsorbents are formed by the combination of interactions that take place
simultaneously to form a 3D network. In the case of starch-based hydrogel, chemisorption
and physisorption act simultaneously by acid-base interaction, H-bonding, ion exchange,
or coordination interaction with heavy metal ions [160,161]. In chitin-based hydrogel,
single or combination of multiple interactions occur depending on the operating condition
and chemical composition [162]. In cyclodextrin-based hydrogel, complex formation
occurs among the cyclodextrin and heavy metals involving host–guest interaction where
hydrophobic bonding [163]. The various adsorption/desorption mechanism of heavy
metals by hydrogel is discussed in Table 6.

9.1. Electrostatic Interaction

Electrostatic interaction occurs in the hydrogel with specific functional moieties in
monomeric units having oppositely charged ions such as cation–anion interaction con-
cerning heavy metals that need to be adsorbed or desorbed [159]. Furthermore, the pH of
the solution has a significant impact on the generation of charged ions on the adsorbent
(hydrogel) surface [164]. The pH of the solution is represented by pHPZC when there are
no charged ions on the surface of the adsorbent [165,166]. When the pH > pHPZC, the
surface functional moieties like −OH, −COOH, and −H3PO4 lose the proton due to the
higher concentration of OH− ions in the solution that forms anions like −O−, −COO−,
−PO4

3− etc. on the surface of the adsorbent. However, at pH < pHPZC, the surface of
the adsorbent is positively charged due to an increase in the concentration of H+ ions,
which causes protonation of functional moieties such as −SH, −NH2, etc [167]. According
to the studies reported, electrostatic interactions are the dominant adsorption force for
heavy metals abstraction in various hydrogels. Yu and co-workers synthesized sodium
alginate(SA)/carboxylated nanocrystals cellulose hydrogel beads for the abstraction of
Pb2+. The findings in this study reveal that the adsorption mechanism that took place
was complexation among −COO and −OH functional moieties and heavy metal (Pb2+)
by sharing a pair of electrons. Thereafter, the electrostatic interaction was found to occur
between negatively charged hydrogel beads and positively charged Pb2+ ions [156]. Tang
et al. synthesized physically cross-linked double network hydrogel (PCDNH) containing
chitosan, calcium ion, and sodium alginate. In this study, they reported that chitosan’s
cationic NH3

+ group reacts with sodium alginate’s anionic −COO− group to construct
physically cross-linked hydrogel via electrostatic interaction. In addition, the adsorption
of heavy metals (Pb2+ and Cd2+) on the hydrogel surface was due to the electrostatic
interaction with PCDNH’s oxygen atom, whereas the adsorption of Cu2+ was primarily
due to coordination interaction with PCDNH’s nitrogen atom, besides electrostatic interac-
tion [151]. Zeng et al. prepared pullulan/polydopamine hydrogel for effective elimination
of heavy metals (Co2+, Cu2+, and Ni2+). In this research work, hydrogels were prepared by
chemically cross-linking pullulan with 1,2-bis (2,3-epoxypropoxy) ethane. Polydopamine
was added to the mixture to form a novel hydrogel adsorbent. Polydopamine’s nitrogen
atom and catechol group have a high affinity to react with positively charged metal-ion via
electrostatic and coordination interaction (Figure 13) [158].
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9.2. Ion-Exchange

Ion exchange refers to a chemical process whereby the swapping of ions takes place
between an insoluble adsorbent (hydrogel) and a liquid phase (wastewater). The unwanted
anions or cations dissolved in the wastewater are replaced or removed by the ions of a
similar charge present on the hydrogel surface. To maintain the neutrality of the system
the number of ions adsorbed by the hydrogel adsorbent must be equal to the number of
ions liberated [168]. Ion exchange provides an efficient and convenient route becauser it
can distillate and separate distinct contaminants from wastewater [169]. It reduces the
degree of harmful load by converting heavy metals waste into a form that can be reused
and recycled, leaving behind less hazardous materials in the solution, or by reducing
the hydraulic flow of the stream containing toxic heavy metals, allowing for the final
release [167]. Ion-exchange mechanisms, like electrostatic interaction, are highly dependent
on the pH of the solution. Due to a rise in the concentration of H+ ions at pH < pHPZC, the
functional moieties in hydrogel adsorbent become positively charged, leading to cation
exchange. However, at pH > pHPZC the functional moieties are negatively charged due to
excessive concentration of OH- ions, leading to anion exchange [170]. Saber-Samandari et al.
synthesized Cellulose-Graft-Polyacrylamide/Hydroxyapatite hydrogel composite for the
removal of Cu2+ ions. In this work, he observed that Cu2+ ions got exchanged with the
cations in the hydrogel composite and are attached to the surface of hydroxyapatite by an
ion-exchange mechanism [171]. For the treatment of heavy metals from oily wastewater,
Xiong et al. prepared a self-cleaning cellulose functionalized titanate microsphere hydrogel
via a sol-gel method. The prepared hydrogel microspheres have the combined properties
of cellulose and titanate nanotubes that exhibit a high capacity to maintain oily wastewater.
At first, Cu2+ got absorbed on the inner surface of cellulose titanate hydrogel by electrostatic
interaction. After that, Cu2+ was captured in the layer of titanate nanotubes exhibiting
remarkable characteristics for heavy metals under the influence the chemical and physical
adsorption [172]. Ma et al. prepared ethylenediaminetetraacetic acid (EDTA) functionalized
double network hydrogel for efficient elimination of heavy metals (Cd2+, Pb2+, and Cu2+)
from industrial eluents. In this work, a two-step process was conducted in which first
polyacrylamide was cross-linked with N, N′ methylene bisacrylamide (MBA), and then
EDTA was cross-linked with chitosan to form a double network hydrogel. The hydrogel
showed a maximum sorption capacity of 138.41 mg/g, 99.44 mg/g, and 86.00 mg/g
for Pb2+, Cu2+, and Cd2+ respectively based on the ion exchange mechanism between
carboxylate groups and heavy metal ions (Figure 14) [115].
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9.3. Hydrophobic Interaction

The interaction taking place between water molecules and hydrophobes (non-polar
molecules containing long carbon chains that do not react with water molecules because of
weak Van-der-Waals forces) is termed hydrophobic interaction [173]. Therefore, a low water-
soluble molecule is more likely to be attracted by hydrophobes. For example, Tokuyama
et al. prepared superabsorbent hydrogel containing N-isopropyl acrylamide (NIPA) as a
thermo-responsive polymer for heavy metals extraction. At first, an aqueous solution of
metal ions is complexed with an extractant that has a hydrophobic group and an interacting
group. After that, above lower critical solution temperature the complex formed between
metal and extractant gets absorbed into the hydrogel via hydrophobic interaction. Finally,
after cooling below the low critical solution temperature metal-extractant complexes are
extracted from the hydrogel. In this study, Cu2+ is used as a model heavy metal ion [174].
The mechanism for the same is depicted below in Figure 15.
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9.4. Coordination Interaction

Coordination interaction also known as chelation interaction refers to the forma-
tion of covalent bond where a single-atom shares both the electrons. In this interaction,
cation (heavy metals) binds with the group containing lone pair electrons, resulting in
cation adsorption on the adsorbate surface [167]. Zhaung et al. prepared double network
alginate/graphene nanocomposite hydrogel beads for effective extraction of Cu2+ and
dichromate (Cr2O7

2−). He observed that –COOH functional moieties in both graphene and
alginate show a high affinity for Cu2+ and Cr2O7

2− via coordination and complexation.
On the contrary, ion exchange takes place between Ca2+ ions in alginate and Cu2+ in the
aqueous solution [175]. Rodrigues et al. prepared chitosan-g-poly (acrylic acid)/cellulose
nanowhiskers (CNWs) composite hydrogel beads by using N, N′ methylene bisacrylamide
as a cross-linker for the adsorption of Cu2+ and Pb2+ from water. FTIR analysis revealed
that functional moieties i.e., hydroxyl groups and carboxyl groups act as coordination sites
for heavy metal adsorption [176]. The schematic representation depicting the coordination
between hydrogel adsorbent and heavy metals is demonstrated in Figure 16.

Table 6. Proposed synthesis and removal mechanism of various hydrogel-based adsorbents.

Hydrogel Type Synthesis Method Mechanism Heavy Metals
Removed References

Carboxymethyl cellulose-graft-
poly(acrylic acid)/monmorillonite

hydrogel composite
Graft polymerization Ion exchange and

coordination interaction Zn2+, Pb2+ [177]

Silk sericin/Lignin hydrogel beads Graft polymerization Ion exchange or
electrostatic interaction Cr6+ [178]

Chitosan/multiwall carbon
nanotube/poly(acrylic

acid)/poly(4-aminodiphenyl amine)
functional gel

Free radical polymerization
and cross-linking reaction

Complexation
interaction Cr6+ [60]

Sugar cane bagasse cellulose and
gelatin-based hydrogel composite Cross-linking Coordination and

electrostatic interaction Cu2+ [179]

Carboxy methyl cellulose hydrogel 7-raddiation Coordination interaction Cu2+ [180]

Chitin/cellulose composite hydrogel Freeze-thaw method Electrostatic and
coordination interaction Hg2+, Cu2+, Pb2+ [181]

Carboxy methyl cellulose
hydrogel beads Inverse suspension method Coordination interaction Cu2+, Ni2+, Pb2+ [182]

Hydrogel-biochar composite Free radical polymerization
and cross-linking reactions Chemisorption As [101]

Pullulan/polydopamine hydrogels Chemical cross-linking Electrostatic and
coordination interaction Cu2+ [158]

Jute/poly(acrylic acid) hydrogel Free radical polymerization Electrostatic interaction Cd2+, Pb2+ [183]
Carboxylated chitosan/carboxylated

nanocellulose hydrogel beads Cross-linking Electrostatic and
coordination interaction Pb2+ [184]
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10. Recovery, Regeneration, and Reusability of Hydrogel

One of the paramount characteristics of hydrogel other than high adsorption efficiency
is their regeneration capacity by desorbing the absorbed heavy metals which further
allows it to be reused. The ability to regenerate and reuse an adsorbent material is also
an important factor for the practical assessment of its application. Many different ways
have been studied by researchers for the effective desorption of heavy metals from the
three-dimensional mesh structure of hydrogel after every removal cycle. Changes in
the magnetic field, electric field, temperature, pH, etc. will lead to the desorption of
heavy metals [185]. The influence of pH on heavy metal desorption from a magnetized
cellulose-chitosan hydrogel was reported by Liu et al. [108]. At very low pH values of
1.0–2.0 desorption efficiency of 83–86% was achieved. This represents the merits of using
pH-dependent hydrogel for the adsorption of heavy metals such as arsenic and chromium
during the elimination process and desorption for the recovery of hydrogels. Moreover,
adjusting the required pH is a drawback [38]. According to the literature, studies reported
on the recovery of hydrogel adsorbents have used strong as well as weak acids as eluents
(HCl, HNO3, CH3COOH, H2SO4, etc.) [37]. Furthermore, the type of acid utilized in the
desorption process also has a considerable impact on the durability and desorption capacity
of hydrogel [24]. Mohammadi et al. synthesized a chelator-mimetic multi-functionalized
hydrogel with a high metal adsorption efficiency (cadmium, lead, and arsenic) and great
reusability. By employing a low concentration of hydrochloric acid, the heavy metals
absorbed in the hydrogel network were eluted and the hydrogel was regenerated for
reuse. After five adsorption/desorption reuse cycles, a removal ratio greater than 60%
was obtained [185]. By applying a similar approach, Pourjavadi et al. developed a novel
hydrogel containing chitosan, acrylic acid, and an amine-functionalized nano-silica. In this
work, 1M hydrochloric acid solution was employed for recovering hydrogel loaded with
Pb2+. The hydrogel was then regenerated by filtering and washing with deionized water
before being utilized for the next adsorption cycle. After three consecutive cycles, the
efficiency of regenerated hydrogel remained around 685–715 mg/g [186].

Magnetic hydrogels are one of the most used adsorbent materials for the effective
elimination of heavy metals from flowing streams. During the recovery process, the eluent
acidity needs to be managed since an excess of acid can damage the magnetic adsorbent.
Eluents with high concentrations can damage the binding sites on hydrogels, resulting in
lowered adsorption efficiency after numerous sorption cycles [187]. Tang et al. synthesized
a magnetic hydrogel with high adsorption efficiency of 200 mg/g for Cr6+ adsorption. The
hydrogel possesses an advantage of easy recovery by regenerating in sodium chloride
solution (NaCl) [188]. The applicability of any magnetic hydrogel adsorbent in contami-
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nated water is determined by two important factors: an increase in the concentration of
heavy metals in that solution and a lower quantity of recovery solution. Tang’s research
summarized both the factors in Figure 17. In brief, the treated contaminated water is
collected and separated from hydrogel in a magnetic separation unit; NaCl at different
concentration is injected for the regeneration of hydrogel, and the leftover solution were
collected by separating the magnetic hydrogel. A series of regeneration tests were carried
out by step-wise addition of sodium chloride solution. The recovery solution was then
collected and further processed by the addition of NaCl solution to it. The results obtained
suggested recovery efficiency was maintained for 20 sorption cycles, resulting in the Cr6+

removal capacity of 97–98%. According to the results achieved, the Cr content in the
recovery solution reached 500–600 mg/L corresponding to wastewater:recovery volume
ratio of 40:1 [188].
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Reusability of hydrogel is one of the most important characteristics for wide-range
applications, although it is a challenge for conventional hydrogel adsorbents as they possess
poor mechanical strength after swelling in aqueous media. Therefore, increasing mechanical
strength plays a crucial role in maintaining the desired adsorption efficiency of the heavy
metals-loaded hydrogel. Liu et al. reported that 95% Fe, Pb, and Cu were removed from an
aqueous medium through 7 adsorption cycles and hydrogel still can lead to heavy metals
removal [108]. Therefore, it proves that hydrogel can be reused many times and lowers
the cost of production for heavy metals elimination from an aqueous solution. Tang et al.
reported the reusability and regeneration of hydrogel in a column experiment for effective
elimination of Cr6+ by a cationic hydrogel. After 6 sorption cycles adsorption efficiency
remained constant (27 mg g−1, 90%) and the desorption capacity was 93 percent on average
for every cycle [189]. In conclusion, it can be said that low operational and production-cost
along with easy separation capabilities and reusability make hydrogel a choice of adsorbent
for heavy metal removal from wastewater.

11. Conclusions

Water pollution is one of the serious global problems caused by increasing industrial-
ization and urbanization. In particular, heavy metals discharged into flowing streams have
detrimental effects on human health and the natural ecological system. Thus, it is necessary
to treat the wastewater containing toxic heavy metals and then discharge it. The adsorption
process including various types of adsorbent material is regarded as an efficient, cost-
effective, and environment-friendly approach to the treatment of heavy metals. However,
the majority of adsorbent materials used for wastewater treatment are non-biodegradable,
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synthetic, and require post-treatment after use, which prompts researchers’ interest in de-
veloping biodegradable, easy to modify, and biocompatible adsorbent materials. Hydrogels
as potential adsorbent materials represent the best choice. The present review summarizes
the literature concerning hydrogels in the past 25 years, and describes the classification,
properties, synthesis, mechanism and recovery, regeneration, and reuse of hydrogel-based
material for the elimination of heavy metals.

Although hydrogels have been extensively studied, there are still a few areas that
require further investigation.

• Currently, the hydrogel-based adsorbent materials used for heavy metal removal are
limited to lab scale. Therefore, further research is required to scale up for a large-
scale application.

• The present research is confined to removing a single type of heavy metal. More
research should be undertaken targeting multiple heavy metals.

• The research should focus on the ability of the hydrogel to regenerate (for example,
the adsorption efficiency of hydrogel drops after five sorption cycles).

• To broaden the spectrum of hydrogels application for separation of rare earth metals.
• To develop high mechanical strength tailored hydrogel (for example hydrogel mem-

branes) that are easier to separate from the liquid phase for wastewater treatment.
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