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Abstract
Several existing drugs have gained initial consideration due to their therapeutic characteristics against COVID-19 (Corona 
Virus Disease 2019). Hydroxychloroquine (HCQ) was proposed as possible therapy for shortening the duration of COVID-
19, but soon after this, it was discarded. Similarly, known antiviral compounds were also proposed and investigated to treat 
COVID-19. We report a pharmacophore screening using essential chemical groups derived from HCQ and known antivirals 
to search a natural compound chemical space. Molecular docking of HCQ under physiological condition with spike protein, 
3C-like protease (3CLpro), and RNA-dependent RNA polymerase (RdRp) of SARS-CoV2 showed − 8.52 kcal/mole binding 
score with RdRp, while the other two proteins showed relatively weaker binding affinity. Docked complex of RdRp-HCQ 
is further examined using 100 ns molecular dynamic simulation. Docking and simulation study confirmed active chemical 
moieties of HCQ, treated as 6-point pharmacophore to screen ZINC natural compound database. Pharmacophore screen-
ing resulted in the identification of potent hit molecule [(3S,3aR,6R,6aS)-3-(5-phenylsulfanyltetrazol-1-yl)-2,3,3a,5,6,6a-
hexahydrofuro[3,2-b]furan-6-yl]N-naphthalen-ylcarbamate from natural compound library. Additionally, a set of antiviral 
compounds with similar chemical scaffolds are also used to design a separate ligand-based pharmacophore screening. 
Antiviral pharmacophore screening produced a potent hit 4-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-(2-hydroxyphenyl)
methyl]-1,5-dimethyl-2-phenylpyrazol-3-one containing essential moieties that showed affinity towards RdRp. Further, both 
these screened compounds are docked (− 8.69 and − 8.86 kcal/mol) and simulated with RdRp protein for 100 ns in explicit 
solvent medium. They bind at the active site of RdRp and form direct/indirect interaction with ASP618, ASP760, and ASP761 
catalytic residues of the protein. Successively, their molecular mechanics Poisson Boltzmann surface area (MMPBSA) bind-
ing energies are calculated over the simulation trajectory to determine the dynamic atomistic interaction details. Overall, this 
study proposes two key natural chemical moieties: (a) tetrazol and (b) phenylpyrazol that can be investigated as a potential 
chemical group to design inhibitors against SARS-CoV2 RdRp.

 * Avinash Mishra 
 avish2k@gmail.com

 * Anurag S. Rathore 
 asrathore@biotechcmz.com

1 Department of Chemical Engineering, Indian Institute 
of Technology, Hauz Khas, New Delhi 110016, India

2 Growdea Technologies Pvt. Ltd., Gurugram, 
Haryana 122004, India

http://orcid.org/0000-0003-4125-6670
http://crossmark.crossref.org/dialog/?doi=10.1007/s11030-021-10358-5&domain=pdf


2614 Molecular Diversity (2022) 26:2613–2629

1 3

Graphical abstract

Keywords COVID19 · SARS-CoV2 · Hydroxychloroquine · Docking · Pharmacophore screening · SARS-CoV2 inhibitor · 
RdRp

Introduction

Coronavirus has caused two epidemics in recent years. 
Severe acute respiratory syndrome coronavirus (SARS-
CoV) in 2003 caused more than 8000 infections and 700 
deaths globally [1, 2]. This was followed by the Middle 
East respiratory syndrome coronavirus (MERS-CoV) [3, 
4], which infected more than 2500 people and 800 deaths 
across 27 countries in 2012. Recently, we have witnessed 
the widespread pandemic caused by the novel corona-
virus (SARS-CoV2) [5], which has already infected 71 
million people and caused more than 1.59 million deaths 
(approximately a ~ 6% mortality rate). While the natural 
host for SARS-CoV2 is the bat, in all the cases virus man-
aged to transmit into humans via an intermediate host. In 
SARS-CoV, the intermediate host is civet, while in MERS 
it was the camel. However, in SARS-CoV2 there is a lack 
of information on the intermediate host, but the pig has 
been hypothesized as the potential carrier. COVID19, the 
disease condition caused by SARS-CoV2 virus, has been 
declared as a pandemic by the WHO [6]. Therefore, the 
current situation demands an urgent need to contain and 
design therapeutic molecule to treat COVID19.

SARS-CoV2 is a RNA virus with enveloped architecture 
with its genetic material enclosed in an outer coat made from 
a small piece of the plasma membrane of the cell. The enve-
lope may play a vital role in helping the virus to survive and 
infecting other cells. SARS-CoV2 has the largest genome 
(~ 30 Kb) compared to any other RNA virus but has similar 
structure protein content. These structural proteins are: (i) 
spike glycol protein (S), (ii) envelop small membrane pro-
tein (E), and (iii) membrane protein (M), with some viruses 
also having (iv) hemagglutinin-esterase (HE) [7], and (v) 
nucleoprotein (N) as shown in Fig. 1. These proteins are 
responsible for the entry of the virus into the host system. 
SARS-CoV2 has 6 ORFs in its genome, where ORF1a and 
ORF1v produce 2 polypeptides. These polypeptides are 
chomped by viral proteins: chymotrypsin-like protease or 
main protease  (3CLpro) and papain protease [8]. Once the 
virus enters the host system, it transcribes and translates its 
genome. This process starts with the replicase complex [9] 
having RNA-dependent RNA polymerase (RdRp) playing an 
important role along with helicase and protease.

Most antiviral molecules are designed to either target the 
entry of the virus into the host organism or damage their 
replication/growth mechanism. Earlier, it has been observed 
that SARS-CoV binds with angiotensin-converting enzyme 
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(ACE2) receptor [10–12], while MERS-CoV binds with 
DPP-4 [13] for entering the cells. SARS-CoV2 has high 
homology with the SARS-CoV, and therefore, it is antici-
pated that the spike protein of SARS-CoV2 also binds with 
the ACE2 receptor. This makes the spike protein one of the 
major drug targets for treating COVID19. Moreover,  3CLpro 
and RdRp are also considered as potential drug targets to 
inhibit the growth of the virus. Chloroquine has been estab-
lished as an effective anti-malarial drug with antiparasitic 
activity [14]. An analogue of this compound, hydroxychlo-
roquine (HCQ), has also been demonstrated to be an effec-
tive antibacterial compound [15, 16]. Recently, it has been 
found that these compounds have antiviral activity including 
inhibitory effect against SARS-CoV2. Initial in vitro data 
for chloroquine against SARS-CoV2 [17] made it a promis-
ing chemical scaffold, while later in vivo testing has been 
conducted to estimate its efficacy [18].

Recently, many existing drugs are tested against SARS-
CoV2 to identify the potential therapeutic molecule [19–23]. 
In this study, we applied a computational drug design 
approach to find the active pharmacophore of hydroxychlo-
roquine (HCQ) against proteins of SARS-CoV2, spike pro-
tein (including receptor-binding domain—RBD),  3CLpro, 
and RdRp. HCQ showed the maximum affinity with the 
RdRp while relatively lower binding with the spike and the 
 3CLpro protein. A similar computational affinity study was 
performed earlier where HCQ showed effective binding with 
the RdRp protein [24]. The exact mechanism of HCQ is still 
not clear, but it has been demonstrated experimentally that 

creates a basic environment in cytoplasm by elevating the 
pH that hinders virus internalization [25]. Its indirect effect 
on RdRp is also demonstrated in vitro where HCQ helps 
zinc uptake to the cells that eventually inhibit the activity of 
RdRp [26]. We searched active pharmacophore of the HCQ 
skeleton in a natural compound library to pull out poten-
tial natural hit compounds that can show inhibitory activity 
against SARS-CoV2 RdRp. In conjugation to HCQ active 
pharmacophore screening, we also performed multi-ligand 
pharmacophore screening using known antiviral molecules. 
Here, nine known compounds, lopinavir, ritonavir, ribavi-
rin, galidesivir, favipiravir, remdesivir, tenofovir, saquinavir, 
and elvitegravir are used to design active pharmacophore. 
Resultant 3-point, 4-point, 5-point, and 6-point pharmaco-
phores are searched in the ZINC database, and the top five 
hits for each pharmacophore are docked with RdRp. The 
best hits are further investigated in a molecular dynamic 
simulation where it showed a robust and stable complex 
with RdRp. Overall, the study showcases the potential of two 
natural origin compounds as a probable therapeutic agent 
against SARS-CoV2 RdRp.

Materials and methods

The study is composed of four major modules: (i) phar-
macophore generation, (ii) pharmacophore screening (iii) 
molecular docking, and (iv) molecular dynamic simulation.

Fig. 1  Three-dimensional structure rendering of  3CLpro, RdRp and spike protein, with their corresponding binding site targeted in this study. 
PDB ID for spike protein,  3CLpro, and RdRp is 6VSB 6M03 and 6M71, respectively
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Protein structure collection

Three proteins from SARS-CoV2 that have been used as 
drug targets in this study are (a) spike protein, (b)  3CLpro 
protease, and (c) RdRp. Protein structures of the spike pro-
tein and the  3CLpro have been recently solved and deposited 
in the protein data bank (PDB) [27], PDB IDs: 6VSB and 
6M03, respectively [28]. Spike protein (6VSB) is a Cryo-
EM structure solved at 3.46 Å resolution. The structure 
consists of 3 three chains (A, B, and C) consisting of 1288 
amino acids. It contains the receptor-binding domain (RBD) 
in upward conformation responsible for binding with the 
human ACE2 receptor. In the case of  3CLpro, crystal struc-
ture (6M03) is available at 2.0 Å. It has three domains: d-I 
(residues 8–101), d-II (residues 102–184), and d-III (resi-
dues 201–303). The structure is available in apo form, but its 
catalytic triad SER-HIS-ASP can guide to search the binding 
site. RdRp structure is also solved using electron microscopy 
and deposited in the protein databank with PDB ID: 6M71 
[29]. We considered this experimental structure of RdRp for 
docking and simulation. The experimental structure consists 
of four chains representing three units of RNA polymerase 
complex; these units are nsp12 (chain A), nsp7 (chain C), 
and nsp8 (chains B, D). Chain A is the main RNA poly-
merase unit, so it is extracted from the complex to employ 
in this study. Binding sites for spike protein and the  3CLpro 
proteins are predicted using the Fpocket tool [30]. An online 
version of this tool is available on the Mobyle web portal. 
However, detection of the binding region of RdRp protein is 
guided using Zhang’s website COACH [31] server that used 
the template structure (PDB ID: 3H5S) of hepatitis C virus 
and the protein structure deposited in the database (6M71).

Molecular docking

Molecular docking between small compounds and SARS-
CoV2 proteins was performed using Autodock-4 [32]. Pro-
tein and ligand are prepared using Autodock tool (ADT) and 
Marvin sketch, and multiple docking is performed using rac-
coon application of Autodock. Hydrogen atoms are added to 
the system, and gasteiger charges are assigned to prepare the 
ligand. pKa value of ligand is determined using ChemAxon 
tool integrated with Marvin sketch application. Best scored 
binding pocket predicted by the Fpocket that is used in molec-
ular docking. A large grid box (126 × 126 × 126 Å) is created 
around the detected binding pocket with spacing 0.375 Å. This 
implies blind docking where the ligand can hit the large sur-
face of the protein and find the most appropriate position to 
interact. Docking used the genetic algorithm to explore the 
binding space. The number of individuals generated in each 
cycle of the genetic algorithm is 150, while 2,500,000 maxi-
mum number of energy evaluations are performed. Docking 
program used 27,000 maximum number of generations where 

only the top 1 individual survives to the next generation with a 
0.02 rate of mutation with 0.8 rate of crossover.

Molecular dynamic simulation

MD simulation of docked complex is performed using 
GROMACS 4.6.2 [33] having CHARMM27 force field [34]. 
Simulations are carried out under physiological conditions. 
Topology and parameters for small molecules are generated 
using CHARMM all atoms force field on SwissParam online 
tool [35]. Hydrogen atoms are added to the RdRp protein 
under physiological conditions and placed in a solvated box 
at a 1.4-nm distance from the wall. Protein–ligand solvated 
complex was energetically minimized using 5000 steps of the 
steepest deepest method. A time step of 2 fs was used using 
the SHAKE algorithm. Constant temperature (NVT) and 
pressure ensemble (NPT) conditions are applied to the sys-
tem for 100 ps and 1 ns, respectively, to attain the equilibrium 
state. Ligand and protein molecules are constrained during 
the equilibrium phase. Post-equilibrium phase, a 100-ns all-
atom simulation was performed using V-rescale temperature 
coupling [36] for external heat bath with 0.1 ps time constant 
for protein and ligand while pressure coupling was performed 
using Parrinello-Rahman [37] with a time constant of 2 ps, 
and long-range electrostatic was dealt with PME [38]. Detailed 
simulation methodology is given in Supplementary Text S1.

Pharmacophore generation and screening

Ligand-based pharmacophores are generated using Pharma-
gist [39] server. It generated a 3-point pharmacophore from 
reference molecule HCQ and 3-point, 4-point, 5-point, and 
6-point pharmacophores from the known set of antiviral 
molecules used in this study. Individual 3D pharmacophore 
is searched in the library using ZINC pharmer tool. ZINC 
Database [40] is used to search the active pharmacophore 
among the compounds available in the library. Out of the 
various hit compounds displayed by the ZINC database, 
molecules with low RMSD values from the active sites of 
pharmacophore are selected for docking studies. Interaction 
analysis for the docked complex was performed using Lig-
Plot + v1.4.5 [41, 42], free academic Schrödinger-Maestro 
v12.4 suite, and PLIP online server [43]. Eventually, VMD 
[44] and Pymol [45] are used for graphical representations 
of the molecules.

Results and discussion

Experimental structures of all three SARS-CoV2 proteins: 
(i) spike protein, (ii) 3CLpro, and (iii) RdRp are retrieved 
from the protein databank, and their respective PDB Ids are 
6VSB 6M03 and 6M71.
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Protein structure and binding sites

Three-dimensional coordinates of these three SARS-CoV2 
proteins (spike protein,  3CLpro and RdRp) have been recently 
solved and submitted to the PDB database. Figure 1 shows 
the cartoon representation of these proteins with their 
respective binding sites. Fpocket predicted multiple bind-
ing sites for each protein, and the best scored (rank 1) site 
is used for grid design under docking. Binding information 
for RdRp is directly imported from COACH webserver and 
aligned to the PDB structure 6M71. A sufficiently large grid 
box (126 × 126 × 126 Å) is created around the detected bind-
ing pocket with the spacing 0.375 Å. A large grid box allows 
the ligand to traverse a larger conformational space on the 
protein surface and perform the blind docking process.

In spike protein, binding site residues predicted by 
Fpocket are F58, F59, V289, L293, D294, P295, L296, 
S297, E298, T299, K300, C301, T302, L303, S305, F306, 
T307, V308, E309, K310, G311, I312, Y313, Q314, T315, 
S596, V597, I598, T599, P600, G601, T602, N603, T604, 
S605, N606, Q607, V608, A609. RBD of spike protein 
does not contain any cavity; thus, the binding site predicted 
here is spatially distant from RBD. Predicted binding site 
residues for protease are T24, T25, T26, L27, H41, C44, 
M49, Y54, F140, L141, N142, G143, S144, C145, H163, 
H164, M165, E166, L167, P168, H172, F181, D187, R188, 
Q189, T189, and A190. Active residues of viral protease 
have catalytic dyad H41 and C141. Both these residues are 
found within the predicted binding site. These residues in 
the docking grid would maximize the possibility of ligand 
binding at the native catalytic site to inhibit the function 
of protease. However, in RdRp, a binding site is directly 
sourced from its template homologous structure (Hepatitis C 
virus polymerase) which is co-crystalized with the saccharin 
inhibitor and aligned with the SARS-CoV2 RdRp. Saccharin 
position is superposed on RdRp, and the area around it is 
treated as a binding site. This binding site consists of K593, 
W598, M601, T687, A688, A691, S759, D760, D761 C813, 
Q815, and P830 as binding site residues. Catalytic residues 
of RdRp are responsible for the entry and processing of natu-
ral substrate—NTP. D618, D760, and D761 are critical cata-
lytic residues that play a major role in the function of SARS-
CoV2 RdRp protein. As mentioned above, D760 and D761 
are detected within the binding site of RdRp sourced from 
COACH webserver. Generation of sufficiently large grid box 
(126 × 126 × 126 Å) around the centre of these binding sites 
would estimate the likelihood of ligand to interact with the 
core catalytic residues of RdRp.

Binding scores and interactions

After identification of respective binding sites for all three 
SARS-CoV2 protein targets, HCQ molecule was prepared 

under physiological condition and docked within the binding 
grid box of each protein. Docked pose could be used to iden-
tify the interacting functional groups of HCQ and further 
guide the pharmacophore design and screening. HCQ has 
three amine functional groups; the first group is the part of 
the pyridine ring, while the second is immediately attached 
outside the pyridine ring and the third is the tertiary amine 
group. HCQ also has a hydroxyl group (–OH) at the ter-
minal position. pKa values of all the ionizable groups are 
predicted using ChemAxon integrated into MarvinSketch 
tool shown in Fig. 2a. Hydroxyl (-OH) group has the highest 
pKa; thus, it would certainly protonate under physiological 
pH conditions. Pyridine ring nitrogen has a minimum pKa, 
so it would not protonate at pH 7.4. However, the other two 
nitrogen atoms have higher pKa and they will have more 
chance to protonate at physiological pH. An earlier study 
conducted by Schroeder et al. [46]. suggested that HCQ has 
three basic functional groups with pKa values of < 4.0, 8.3, 
and 9.7. Individual pKa values for all ionizable groups with 
the possible protonated states for HCQ molecule are shown 
in Fig. 2a, b. Various possible protonated states are labelled 
as ‘MonoProt-I’ (4-amino pyridine nitrogen is protonated), 
‘MonoProt-II’ (tertiary amine nitrogen is protonated), and 
‘DiProt’ (both nitrogen atoms are protonated) as shown 
explicitly in Fig. 2b.

All three protonated forms are prepared in MarvinSketch 
followed by Autodock preparation for docking with three 
different proteins of SARS-CoV2. Autodock4 is used for 
docking, a large rectangular grid box of (126 × 126 × 126) 
Å is prepared around the centre of each predicted binding 
site, and exhaustive sampling was performed to find the best 
pose of the ligand HCQ among all the protonation states. 
Binding scores for the top 10 poses are recorded using the 
Autodock4 scoring function. Figure 2c shows the binding 
energy box plots of 10 docked poses of HCQ against each 
protein with its three different protonated forms. Negative 
signs in the binding energies are ignored to provide bet-
ter readability; this implies the largest binding energy value 
corresponds to the highest binding affinity. All three pro-
teins showed the best docking score for Monoprot-I state 
of HCQ. The average binding energy for MonoProt-I com-
plexed with RdRp is − 6.68 kcal/mol, while MonoProt-II and 
DiProt showed − 5.09 and − 4.57 kcal/mol average binding 
energies. Similarly, protease showed the best average bind-
ing energy − 5.43 kcal/mol with MonoProt-I, while the other 
two protonation states are − 4.31 kcal/mol and − 3.51 kcal/
mol, respectively. Finally, spike protein also followed the 
same pattern and showed its best affinity for MonoProt-I 
with an average binding energy score − 4.64  kcal/mol, 
while − 4.50 kcal/mol and − 4.61 kcal/mol for the other two 
protonation states. Collectively, Fig. 2 shows the better per-
formance of MonoProt-I for each protein and among them, 
RdRp showed the best binding score ( − 8.52 kcal/mol). 
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Earlier studies on the Autodock binding scores suggested 
that compounds that showed a binding score < − 6.0 kcal/
mole are accepted as active compounds, while any 
score > − 6.0 kcal/mole might be considered as an inactive 
compound [47]. Here, RdRp showed an average binding 
score better than − 6.0 kcal/mole and thus considered as a 
potential binding partner for HCQ in MonoProt-I state under 
physiological pH. Recently, we have published a docking 
study that showed known inhibitors of RdRp that served as 
a control for this study [48].

Docking exercise of HCQ with these three proteins sug-
gested strongly that it prefers RdRp compared to the other 
two proteins. Although the average binding scores of HCQ 
with spike and  3CLpro do not fall in the accepted range 
(< − 6.0 kcal/mol), its best pose passed binding energy cri-
teria; therefore, their interacting chemical moieties can still 
assist in generating pharmacophore. Schrödinger-Maestro 
v12.4 suite tool is used to plot the interactions of HCQ with 
respective proteins. Figure 3a–c shows the interaction plot 
of all three proteins with monoprotonated HCQ for their 
best-docked poses. The top binding score of RdRp with 
MonoProt-I of HCQ has − 8.52 kcal/mol binding energy, 
while protease and spike proteins showed − 6.49 kcal/mol 

and − 6.76 kcal/mol binding energy for their respective best-
docked pose (shown in Fig. 2c). Figure 3a–c shows that the 
protonated basic amine group of HCQ forms hydrogen 
bonds with all three proteins in its best docked conformation. 
RdRp and Spike protein formed 4 and 5 hydrogen bonds 
with HCQ while protease could form only one hydrogen 
bond. Negative charged Asp761 from RdRp and Asp574 
from spike protein are among the binding site lining residue, 
and they interact strongly with the positively charged amine 
group of HCQ. However, protease has negative charged resi-
due Glu240 in the neighbouring environment of the ligand 
to form a hydrogen bond. RdRp has a predominantly polar 
binding environment compared to the other two proteins that 
ensure strong binding with the charged HCQ entity. In all 
the complexes (Fig. 3a–c), both the cyclic rings of HCQ 
contribute to hydrophobic interactions.

Later, protein–ligand interaction was also confirmed 
using an online tool, PLIP. Results generated by PLIP 
agree with the interference drawn from Schrödinger-
Maestro v12.4 suite. However, a few additional interac-
tions are detected by PLIP that were not found earlier. The 
best pose for the spike protein HCQ complex under PLIP 
server showed a salt bridge between the oxygen atom of 

Fig. 2  HCQ molecule preparation and docking: a pKa values for all 
ionizable groups of HCQ predicted using ChemAxon integrated tool 
with MarvinSketch; b protonated states formed under physiologi-
cal conditions (pH 7.4) are shown as MonoProt-I, MonoProt-II, and 

DiProt; c box plot for binding energy scores of RdRp, protease, and 
spike proteins with MonoProt-I, MonoProt-II, and DipProt states of 
HCQ. The negative sign of binding energy scores is ignored for better 
readability
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Asp586 and the nitrogen atom of HCQ. Similarly, the pro-
tease complex has additional hydrogen bonds with Thr198 
and His246 and salt-bridge between the nitrogen atom of 
Glu240 and the nitrogen atom of HCQ. RdRp complex 
showed two salt-bridges involving Asp761 and Glu811 
residues in the interaction table of the PLIP tool and three 
additional H-bonds each with Trp617, Ala762, and Trp800 
are detected in PLIP but not in Schrödinger-Maestro v12.4 
suite interaction analysis.

Information collected from Schrödinger-Maestro v12.4 
suite interaction plot and PLIP suggests that minimum 1–2 
H-bond donors/acceptors, 1–2 charged groups for salt bridge 
formation, and 2–3 hydrophobic groups are key interacting 
pharmacophores that are required for binding with SARS-
CoV2 proteins.

Conformational variation of HCQ

Further, a molecular dynamic simulation was performed on 
the docked complex to overcome the non-flexibility limi-
tation of rigid docking. RdRp complex is selected for the 
molecular dynamic simulation based on Autodock bind-
ing energy score. A 100-ns all-atom explicit solvent MD 
simulation is performed for the best-docked pose of HCQ 
with RdRp. In this process, protein–ligand complex is 
minimized using steepest descent algorithm to achieve the 
thermodynamically stable complex. Supplementary Figure 
S1 (blue line) shows the energy minimization curve for the 
protein–ligand HCQ complex. Later, the system is equili-
brated for 100 ps under NVT and 1000 ps under NPT ensem-
bles before the production phase. RdRp-HCQ complex is 

Fig. 3  Binding interaction plot of MonoProt-I protonated state of 
HCQ with a RdRp, b protease, and c spike proteins of SARS-CoV2, 
d structural variation of RdRp:HCQ complex during 100-ns simula-
tion. RMSD of all-atom and backbone atoms for the protein (blue and 

orange), RMSD of HCQ when protein is taken for alignment (green 
line) and when ligand (HCQ) is taken as a reference molecule for 
alignment (red lines)
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sufficiently equilibrated under the solvent medium. Sup-
plementary Figures S2 and S3 show the temperature and 
pressure plot for NPT and NVT equilibrium process. These 
thermodynamic properties showed satisfactorily behaviour 
in the equilibrium phase. Once the system is minimized and 
equilibrated, a 100-ns production phase is performed.

All-atoms and backbone-atoms RMSD for protein is 
shown in Fig. 3d, the initial conformation of protein deviated 
to 0.5–0.6 nm at the outset of the simulation. Once it crossed 
20 ns time, it showed a steady behaviour that continued till 
the end of simulation. This deviation characteristic con-
firmed the conformational stability of RdRp protein during 
the 100 ns simulation time. Figure 3d also shows the ligand 
HCQ deviation within the binding site of RdRp. It showed 
the RMSD pattern when a protein (green) and ligand (red) 
are considered separately as a reference molecule for align-
ment. Initially, protein is taken for alignment fit where HCQ 
conformation deviated to ~ 1.2 nm compared to starting pose 
within 10 ns of simulation, but it drops down to 0.6 nm in the 
later phase. After 20 ns simulation time, HCQ shows minor 
variation till the end of the simulation. Here, the standard 
deviation (std) of the RMSD for the last 80 ns of simulation 
is 0.11 nm that confirms the steady-state behaviour for the 
protein–ligand complex. When protein is considered as a 
reference alignment molecule, the RMSD value consists of 
both the rotational and translational movement of the ligand. 
Here, a high value of RMSD ~ 1.0–1.2 nm in the last 80 ns of 
simulation articulates the translocation of HCQ to another 
region of the binding pocket. Once it relocates to a new posi-
tion within the binding site, it attains stability in this confor-
mation for the rest 80 ns of simulation. In contrast, when the 
ligand is used as a reference molecule for alignment, it only 
accounts for the rotational movement in RMSD calculation. 
In this case, RMSD showed a very stable pattern (red line) 
around 0.3 nm for the entire simulation. Figure 3d shows 
that in RdRp-HCQ complex, protein attains a steady state in 
short time, while ligand HCQ changes its binding location in 
the initial phase, but then it also acquires higher conforma-
tional stability in the final phase of simulation.

Supplementary Figure S4a shows the average root mean 
square fluctuation (RMSF) for the individual residue for 
RdRp protein. This plot explains that 87% of the residues 
have fluctuation less than 0.3 nm, while 67% of them are 
even lower than 0.2 nm, only 1.5% residues showed RMSF 
above 0.5 nm. Overall, 14 residues have relatively higher 
fluctuation; 12 of these are terminal residues. In addition 
to these terminal residues, Arg74 and Lys50 have RMSF 
greater than 0.4 nm. None of these residues belong to the 
catalytic/active site of RdRp that upholds the protein–ligand 
complex stability. Among all the atomic interaction, 
hydrogen bonding is considered as a major factor for pro-
tein–ligand complex stability. Figure S4b shows the number 
of hydrogen bonds in a different frame of the simulation; 

these numbers fluctuated between 1 and 3. H-bond num-
ber calculation showed that 86% of frames have one or 
more protein–ligand H-bonding. Hydrogen bond analysis 
was performed additionally for the binding site residues in 
RdRp-HCQ complex. It showed that there are several frames 
during the simulation where binding site residues can form 
hydrogen bond with HCQ molecules. Distance distribution 
plot for donors and acceptors atoms between HCQ molecule 
and binding site residues confirms the presence of 20–30 
pairs that fall under the hydrogen bond distance criteria. 
However, their angular orientation may not allow all of them 
to successfully form hydrogen bonds. This also advocates 
that there is always a higher chance of forming more hydro-
gen bonds as shown in Supplementary Fig. S5.

Most probable binding pose

Investigating the conformational behaviour of HCQ within 
the binding site of RdRp, a clustering method is applied. The 
complete trajectory is clustered using 0.3-nm RMSD crite-
ria deploying `gromos` method of clustering. This resulted 
in seven distinct clusters. However, top four cluster consti-
tutes 98% of the total population. These four clusters con-
sist of 7952, 963, 640, and 297 structures, respectively. The 
middle structure of each cluster is considered for analysis. 
The smallest cluster has eight structures. We compared the 
starting coordinate with the middle structures of four most 
populated cluster to examine the movement of HCQ. Supple-
mentary Figure S6 shows that in each cluster HCQ position 
is shifted from the starting position. These four poses shown 
in Supplementary Fig. S6 could be considered as the most 
probable pose of the HCQ. Hence, it can be concluded that 
during simulation, HCQ showed translational and rotational 
movement but always reside within the binding region of 
RdRp.

Complete trajectory when clustered using 3 Å RMSD cri-
teria and middle structure of each cluster is compared with 
the starting complex, and then, it is observed that middle 
structures from two clusters have shown highest RMSD of 
greater than 6 Å with the starting complex. These two com-
plexes are studied to find the position of HCQ with respect 
to the active site residues LEU758, SER759, ASP760 and 
ASP761 of RdRp protein. Both the complexes showed the 
HCQ in proximity of active site residue that suggest that 
even at higher deviation HCQ does not loose contact with 
the active site residues as shown in Supplementary Fig. S7.

MMPBSA binding energy

The Molecular Mechanics Poisson-Boltzmann Surface Area 
(MMPBSA) binding energy between protein and ligand is 
calculated using the g_mmpbsa tool. This tool gives three 
binding energy components: (1) molecular mechanics, 
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composed of van der Waal component and electrostatic 
energy, (2) Poisson Boltzmann-based solvation polar energy, 
and (3) SASA-based non-polar energy. RdRp is a big protein 
with 931 amino acids with 72 missing residues in its solved 
structure. However, the binding site is relatively smaller, 
and thus, it can accommodate nucleotide as a natural sub-
strate. Here, MMPSA method is applied to estimate the 
binding free energy of HCQ and protein complex. Earlier, 
the complete molecular dynamic simulation trajectory of 
best-docked pose of HCQ is clustered that formed seven dis-
tinct clusters. The middle structures of these most populated 
clusters are considered as most promising poses for HCQ in 
the binding site of RdRp. MMPBSA energy is calculated for 
these most promising poses using its binding site residues. 
The average MMPBSA binding energy over all the seven 
representative structure is -23.48 kcal/mol consisting of four 
binding energy components (vdW, electrostatic, polar solva-
tion energy, and non-polar solvation energy). A high value 
of binding energy is due to the absence of entropy compo-
nent in the final energy, but the negative value indicates the 
stability of the complex. Polar solvation energy is positive 
during the simulation, but it is neutralized by the molecular 
mechanics (vdW + elec) component. Non-polar SASA bind-
ing energy majorly has small negative values which make 
the total binding energy stable for these poses. The mean of 
MMPBSA binding energies across all the poses with its vari-
ous components is shown in Supplementary Fig. S8a. The 
binding energy for the individual middle structure for each 
cluster and the size of the cluster are shown in Supplemen-
tary Fig. S8b. Most populated clusters with 7952 structures 
have the highest binding free energy that confirms the stable 
formation of HCQ-RdRp complex.

Screened compounds

Once the binding and interacting groups are confirmed for 
the HCQ complexes with the SARS-CoV2 proteins, a phar-
macophore generation and search are performed using the 
active functional group responsible for the interaction. Phar-
magist and ZincPharmer online tool are used for this pur-
pose, where HCQ is taken as a template molecule and ZINC 
natural compound library [39] as a screening database. HCQ 
has 13 pharmacophore points in total, 2 aromatic rings 
(ARO), 2 hydrogen bond donor (HBD), 3 hydrogen bond 
acceptor (HBA), and 6 hydrophobic groups (HYD). Based 
on the interaction and simulation study, pharmacophores 
are selected for screening against the ZINC natural com-
pound database. Terminal hydroxyl group was considered 
an essential HBA (hydrogen bond acceptor) pharmacoph-
ore, while the nitrogen was chosen as HBD (hydrogen bond 
donor) pharmacophore point. Aromatic rings of HCQ are 
considered as HYD (hydrophobic) as well as ARO (aromatic 
stacking) pharmacophore. This reduced the number from a 

13-point to a 6-point pharmacophore search. Total avail-
able pharmacophores of HCQ and its corresponding points 
used in searching are shown in Fig. 4a, b. Pharmacophore 
screening resulted in top 50 hits arranged as per their RMSD 
with reference molecule HCQ. The top 10 compounds based 
on their RMSD are shown in Fig. 4c), where the minimum 
RMSD reported is 0.07 Å (ZINC20763495). Structures of 
the top 10 pharmacophore screening hits are shown in Fig. 4.

These top 10 ZINC compounds from the ZINC natural 
molecule database showed high pharmacophore similarity 
with the HCQ molecule exhibiting required ARO, HDB, 
HBA, and HYD functional groups. Docking study of HCQ 
has shown that RdRp is the best binding target for HCQ. List 
of these top 10 screened compounds is shown in Table S1a 
with their corresponding ZINC IDs and IUPAC names. As 
per this dogma, all top 10 compounds are docked using the 
Autodock4 tool with RdRp to find the binding affinity. The 
same docking grid o is used that employed in HCQ dock-
ing. Figure 5a shows the best, worst, and average Autodock 
docking binding scores of these 10 natural molecules for 
all the 10 poses generated in docking. Compound 4 yielded 
the best binding score of − 8.69 kcal/mole in its first pose, 
while its average binding score is − 7.43 kcal/mol. Further, 
compounds 3, 5, and 10 also have strong binding scores with 
average binding energy better than HCQ. Figure 5b shows 
the ionizable functional group of 4, ChemAxon predicted 
only one ionizable amine group with pKa 1.21 (blue) and 
12.70 (red). Blue colour pKa represents the acid dissocia-
tion constant between the neutral base and its conjugated 
acid, while red colour pKa represents the acid dissociation 
constant between the neutral acid and its conjugated base as 
shown in Fig. 5b. This indicates that none of the nitrogen 
would be in a protonated or deprotonated state under the 
physiological condition of pH 7.4. Figure 5b also shows the 
box plot of the binding energies for the 10 docked poses of 
4. The protein–ligand interaction plot for the best docked 
pose of 4 is shown in Fig. 5c; it does not form any hydrogen 
bond with RdRp but the core catalytic residues Ser759 and 
Asp761 positioned in proximity. Figure 5 summarizes that 4 
might be used as a potential lead for inhibitor design against 
SARS-CoV2 RdRp.

Antiviral compounds pharmacophore

This study also used known inhibitors of RNA viruses to 
generate active pharmacophore; these known inhibitors are 
lopinavir, ritonavir, ribavirin, galidesivir, favipiravir, rem-
desivir, tenofovir, saquinavir, and elvitegravir as shown in 
Supplementary Table S1b. These molecules are selected 
based on their chemical scaffolds and their respective protein 
targets in RNA viruses. Remdesivir, galidesivir, and favip-
iravir are direct targeting RdRp of RNA viruses [49–51], 
while lopinavir targets ribosomal RNA, and its combination 
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with Ritonavir is used for the treatment of HIV-infection 
[52, 53]. Ribavirin is used against RNA viruses and consists 
of nucleoside scaffold like remdesivir [47], galidesivir, and 
favipiravir. Tenofovir also belongs to the nucleoside com-
pound family with antiviral activity [54]. Saquinavir and 
Elvitegravir are added to the list as they showed promising 
inhibitory activity against RNA viruses and share a simi-
lar scaffold [55, 56]. Many of these compounds are also 
proposed for inhibiting SARS-CoV2. These molecules are 
aligned to design the 3-point, 4-point, 5-point, and 6-point 
pharmacophores. These pharmacophores have HBD, HBA, 
HYD, and ARO as active groups. All these generated phar-
macophores (3-points, 4-points, 5-points, and 6-points) are 
screened against the 2,17,77,093 compounds of the ZINC 
database. The top five hits based on the RMSD from each 
(3-points, 4-points, 5-points, and 6-points) screening are 
selected for docking, and thus, 20 compounds are docked 
with RdRp protein to evaluate their binding affinity. Docked 
scores of these 20 potential hits are shown in Supplemen-
tary Table  S2. Compound 15 showed the best docking 
energy score − 8.86 kcal/mol, while its average docking 
score − 8.63 kcal/mol also surpassed others. RMSD of the 
best hit compound 15 with each antiviral compound is listed 
in Supplementary Table S1. Ionizable group of these com-
pounds are identified, and respective pKa values are pre-
dicted. Figure 6a shows the pKa values of ionizable groups 

of 15, predicted pKa for one nitrogen group is 4.12, while for 
other nitrogen it has two values: 1.29 (blue) and 7.19 (red). 
Blue colour pKa represents the acid dissociation constant 
between the neutral base and its conjugated acid, while red 
colour represents the acid dissociation constant between the 
neutral acid and its conjugated base. Based on these two pKa 
values, this nitrogen has chances to deprotonate and formed 
negative ion species. Figure 6a shows the chemical structure 
and binding energy boxplot for neutral and negative variants 
of 15. The neutral variant showed a relatively better binding 
energy, hence considered for further operations. Figure 6b 
shows the interaction of the natural variant of 15 in its best 
docked pose. It showed a single hydrogen bond with Ala685 
and one stacking interaction with Tyr689. Resembling 4, 
this compound also docked at the catalytic site of RdRp. 
Best docked poses of HCQ, 4 and 15 are shown simultane-
ously in Supplementary Fig. S7. It shows that HCQ and 4 
share partial common sites/residues, while 15 is placed at 
a distant position, similar conclusion is drawn from their 
interaction plots.

Molecular dynamic simulation

Best hit  molecules 4  (ZINC04259277) and 15 
(ZINC39444715) have molecular weights of 475.5 gm 
and 454.53 gm, respectively, with multiple H-bond donor 

Fig. 4  Screened compounds based on HCQ active pharmacophore: a the maximum number of pharmacophores present in HCQ are 13, b 
6-points pharmacophores are used for screening, c top 10 hits based on RMSD criteria, and d chemical structure of all top 10 hit compounds
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and H-bond acceptor groups. The best-docked pose of 
compounds 4 and 15 is simulated for 100 ns like the 
process followed in HCQ-RdRp simulation. The other 
three compounds 3, 5, 10 and 17 derived from HCQ 
based pharmacophore search method are also proposed 
as a potential lead molecule, but not studied in molecular 
simulation. Equilibrium NVT and NPT ensembles simula-
tion are elaborated in Figures S1, S2, and S3.

Structure fluctuation: RMSD

Docked complex of 4 and 15 with RdRp is simulated for 
100 ns in explicit solvent medium, and RMSD of the ligand 
is calculated to show its translational and rotational move-
ment. Ligand and protein both are used separately as refer-
ence aligning molecules to calculate RMSD. As explained 
earlier that translational variation is captured only when 

Fig. 5  Binding scores of screened natural compounds generated from 
HCQ pharmacophore-based search, a top poses are generated in 
docking. The best compound is highlighted in grey and other poten-

tial hits as outlined. b pKa value for best-identified compound 4 with 
the boxplot of binding energy scores for all its 10 docked poses; c 
interaction plot for the best identified compound 4 
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protein molecule is taken as reference fit. RMSD patterns 
of 4 and 15 are shown in Fig. 7a. Ligands RMSD under 
0.2 nm for the entire simulation time when ligand molecule 
is taken for alignment. However, when protein is used as a 
reference fitting, it showed stability after 40 ns of simula-
tion time. Molecule 4 showed relatively lesser translational 
motion that 15. Both the ligands showed high RMSD in the 
initial phase of the simulation but got stabilized during the 
end of the simulation. This once again shows that ligand 
translates inside the binding pocket, but eventually settles 
down and form a stable complex. It also indicates that the 

initial docked pose was not the most stable state and simula-
tion helped to find the stable pose of 4 and 15.

Clustering and MMPBSA energy

The clustering of the simulation trajectory of the pro-
tein–ligand complex for the best-docked pose of 4 and 15 
is performed using the `gromos` algorithm with 0.3 nm 
RMSD cut-off criteria. This formed 15 and 32 clusters 
for 4 and 15, respectively, that are representative of the 
complete trajectory. The binding energies for the most 

Fig. 6  Binding scores of 15 screened from antiviral compounds pharmacophore search, a pKa value for 15 with the boxplot of binding energy 
scores in its neutral and negative variants for all its 10 docked poses; b interaction plot of neutral variant for the 15 with RdRp

Fig. 7  a Root mean square 4 and 15 with RdRp. RMSD is shown when and ligand and protein are used for alignment separately b and c drug-
likeness of the compounds 4 and 15 
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probable complexes that are generated during the simu-
lation are calculated using the MMPBSA method. Sol-
ute dielectric 2 and solvent dielectric 80 are used in this 
method for MMPBSA calculation. Clustering reduced 
the number of structures generated in the simulation and 
grouped them into different clusters, and MMPBSA energy 
is only calculated for the middle structure of these distinct 
clusters. These middle structures are the most considered 
as the most probable states of RdRp complexed with 4 and 
15. MMPBSA energy of these middle structures of differ-
ent distinct clusters is shown in Supplementary Tables S3 
and S4. Polar solvation energy for the complexes is posi-
tive, but it is negated by the high negative value of molec-
ular mechanics (vdw + elec) and non-polar. The average 
MMPBSA energy across all the representative structures 
for 4 and 15 is − 25.50  kcal/mol and − 8.27  kcal/mol, 
respectively, as shown in Supplementary Tables S3 and S4. 
The maximum populated cluster in 4 has 4205 structures 
and the MMPBSA binding energy for its middle structure 
is − 28.09 kcal/mol, while for 15 the most populated clus-
ter has 3745 candidate structures with − 20.26 kcal/mol 
MMPBSA binding energy for its middle structure. These 
binding energies do not contain ΔS (entropy) component, 
so the absolute value cannot be compared with the experi-
mental binding energy. However, negative values indicate 
the stability of the complex. Tables S2 and S3 show the 
MMPBSA binding energies of the individual cluster mid-
dle structure with the size of the cluster. Although the 
average MMPBSA energy for 15 is − 8.27 kcal/mol but if 
we closely examine the individual energies, it shows that 
top 3 populated cluster has high binding energies (aver-
age − 23.75 kcal/mol). These top 3 clusters occupy 60% 
of total conformational space. MMPBSA values indicate 
that there is high plausibility for 4 and 15 to interact with 
SARS-CoV2 RdRp. Average MMPBSA binding energy 
for individual residues from binding site region is calcu-
lated for the most probable poses during simulation and 
shown in Supplementary Fig. S9. Negative binding energy 
indicates their significant contribution in the binding with 
RdRp protein. ALA688, THR687, CYS813, and ASP761 
have shown contribution in the binding of compound 15 
within the binding site of RdRp protein. However, com-
pound 4 has only one residue LYS 593 that showed nega-
tive binding energy in the protein–ligand complex.

Solvent accessible surface area (SASA) for both the com-
pounds on the complete protein and the binding site during 
the simulation are calculated. SASA for both the complex is 
shown in Supplementary Fig. S10. Protein when complexed 
with 15 showed higher SASA value than 4 during initial 
phase of simulation, but it saturates after 40 ns of simulation 
both for complete protein and binding site residues. This 
suggest that few residues in binding site are get exposed 
in complex 15 when the ligand molecule translocate, but 

then it regained its original conformation and covered those 
exposed residues to lower down its SASA.

Protein conformation changes during simulation in the 
presence of ligand. Flexibility of protein residues allow them 
to form stronger interaction with the ligand atoms. An essen-
tial dynamics approach is applied to the RdRp protein bound 
with 4 and 15. This is achieved by dimensional reduction of 
the simulation trajectory by projecting first two principal 
components. Supplementary Figure S11 shows the collective 
motion for RdRp in bound state with both hit compounds. 
Black shows the motion of protein when it in complex with 
4, while ‘red’ shows the motion 15 complex. Figure shows 
that collective motion of protein is more localized when 
it binds with 4 compared to 15. Besides, complete trajec-
tory analysis of docked complexes, mean geometries of the 
last 3 ns trajectories for compounds 4 and 15 are extracted 
to determine the binding pose of resultant conformations. 
These mean structures of ligands are re-docked with RdRp 
protein using the Autodock tool. It generated 10 docked 
poses for 4 and 15, respectively, the best binding score for 4 
has − 8.25 kcal/mol binding score, while − 8.42 kcal/mol for 
15 as shown in Supplementary Table S5. This indicates that 
simulated ligands have different conformation compared to 
the initial state, but they still form a strong complex with the 
RdRp. Further, all the docked poses interactions are deter-
mined using the LigPlot tool, all poses showed 1 hydro-
gen bond and proximity with the residue Leu758, Ser759, 
Asp760, Asp761. It shows that it retains the key interaction 
within the binding site of the protein.

Active pharmacophores for both the screened zinc com-
pounds from their middle structure of most populated clus-
ter are detected; these pharmacophores play critical role in 
binding the ligand with protein. Here, 4 has two aromatic 
rings, while 15 has three. In addition, there are five donor, 
and seven acceptor groups present in 4, while 15 has lower 
number these groups with four donors and two acceptors, 
respectively. In case of hydrophobic pharmacophores, 15 
has four such groups, while 4 has three hydrophobic groups. 
Overall, it shows that 4 has higher number of active phar-
macophores compared to 15, but these pharmacophores are 
sufficient to hold the ligand molecule inside the binding site. 
Supplementary Figure S12 shows the active pharmacoph-
ores of these two hits.

Physicochemical properties

Moreover, the physicochemical properties and drug-likeness 
of 4 and 15 are calculated using SwissADME server (http:// 
www. swiss adme. ch) [57] that showed its likelihood as thera-
peutic molecule. Figure 7b shows the druglikeness of these 
compounds; four different filters are applied on these com-
pounds to estimate their druglikeness. Lipinski filter used 
molecular weight, lipophilicity, donor and acceptor count, 

http://www.swissadme.ch
http://www.swissadme.ch
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while Ghose filter used molecular weight, lipophilicity, 
molecular refractivity, and number of atoms to characterize 
the druglikeness of a given compound. Similarly, Muegge 
filter used molecular weight, lipophilicity, polar surface area, 
number of rings, number of carbon atoms, number of het-
eroatoms, number of rotatable bonds, donor and acceptor 
account in their filter criteria. Compound 4 cleared all these 
filters that while 15 has only one violation in Ghose filter. 
In the medicinal chemistry filters, both the compounds have 
zero alerts in PAINS (Pan-assay interference compounds). 
Properties listed in Fig. 7b advocate the application of 4 
and 15 as therapeutic agents. SwissADME server also pro-
vides a radial graph for suitable physicochemical space for 
oral bioavailability. This graph covers LIPO (lipophilicity), 
SIZE, POLAR (polarity), INSOLU (insolubility), INSATU 
(insaturation) and FLEX (flexibility). Figure 7c shows the 
radial graph where the coloured zone represents a suitable 
physicochemical space. Both 4 and 15 fall completely in the 
favourable region expect insaturation property for 15.

In course of empirical validation of the above find-
ing, Compound 4 is searched in the PubChem database, 
and it is found with ID: 11,886,000. Its IUPAC name 
is ‘[(3S,3aR,6R,6aS)-3-(5-phenylsulfanyltetrazol-1-yl)-
2,3,3a,5,6,6a-hexahydrofuro[3,2-b]furan-6-yl] N-naphtha-
len-1-ylcarbamate’. Data in the PubChem show that bio-
logical testing of this molecule is performed under various 
cases on different samples. It has also been tested in primary 
in vitro assay for inhibitors of plasmodium falciparum Dd2 
growth. Similarly, a PubChem ID: 2,841,659 with IUPAC 
name ‘4-[(1,5-dimethyl-3-oxo-2-phenylpyrazol-4-yl)-(2-hy-
droxyphenyl)methyl]-1,5-dimethyl-2-phenylpyrazol-3-one’ 
represents 15. It has also been tested in primary qHTS for 
delayed death inhibitors of the malarial parasite. Both the 
compounds have been previously proposed as anti-parasites 
(malarial); recently, it has also been noticed that anti-parasite 
compounds may have anti-viral activity. This can explain the 
empirical validation of the compounds found in this study.

Conclusions

Genomic constituents of SARS-CoV2 have been studied 
extensively to understand the impact of mutation and geo-
graphical regions on the infection rate of COVID [58]. Cur-
rently, many countries have started vaccination to control 
this pandemic, but recent mutation reported in SARS-CoV2 
can modulate its viral transmission, replication efficiency, 
and virulence. Identifying peptide-based vaccine [59] and 
therapeutic molecule against SARS-CoV2 [60] can com-
plement the overall control measures. HCQ has been with-
drawn as a potential treatment molecule for COVID, but 
it showed inhibition to SARS-CoV2 in cell-based assays. 
 EC50 0.72 µM reported in an earlier study for HCQ [45] 

showed its inhibition property. The application of HCQ on 
COVID patients is justified and discussed in many aspects 
[46]. Based on this principle, new compounds from the natu-
ral molecule repository are searched and validated in this 
study. This study combined a ligand-based and structure-
based drug design approach to find a potent inhibitor against 
SARS-CoV2. Molecular docking and simulation of HCQ 
with SARS-CoV2 proteins (i) spike (with receptor-binding 
domain), (ii) 3CLpro protease, and (iii) RdRp guided the 
pharmacophore design. Screening of the active pharmaco-
phore in the ZINC natural compound database identified ten 
hit compounds. Molecular docking of these hit compounds 
further recognized four molecules that have a binding score 
greater than HCQ. These compounds share similar chemical 
groups and showed a high affinity with the RdRp protein of 
SARS-CoV2. Molecule 4 showed the best result in dock-
ing and thus examined under 100-ns molecular simulation. 
During simulation, 4 showed its binding with RdRp protein 
at its catalytic site. In addition to 4, three more molecules 
3, 5, and 10 also showed a significant binding score with 
RdRp. Supplementary figure S13 compares the best pose 
of HCQ with the two hits (4 and 15) identified in this study. 
Being natural compounds, they are likely to exhibit a sig-
nificantly improved safety profile [61, 62]. HCQ pharma-
cophore-based drug screening used protein–ligand docked 
complex to determine critical chemical moiety responsible 
for protein–ligand interaction. We also examined the known 
anti-viral compounds that share common chemical scaffolds 
and mechanisms. In this study, nine such compounds are 
selected based on their activities and chemical structures. 
A ligand-based approach was deployed to design an active 
pharmacophore with multiple active features. This screening 
resulted in 20 hits against RdRp where docking and molecu-
lar dynamic simulation assisted to detect the most potential 
hit. The best docking score of 15 is − 8.86 kcal/mole, but 
it changed its initial conformation during MD simulation. 
Both 4 and 15 showed conformational stability during the 
last 60 ns of simulation. MMPBSA binding energies of the 
compounds showed thermodynamic and solvation stability. 
They located in the active site of the RdRp protein during 
the simulation with proximity to catalytic residues. Their 
binding score, conformation, and stability make them poten-
tial inhibitors against RdRp. The pharmacophore approach 
is used in this study to replace the virtual structure-based 
screening technique. However, the structure of RdRp is later 
used for docking to confirm the binding of pharmacophore 
hits with the protein. Hence, this study presented a combina-
tion of structure-based and ligand-based approaches to find 
the best hit molecule. Experimental testing of the detected 
compounds against RdRp activity using standard binding 
assay (enzyme based) or cell-based assays can confirm our 
computational finding.
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