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Abstract
Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are

important mediators maintaining physiological renal function. However, the effects of exog-

enous ARA on kidney function in vivo remain unknown. This study examined the effects of

long-term oral ARA administration on normal renal function as well as inflammation and oxi-

dative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosa-

noids using liquid chromatography–tandemmass spectrometry. Control or ARA oil (240

mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks.

Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cyto-

kines, reactive oxygen species, and lipid peroxidation were not significantly different

between the two groups. The ARA concentration in the plasma, kidney, and liver increased

in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and

12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group,

whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid

decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protec-

tin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and

resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that

long-term ARA administration led to no serious adverse reactions under normal conditions

and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-

derived metabolites in the kidneys of aged rats. These results indicate that there is a possi-

bility of ARA administration having a reducing anti-inflammatory effect on the kidney.
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Introduction
Eicosanoids, metabolites derived from arachidonic acid (ARA), have well-established roles in
renal physiological and pathophysiological functions [1]. Prostaglandin (PG) I2 and PGE2 play
critical roles in maintaining blood pressure, renal function in a volume-contracted state, and
renin secretion [2]. The physiological effects of each eicosanoid are controlled at synthesis and
by interactions with its receptors. Therefore, nonsteroidal anti-inflammatory drugs cause fluid
and electrolyte disorders, acute renal dysfunction, nephrotic syndrome/interstitial nephritis,
and renal papillary necrosis [3–5]. These reports indicate that eicosanoids are important medi-
ators formaintaining renal function.

In contrast, inflammatory cytokines and reactive oxygen species (ROS) activate ARA release
from cell membrane phospholipids of the kidney. Huang et al. reported that interleukin (IL)-1
rapidly stimulates the release of phospholipase A2 (PLA2) activity-dependent ARA and acti-
vates mesangial cells via the Jun N-terminal/stress-activated protein kinase (JNK/SAPK) sig-
naling pathway [6]. ROS activates renal mitochondrial PLA2 activity and cyclooxygenase-2
(COX-2) expression in the kidney [7,8]. The effects of tumor necrosis factor-α (TNF-α) on ion
transport are related to the induction of COX-2-dependent PGE2 synthesis [9]. These results
indicate that endogenous ARA released by inflammatory cytokines and ROS are involved in
inflammatory processes in the kidney. Few data regarding whether exogenous ARA stimulates
the release of inflammatory cytokines are available. Exogenous ARA but not eicosanoids
increases IL-1-dependent ARA release by human embryonic kidney 293 cells via cPLA2 and
sPLA2 [10]; moreover, ARA and its precursor, linoleic acid (LA), directly stimulates the JNK/
SAPK pathway [6]. However, the effects of exogenous ARA on kidney function in vivo have
not been reported because of difficulties in obtaining large quantities of purified ARA. We have
assessed whether long-term administration of ARA could change normal renal function,
inflammatory, and oxidative state in aged rats. It has been reported that aging is associated
with structural and functional renal changes [11,12]. Inflammation has been reported to be a
cause of reduced renal function with age [13,14]. Since ARA is known to be involved in inflam-
mation processes as described above, the present study aimed to investigate whether ARA
administration decreases kidney function in the aged rats via inflammation. Excess amounts of
ARA-derived eicosanoids are known to be involved in inflammatory responses; meanwhile,
eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-derived metabolites have anti-
inflammatory properties. We expected ARA administration to disrupt the balance among
these metabolite profiles in the kidney. To assess this, we measured the levels of renal eicosa-
noids and docosanoids using liquid chromatography–electrospray ionization tandem mass
spectrometry (LC-ESI-MS/MS).

Materials and Methods

Ethics Statement
All animal experiments were conducted in strict accordance with procedures outlined in the
Guidelines for Animal Experimentation of Shimane University, compiled from the Guidelines
for Animal Experimentation of the Japanese Association for Laboratory Animal Science. The
protocol was approved by the Committee on the Ethics of Animal Experiments of the Shimane
University.

Animals and treatments
Rats (Jcl: Wistar) purchased from CLEA Japan (Osaka, Japan) were housed in a room under
controlled temperature (23 ± 2°C), humidity (50 ± 10%), and light–dark cycle (light: 07:00–

Arachidonic Acid Intake Modulate Eicosanoid Levels in the Kidney

PLOS ONE | DOI:10.1371/journal.pone.0140884 October 20, 2015 2 / 11



19:00; dark: 19:00–07:00). They were fed a fish oil-deficient diet (F-1™ Funabashi Farm, Funa-
bashi, Japan) and water ad libitum. Inbred second-generation male rats, fed the same F-1 diet,
were used for our study. Fatty acid composition in the F-1 diet was described previously [15].
ARA oil was obtained from Cargill Alking Bioengineering (Wuhan and Hubei, China) [16,17].
The fatty acid compositions of the ARA and control oils are shown in Table 1. Twenty one-
month-old male rats were divided into two groups: the control group was orally administrated
with the control oil and the ARA group was administrated ARA oil (240 mg ARA/kg body
weight/day) for 13 weeks. After a 16-h fast, rats were anesthetized with intraperitoneal sodium
pentobarbital (65 mg/kg body weight), following which their plasma, kidneys, and liver were
removed, immediately frozen in liquid nitrogen, and stored at −30°C until further use. The kid-
neys and liver were homogenized in phosphate buffer (pH, 7.4) using a Teflon homogenizer
(AGC techno glass Co., Ltd. Shizuoka, Japan). The homogenates were immediately frozen in
liquid nitrogen and stored at −30°C until use. Concentrations of creatinine and blood urea
nitrogen (BUN) were determined in plasma samples using an automatic analyzer (BiOLiS 24i;
Tokyo Boeki Medical System Ltd., Tokyo, Japan).

Analysis of fatty acid profiles
The fatty acid profiles of the plasma, and kidney, and liver homogenates were determined by
gas chromatography, as described previously [18].

ROS and lipid peroxidation (LPO) measurement
ROS levels were measured as previously described previously [19]. Data are expressed as
dichlorofluorescein production/min/mg protein. LPO levels were measured using the thiobar-
bituric acid reactive substance assay, as described previously [20], and data are expressed as
moles of malondialdehyde/mg protein. Protein concentration was determined by the Lowry
method [21].

Sample preparation for analysis of fatty acid metabolites
Kidney homogenates were adjusted to 67% methanol and kept at −30°C, and samples were cen-
trifuged at 5,000 × g for 10 min at 4°C to remove precipitated proteins. The supernatants were
diluted with ice-cold distilled water and adjusted to 10% (v/v) methanol. Internal standards

Table 1. Fatty acids profile in control and ARA oil.

(%mol) Control ARA

PLA (16:0) 13.8 ± 0.01 6.95 ± 0.00

STA (18:0) 13.8 ± 0.01 5.91 ± 0.00

OLA (18:1n-9) 42.5 ± 0.03 5.31 ± 0.00

LA (18:2n-6) 20.0 ± 0.02 9.38 ± 0.01

ALA (18:3n-3) ND ND

ARA (20:4n-6) ND 45.1 ± 0.04

EPA (20:5n-3) 0.13 ± 0.01 0.52 ± 0.00

DPA (22:5n-3) ND ND

DHA (22:6n-3) ND ND

PLA, palmitic acid; STA, stearic acid, OLA, oleic acid; LA, linolenic acid; ALA, α-Linolenic acid; ARA,

arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid;

ND, not detected.

doi:10.1371/journal.pone.0140884.t001
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(5 ng of PGE2-d4, PGD2-d4, PGF2α-d4, and 5-HETE-d8, ARA-d8) were added to each sample.
Samples were acidified to pH 4.0 with 0.1 M HCl and were immediately applied to precondi-
tioned solid-phase extraction cartridges (Sep-Pak C18, Waters, Milford, MA, USA) to extract
the fatty acid metabolites. Sep-Pak cartridges were washed with 20 mL water and 20 mL n-hex-
ane in succession. Finally, fatty acid metabolites were eluted with 10 mL methyl formate.

LC-ESI-MS–MS-based analysis
Fatty acid metabolites in kidneys were measured, as described previously, with a slight modifi-
cation [22–24]. High-performance liquid chromatography (HPLC) was combined with ESI–
MS using a TSQ quantum mass spectrometer (Thermo Fisher Scientific K.K., Tokyo, Japan).
HPLC was performed using a Luna 3u C18(2) 100Å LC column (100 × 2.0 mm, Phenomenex,
Torrance, CA, USA) at 30°C. Samples were eluted in a mobile phase comprising acetonitrile–
methanol (4:1, v/v) and water–acetic acid (100:0.1, v/v) in a 27:73 ratio for 5 min, ramped up to
a 70:30 ratio after 15 min, to a 80:20 ratio after 25 min, held for 8 min, ramped up to 100:0
ratio after 35 min, and held for 10 min with flow rate of 0.1 mL/min. MS–MS analyses were
conducted in negative ion mode, and fatty acid metabolites were detected and quantified by
selected reaction monitoring (SRM). Conditions for the detection of each compound by SRM
are listed (S1 Table). Peaks were selected and their areas were calculated using the Xcalibur 2.1
software (Thermo Fisher Scientific K.K.).

Determination of cytokine levels
Plasma concentrations of IL-1β, IL-4, IL-6, IL10, IL-13, and TNF-α were measured using the
Bio-Plex system which combines the principle of a sandwich immunoassay with Luminex fluo-
rescent bead-based technology (Bio-Rad).

Statistical analysis
Results are expressed as means ± standard errors. Data were analyzed with Student’s t-test. Dif-
ferences between the groups were considered significant at P< 0.05. All statistical analyses
were performed using PASW Statistics 18.0 (IBM-SPSS, Inc., Armonk, NY, USA).

Results

Renal function parameters and plasma cytokine levels
A comparison of levels of plasma creatinine, BUN, and cytokine is summarized in Table 2. Lev-
els of plasma creatinine and BUN were not significantly different between the two groups. No
significant differences were observed between the two groups for plasma levels of inflammatory
and anti-inflammatory cytokines. ROS and LPO levels in the kidney were not significantly dif-
ferent between the two groups (Fig 1).

Plasma, kidney, and liver fatty acid profiles
Fatty acid profiles in the plasma after 13 weeks of administration are shown in Table 3. ARA
concentration increased significantly in the ARA-administered group, whereas eicosapentae-
noic acid (EPA) concentration in plasma decreased significantly in the ARA-administered
group. The docosahexaenoic acid (DHA)/ARA and EPA/ARA ratios decreased significantly,
whereas the n-6/n-3 ratio increased in the ARA-administered group. Mole percentages of oleic
acid, linoleic acid (LA), and DHA decreased significantly in the ARA-administered group
(data not shown). Fatty acid profiles in the kidney after 13 weeks of administration are shown
in Table 4. ARA concentration increased significantly, whereas EPA and DHA concentrations
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Table 2. Biochemical data and cytokine levels in plasma of ARA treated aged rats.

Control group ARA group

Creatine (mg/dL) 0.30 ± 0.02 0.33 ± 0.01

Blood urea nitrogen (mg/dL) 17.2 ± 0.6 18.4 ± 0.6

IL-1β (ng/mL) 99.8 ± 11.3 82.1 ± 14.1

IL-4 (ng/mL) 7.78 ± 0.49 7.50 ± 0.73

IL-6 (ng/mL) 37.9 ± 9.1 35.2 ± 18.5

IL-10 (ng/mL) 84.8 ± 13.6 126.7 ± 13.7

IL-13 (ng/mL) 16.1 ± 2.0 14.0 ± 3.7

TNF-α (ng/mL) 15.5 ± 4.6 11.9 ± 4.4

IL, Interleukin; TNF, tumor necrosis factor

Values are means ± SEM for 14–16 rats. There were not statistically significant differences between

groups.

doi:10.1371/journal.pone.0140884.t002

Fig 1. Effects of arachidonic acid administration on renal levels of reactive oxygen species and lipid
peroxidation. (A) Reactive oxygen species and (B) lipid peroxide levels in the kidney. Values are expressed
as means ± standard error (n = 14–16) percentages relative to the control. * P < 0.05 versus control group.

doi:10.1371/journal.pone.0140884.g001

Table 3. Effects of chronic ARA treatment on fatty acid profiles in plasma of aged rats.

Control group ARA group

PLA (16:0) (μg/mL) 652.76 ± 43.03 677.29 ± 35.21

STA (18:0) (μg/mL) 400.59 ± 47.01 392.75 ± 13.97

OLA (18:1n-9) (μg/mL) 322.44 ± 36.52 301.09 ± 22.64

LA (18:2n-6) (μg/mL) 550.68 ± 46.13 526.90 ± 45.94

ALA (18:3n-3) (μg/mL) 9.95 ± 1.42 9.61 ± 1.27

ARA (20:4n-6) (μg/mL) 795.43 ± 70.56 1031.84 ± 45.56*

EPA (20:5n-3) (μg/mL) 10.95 ± 0.84 7.11 ± 0.95*

DPA (22:5n-3) (μg/mL) 13.54 ± 0.98 13.88 ± 0.86

DHA (22:6n-3) (μg/mL) 66.25 ± 12.63 53.68 ± 5.00

n-6/n-3 ratio (mol/mol) 16.07 ± 1.25 20.92 ± 0.90*

DHA/ARA ratio (mol/mol) 0.074 ± 0.007 0.047 ± 0.003*

EPA/ARA ratio (mol/mol) 0.016 ± 0.002 0.007 ± 0.001*

PLA, palmitic acid; STA, stearic acid, OLA, oleic acid; LA, linolenic acid; ALA, α-Linolenic acid; ARA,

arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid;

n-6, n-6 polyunsaturated fatty acids; n-3, n-3 polyunsaturated fatty acids.

Values are means ± SEM for 14–16 rats.

* Significantly different from control group (P < 0.05).

doi:10.1371/journal.pone.0140884.t003
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decreased significantly in the ARA-administered group. The DHA/ARA and EPA/ARA ratios
decreased significantly, whereas the n-6/n-3 ratio increased in the ARA-administered group,
which were similar to those in plasma. Fatty acid profiles in the liver after 13 weeks of adminis-
tration are shown (S2 Table). EPA and OLA concentrations in the liver decreased significantly
in the ARA-administered group, whereas ARA concentration increased significantly in the
ARA-administered group. The DHA/ARA and EPA/ARA ratios decreased significantly,
whereas the n-6/n-3 ratio increased in the ARA-administered group.

Levels of eicosanoids and docosanoids in the kidney
Kidney analyses revealed an increase in renal formation of PGE2, 12-HETE, and 15-HETE in
the ARA-administered group (Fig 2). Moreover, endogenous formation of DHA-derived PD1
and EPA-derived 5-HEPE, 18-HEPE, RvE2, and RvE3 decreased significantly in the ARA-
administered group. Nonesterified ARA levels in the kidney increased significantly in the
ARA-administered group, whereas levels of nonesterified EPA and DHA were not significantly
different between the two groups.

Discussion
One of the purposes of this study was to assess the effects of long-term ARA administration on
kidney function. Plasma levels of BUN and creatinine are usually used in conjunction to mea-
sure kidney function, help diagnose kidney disease, and monitor kidney status. Long-term
ARA administration did not affect levels of BUN and creatinine, suggesting that ARA-adminis-
tration did not decrease renal function in aged rats. Next we assessed the levels of LPO and
ROS as well as inflammatory cytokine levels in plasma; these were not affected by the ARA
treatment, suggesting that ARA-administration itself did not cause inflammation and oxidative
stress. These results agree with those of our previous study [16]. Yoshizawa et al. reported that
an ARA-rich diet for dams during gestation and lactation does not modify N-methyl-N-

Table 4. Effects of chronic ARA treatment on fatty acid profiles in kidney of aged rats.

Control group ARA group

PLA (16:0) (μg/mg protein) 51.97 ± 4.36 54.87 ± 3.89

STA (18:0) (μg/mg protein) 32.26 ± 1.31 33.62 ± 0.80

OLA (18:1n-9) (μg/mg protein) 37.39 ± 5.49 39.89 ± 5.35

LA (18:2n-6) (μg/mg protein) 36.39 ± 4.02 38.08 ± 4.95

ALA (18:3n-3) (μg/mg protein) 0.75 ± 0.14 0.80 ± 0.14

ARA (20:4n-6) (μg/mg protein) 37.93 ± 1.53 44.50 ± 0.78*

EPA (20:5n-3) (μg/mg protein) 0.31 ± 0.02 0.17 ± 0.01*

DPA (22:5n-3) (μg/mg protein) 0.51 ± 0.04 0.47 ± 0.02

DHA (22:6n-3) (μg/mg protein) 2.75 ± 0.20 2.29 ± 0.09*

n-6/n-3 ratio (mol/mol) 18.98 ± 0.76 23.83 ± 0.53*

DHA/ARA ratio (mol/mol) 0.067 ± 0.004 0.048 ± 0.001*

EPA/ARA ratio (mol/mol) 0.008 ± 0.001 0.004 ± 0.001*

PLA, palmitic acid; STA, stearic acid, OLA, oleic acid; LA, linolenic acid; ALA, α-Linolenic acid; ARA,

arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid;

n-6, n-6 polyunsaturated fatty acids; n-3, n-3 polyunsaturated fatty acids.

Values are means ± SEM for 14–16 rats.

* Significantly different from control group (P < 0.05).

doi:10.1371/journal.pone.0140884.t004
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nitrosourea-induced renal preneoplastic lesions in their offspring [25], indicating that exoge-
nous free-form ARA does not induce inflammation or oxidative stress in the kidney.

The ARA concentration increased significantly in plasma, kidney, and liver after long-term
ARA administration (Tables 3 and 4; S2 Table), and the calculated liver-to-plasma concentra-
tion ratio was 6.57 ± 0.44 in the control group and 6.51 ± 0.28 in the ARA group (P = 0.902);
moreover, the kidney-to-plasma concentration ratio in the control and ARA group was
5.15 ± 0.35 and 4.43 ± 0.19, respectively (P = 0.085), indicating that orally administered ARA
was well absorbed from the intestinal tract and was distributed in the kidney and liver; also,
long-term ARA administration did not change the distribution from plasma to the liver and
kidneys. These results agree with those of previous studies. Our previous study showed that

Fig 2. Renal levels of arachidonic acid (ARA)-, eicosapentaenoic acid (EPA)-, and docosahexaenoic
acid (DHA)-derived metabolites. Kidney samples were subjected to liquid chromatography–tandemmass
spectrometry (LC-MS/MS). (A) ARA-, (B) EPA-, and (C) DHA-derived metabolites. Values are expressed as
means ± standard error (n = 14–16) percentages relative to the control. * P < 0.05 versus control group.

doi:10.1371/journal.pone.0140884.g002
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oral ARA administration for 13 weeks significantly increased ARA levels in plasma [16]. Zhou
et al. reported that free-form ARA is distributed from plasma to several tissues. The retention
rate of ARA in the heart, lungs, kidneys, and bone marrow is higher than that in other tissues,
but lower than that in the liver [26].

This is the first report to measure eicosanoids and docosanoids levels in the kidney of ARA
administrated rats. It is well known that linoleic acid (LA) but not ARA administration
increases ARA-derived metabolites in the kidneys [27]. It has also been reported that cyto-
chrome P450-derived ARA metabolites are increased in kidney microsomes incubated with
ARA in vitro [28]; no study has been published, in which ARA-derived metabolites of the kid-
neys were quantified in vivo following ARA administration. Chronic ARA administration
increased levels of PGE2, 12-HETE, and 15-HETE in the kidney. PGE2 treatment promotes res-
olution of glomerular inflammation [29]. 15-HETE is capable of antagonizing the pro-inflam-
matory actions of leukotriene B4 in the rat [30]. 15-HETE antagonizes leukotriene-induced
neutrophil chemotaxis in glomerular microcirculation [31]. It has been reported that 12-HETE
is synthesized by renal cortical tissue and reduces basal renin release [32,33]. A previous study
reported that these eicosanoids consistently fail to enhance IL-1-stimulated JNK1/SAPK activ-
ity [6]. These results indicate that increasing these eicosanoids by chronic ARA administration
does not stimulate inflammation in the healthy kidney; on the contrary, the concentration of
eicosanoids with renoprotective properties increased.

In contrast to healthy kidneys, long-term treatment with omega-6 PUFA causes severe
inflammatory response in a rat renal ischemia-reperfusion injury model. COX-2 and LOX are
induced during rat renal ischemia-reperfusion injury [34]. Long-term treatment with omega-6
PUFA LA, a precursor of ARA, significantly elevates serum creatinine levels as a result of 30
min of renal ischemiaand extends ischemia to 45 min caused 100% mortality in the omega-6
PUFA group, in contrast to 0% mortality in the omega-3 PUFA group [27]. Indomethacin
(COX inhibitor)-treated mice present with better renal function and less acute tubular necrosis,
reduced ROS, and lower expression of pro-inflammatory cytokines during acute kidney injury
[35]. Taken together, these results indicate that increasing ARA levels as well as its metabolites
in the injured kidneys may result in severe kidney damage. Because the administrated free-
form ARA was taken up by the kidneys and was acylated into phospholipids for the plasma
membrane and cell nuclei [26,36], long-term ARA administration did not induce inflammation
or oxidative stress in the present study; however, eicosanoid production in ARA administered
rats may markedly increase tissue injury and inflammation because of robust activation of
phospholipases and downstream biosynthetic pathways. It has been reported that eicosanoids
exert diverse and complex functions. In addition to their role in regulating normal kidney func-
tion, these lipids also play important roles in the pathogenesis of kidney diseases [37]. The
present study also demonstrated that ARA-derived eicosanoids do not induce renal inflamma-
tion and oxidative stress in aged rats.

Concentrations of non-esterified EPA and DHA increased slightly, but not significantly, in
the ARA-administered group compared with those in the control group, although total EPA
and DHA concentrations decreased in the kidney. Levels of EPA-derived eicosanoids 5-HEPE,
18-HEPE, RvE2, and RvE3 and the DHA-derived docosanoids PD1 decreased significantly in
the ARA-administered group. These results suggest that ARA directly competes with the stor-
age of EPA and DHA at the sn-2 position in phospholipids and blocks the production of EPA-
and DHA-derived metabolites [38]. We have reported that the DHA-derived docosanoids
RvDs and PD1 protect renal damage progression induced by metabolic syndrome [24]. EPA-
derived eicosanoids and DHA-derived docosanoids are endogenous mediators with potent
anti-inflammatory actions in the kidneys [39]. Administration of RvDs or PD1 to mice prior to
ischemia results in a reduction in functional and morphological renal injury [40]. Hong and Lu
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demonstrated that RvDs and PD1 repress renal interstitial fibrosis, and PD1 inhibits the
inflammatory response and promotes renoprotective heme-oxygenase-1 expression during
acute kidney injury [41]. Heme-oxygenase-1 decreases acute tubular necrosis and significantly
reduces COX-2 and microsomal PGE synthase expression [42]. Our study demonstrated that
RvE2, RvE3, and PD1 levels decreased significantly in the ARA-administered group, indicating
that anti-inflammatory defense may be attenuated by ARA administration.

In conclusion, ARA-derived eicosanoids are important regulators that maintain physiologi-
cal renal functions. In addition, ARA-derived eicosanoids enhance the pathological response to
renal injury. We assessed the impact of long-term ARA administration on normal renal func-
tion as well as on inflammation and oxidative stress. Our results demonstrate that ARA levels
in the plasma, kidneys, and liver increased following ARA treatment. In addition, levels of
PGE2, 12-HETE, and 15-HETE increased, and those of DHA-derived PD1, EPA-derived
5-HEPE, 18-HEPE, and RvE3 decreased in the ARA-administered group. However, kidney
function, levels of inflammatory cytokines, and oxidative stress were not affected by ARA treat-
ment. Taken together, our results indicate that long-term ARA administration has no serious
adverse effects under normal condition; however, further studies are needed to assess the risk
of long-term ARA treatment in animal models of kidney injury.

Supporting Information
S1 Table. Selected reaction monitoring (SRM) transitions of fatty acid metabolites. PG,
prostaglandin; HETE, hydroxyeicosatetraenoic acid; HEPE, hydroxyeicosapentaenoic acids;
Rv, Resolvin; HDoHE, hydroxydocosahexaenoic acid; PD1, Protectin D.
(DOCX)

S2 Table. Effects of chronic ARA treatment on fatty acid profiles in liver of aged rats. PLA,
palmitic acid; STA, stearic acid, OLA, oleic acid; LA, linolenic acid; ALA, α-Linolenic acid;
ARA, arachidonic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, doco-
sahexaenoic acid; n-6, n-6 polyunsaturated fatty acids; n-3, n-3 polyunsaturated fatty acids.
Values are means ± SEM for 14–16 rats. � Significantly different from control group
(P< 0.05).
(DOCX)
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