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Abstract: Accurate traffic flow prediction is essential to building a smart transportation city. Existing
research mainly uses a given single-graph structure as a model, only considers local and static spatial
dependencies, and ignores the impact of dynamic spatio-temporal data diversity. To fully capture
the characteristics of spatio-temporal data diversity, this paper proposes a cross-Attention Fusion
Based Spatial-Temporal Multi-Graph Convolutional Network (CAFMGCN) model for traffic flow
prediction. First, introduce GCN to model the historical traffic data’s three-time attributes (current,
daily, and weekly) to extract time features. Second, consider the relationship between distance and
traffic flow, constructing adjacency, connectivity, and regional similarity graphs to capture dynamic
spatial topology information. To make full use of global information, a cross-attention mechanism is
introduced to fuse temporal and spatial features separately to reduce prediction errors. Finally, the
CAFMGCN model is evaluated, and the experimental results show that the prediction of this model
is more accurate and effective than the baseline of other models.

Keywords: traffic flow prediction; data diversity; cross-attention; spatio-temporal multi-graph

1. Introduction

More and more attention has been paid to traffic flow prediction in intelligent trans-
portation cities. With the rapid economic growth and the increasing number of urban
vehicles in recent years, many cities are increasingly troubled by traffic congestion and
traffic accidents, which has brought many inconveniences to travel. People all hope to build
an intelligent transportation city to alleviate traffic congestion and improve traffic manage-
ment efficiency. The intelligent transportation system (ITS) has been widely adopted to
improve traffic conditions [1,2].

Related research on traffic flow prediction has a history of nearly 40 years, and
dozens of forecasting methods have been proposed [3]. According to the prediction time,
urban road traffic flow is divided into long-term, medium-long-term, and short-term
predictions. The research methods can be divided into classical time series prediction
methods, traditional machine learning methods, and deep learning methods from classical
time series models, such as historical average (HA) [4] and autoregressive integrated
moving average (ARIMA) [5], to traditional machine learning models, such as support
vector machine regression (SVR) [6]. Although they can capture the temporal correlation
well, they ignore the importance of spatial correlation. It was only with the rise of deep
learning models that this problem was solved. In the early stage, researchers mainly used
RNN (recurrent neural network), such as LSTM (long short-term memory) [7,8], and GRU
(gated recurrent unit) [9,10] models to solve the problem of spatial correlation. Although
RNN-based methods can learn spatial correlation, they are often too complex to deal with
non-linear correlation. In addition, traditional deep learning methods are easily separated
from spatial–temporal correlation and use separate modules to achieve temporal and
spatial correlation [11].
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Recently, the Graph Convolutional Neural Network (GCN) has become the most pop-
ular topic in traffic prediction problems [12,13]. Unlike traditional data-driven methods,
graph neural networks can process non-Euclidean data and capture road topology infor-
mation. Compared with other methods, the training speed is faster, and the parameters are
also reduced. As shown in Figure 1, a road network is formed at the intersection. When
congestion occurs in one section, its adjacent road sections will be significantly affected
and spread to other road sections within a certain period. Taking node 1 as the target
node, when the traffic jam occurs at node 1, the correlation at neighboring node 2 is strong,
while the correlation at adjacent node 5 is weak. Compared with distant node 3 and node
4, they all have a specific correlation. Therefore, it can be seen that the network space
correlation between traffic sections is quite complicated. The traffic conditions between
two road sections with similar geographical locations may not be correlated, but the traffic
conditions between two road sections with a longer distance can be connected. In addition,
there is also a specific non-linear correlation between different time observations. Different
observations of the same node at different times, such as an hour ago, a day ago, or even
one week ago, are correlated to the measured points. To do this, we must incorporate this
information into the model to make accurate traffic predictions. Figure 2 is an example of
simulated road flow correlation.
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Figure 2. The target is the test node 1, adj1 is adjacent to node 2, adj2 is the reverse adjacent node 5,
far1 is the remote node 3, and far2 is the remote node 4.

We propose a new spatio-temporal fusion model to solve the above problems, called
the Cross-Attention Fusion Multi-Graph Convolutional Network (CAFMGCN). This model
uses an MCGN and spatio-temporal cross-attention mechanism to study multivariate
time series data based on the perspective of a graph. Multi-graph convolution has two
functions: one is to construct correlation graphs with three different time attributes to
capture temporal features; the other is to construct the spatial semantic correlation graph
between the three different roads to capture the spatial features. The input layer takes the
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historical traffic flow in three different periods, current, daily, and weekly, as the input.
We use three temporal graphs to represent the node characteristics of different periods to
capture the multi-level temporal correlation. For the convolutional layer, we propose a
multi-graph convolutional network to capture the spatial correlation between different
nodes and construct three adjacency graphs to express different types of node relationship
features to capture spatial correlation and global information. To simultaneously capture
the spatio-temporal correlation features in the output layer, we use the cross-attention
mechanism to carry out a multi-graph fusion of the constructed spatio-temporal graphs to
reduce data loss. The main contributions of this article are as follows:

1. Propose a new multi-graph network model architecture, which separately deals
with multi-level temporal correlation (i.e., current, daily, and weekly) and multi-
spatial location correlations (i.e., proximity, connectivity, and regional similarity).
Modelling is used to capture the temporal and spatial characteristics of nodes at
different locations at different times.

2. A new spatio-temporal fusion method is proposed the spatio-temporal cross-attention
fusion mechanism. This mechanism can simultaneously capture spatio-temporal
features and perform overall fusion, effectively reducing the amount of calculation
and data loss when capturing feature graphs.

3. Extensive experiments were conducted on two real traffic data sets. The results
show that, compared with the current existing baseline, the CAFMGCN model has
better predictability.

2. Related Work

This section reviews the latest research on graph convolutional networks and spatio-
temporal cross-attention related to traffic flow prediction and points out the limitations of
previous research.

2.1. Traffic Flow Prediction

In recent years, many excellent achievements have been made in the research on
traffic flow prediction. The models used for traffic flow forecasting have evolved from the
original traditional time statistical model to today’s deep learning model. As deep learning
has made many breakthroughs in speech recognition [14], image classification [15], and
other fields, more and more researchers are applying deep learning to spatio-temporal
data prediction. For example, literature [16] uses the Recursive Neural Network (RNN)
and Convolutional Neural Network (CNN) to model traffic speed to capture the temporal
and spatial correlation. Literature [17] proposed a method combining CNN and LSTM, to
simulate the changing state of traffic flow, using the interaction between roads to capture
spatial correlation. Literature [18] introduced 3D convolution, to automatically capture
the correlation of traffic data in spatial–temporal dimensions. Although these existing
methods can extract spatial features from the neighborhood of the traffic network, they
usually ignore the physical characteristics of the road (for instance, length and speed limit).
They are not enough to capture comprehensive road network information. In addition,
most of the RNN/CNN models are based on the Euclidean structure to make predictions.
They seldom mine the network in non-Euclidean topology, so it cannot characterize the
spatial correlation of roads in nature.

2.2. Multi-Graph Convolutional Networks

A graph convolutional network is an emerging deep learning model that can deal
with non-Euclidean spatial data well and has been applied to spatial modeling of the
road network. Literature [19] proposed the Diffusion Convolutional Recursive Neural
Network (DCRNN), which modeled traffic flow as a diffusion process on the directed
graph and introduced the bidirectional directed graph to consider spatial correlation.
Literature [20] uses the combination of graph convolution and gated convolution to capture
the spatio–temporal correlation. Because traffic data is constantly changing, in previous
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GCN methods, the definition of the graph structure is usually partial and static, without
considering the dynamic characteristics of the traffic data. For this reason, literature [21]
designed an adaptive matrix to consider the changes in influence between nodes and
their neighbors. Literature [22] uses a dynamic Laplacian matrix estimator to track the
spatial changes between the traffic data. Literature [23] designed the framework of the
Attention Graph Convolution Sequence-to-Sequence (AGC-Seq2Seq) model to capture the
spatio–temporal changes of traffic patterns in a multi-step prediction method. However,
spatio-temporal network data usually shows heterogeneity in both the spatial and temporal
dimensions. For example, in an urban road network, observation results recorded by traffic
monitoring stations in residential and commercial areas often show different patterns at
different times [24]. It is impossible to extract spatial and temporal topological information
based on a single GCN.

Multi-graph network models are used in shared bicycle prediction [25] and ride-
hailing demand prediction [26], but rarely in road traffic flow prediction. Literature [27,28]
models the time diversity through the relationship between the period to be tested and
the current, daily, and weekly periods. To capture the long-distance spatio-temporal het-
erogeneity, literature [29] designed multiple module modeling in different periods. Litera-
ture [30] introduced multi-graph GCN to handle three inflow and outflow patterns (current,
daily, and weekly) separately, and used high-level spatio-temporal features between differ-
ent inflow and outflow patterns and between stations nearby and far away, which can be
extracted by 3D CNN. Literature [31] uses a multi-graph network to construct an adjacency
matrix for different attributes of node adjacency, connectivity, and functionality to measure
the spatial correlation between roads. These models can extract temporal and spatial fea-
tures very well. However, they often separate the spatio-temporal correlation and cannot
capture the multi-level temporal and heterogeneous spatial correlations simultaneously.

2.3. Cross-Attention Mechanism

The attention mechanism is implemented based on the encoder/decoder model. This
model was initially used for machine translation [32], and later literature [33,34] introduced
soft attention and hard attention mechanisms in traffic flow prediction. The attention
mechanism is used to capture the spatio-temporal correlations of the dynamic changes in
the road network, and the global temporal information and spatial correlation are well
captured. The literature [35] introduced self-attention into the generative adversarial
network and achieved excellent experimental results. The literature [36] introduced the
cross-attention module to image detection for the first time, considering the influence of
long-distance on the contextual information. It used a more effective method to capture
the remote temporal contextual information. The literature [37] proposed an enhanced
graph convolutional network based on cross-attention fusion for deep clustering. The
literature [38] used cross-attention for ambulance demand prediction. The cross-attention
mechanism is not only fast in training, but also takes up very little GPU.

This paper proposes a multi-graph convolution and cross-attention fusion mechanism
for traffic flow prediction, to better solve the multi-layer temporal and heterogeneous
spatial correlation in the road network.

3. Preliminaries

In this section, we define the basic concepts of road traffic network modeling and
explain the problems.

Definition 1. Traffic Road Graph.

Temporally, we divide the historical period into a set of consecutive time slices,
denoted as T = {ht |t ∈ 1, 2, ···, T}. Each node generates a feature vector on each time slice.
This article uses the feature graphs on three historical time slices (e.g., current, daily, and
weekly) as input information, elaborated in detail in Section 4.1.
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Spatially, we represent the road graph as a weighted graph G = (V, E, A), where
V = {vi |i ∈ 1, 2, ···, N} is a set of N detector nodes, and each node vi represents a detector.
E is a set of edges connecting these nodes, and each edge eij represents the correlation
between vi and vj. The weight of the edge eij represents the correlation strength between vi

and vj. The larger the weight, the higher the correlation between the two roads. A ∈ RN×N

is the adjacency matrix of graph G. This article constructs road graphs from three aspects:
road network topology (Xw), traffic connectivity (XP), and regional similarity (Xs), which
will be elaborated in Section 4.2.1.

Definition 2. Problem Definition.

We use xc,i
t to denote the c-th feature of node i at time t, Xi

t denotes all eigenvalues of
node i at time t, and Xt denotes all eigenvalues of all nodes at time t. X = (X1, X2, ···, Xτ)
denotes all the eigenvalues of all nodes on the τ time slices. Given the various historical ob-
servations Xinput = {Xt−τ |τ ∈ (0, 1, ···, w− 1)} of all nodes on the transportation network
in the past w time slices, on the premise of Xw, XP, and Xs, we learn a function f by using
the model knowledge of the multi-graph network. The traffic flow prediction problem
aims to predict the traffic volume of X̂t at the next moment. That is:

X̂t = f (XwXPXs; (Xt−w−1, · · · , Xt−1Xt)) (1)

4. Methodology

Our CAFMGCN model is shown in Figure 3. The model consists of a multi-level tem-
poral input, multi-graph convolution layer, and spatio-temporal cross-attention fusion module.
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4.1. Multi-Level Temporal Inputs

According to the literature [18,27,28,30], there is a strong correlation between the
period to be tested, and its current, daily, and weekly periods. To fully capture the features
of the temporal dimension, this paper uses the current, daily, and weekly periods to be
tested combined in the temporal dimension according to the temporal sequence as the
input of the model, in this way to denote the multi-level temporal correlation.

First, the day is divided into q periods on average, and we take the current moment t
as the starting point; the prediction window size is p. Respectively use Xr, Xd, and Xw , to
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denote the temporal dimension feature graphs of the current, daily, and weekly patterns of
the period to be tested, then:

Xr = (Xt−Tr+1, Xt−Tr+2, · · · , Xt) ∈ RN×Tr

Xd =
(

Xt−(Td/Tp)∗q+1, · · · , Xt−(Td/Tp)∗q+Tp , Xt−(Td/Tp−1)∗q+1,
(2)

Xt−(Td/Tp−1)∗q+Tp , · · · , Xt−q+1, · · · , Xt−q+Tp

)
∈ RN×Td

Xw =
(

Xt−7∗(Tw/Tp)∗q+1, · · · , Xt−7∗(Tw/Tp)∗q+Tp , Xt−7∗(Tw/Tp−1)∗q+1,
(3)

Xt−7∗(Tw/Tp−1)∗q+Tp , · · · , Xt−7∗q+1, · · · , Xt−7∗q+Tp

)
∈ RN×Tw (4)

Tr, Td, and Tw represent the length of the most current period, the daily period, and
the weekly period. The union formed by a mosaic of three tenses is used as the input set of
the model:

Xinput = [Xr ∪ Xd ∪ Xw] = { Xt−τ |τ ∈ (1, 2, · · · , lr) ∪ τ ∈ (d, 2d, · · · , ld ∗ d) ∪ τ ∈ (w, 2w, · · · , lw ∗ w) } (5)

where d and w represent the number of time slices in the daily and weekly time periods
(for example, in a 1-h time period, d = 24 and w = 24 × 7), and lr, ld, and lw are 3, 1, and 1.
The model input is shown in Figure 4.
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4.2. Multi-Graph Convolutional Layer

To obtain diversified spatial correlation and context information, this paper uses
a multi-graph network to capture the heterogeneous spatial correlation. Multi-graph
networks can aggregate data in different fields, capture multiple spatial correlations, and
learn separately. For example, literature [25,26] modeled spatial correlation from proximity,
functional similarity, and connectivity, respectively. The literature [31] uses historical traffic
pattern correlation to model heterogeneous spatial. However, they all ignore the impact of
the correlation between long-distance and flow on spatial modeling. In this section, we use
multiple graphs to encode different correlations between roads and these relationships.

4.2.1. Multi-Graph Construction

Three kinds of correlations between roads were modeled using multiple graphs,
including the (1) adjacency graph, encoding space proximity; (2) traffic connectivity graph,
considering the connectivity between relatively distant areas; and (3) regional similarity
graph, which encodes nodes with similar dynamic directions.
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(1) Traffic Adjacency Graph

This article defines the traffic adjacency graph (Xw) based on the spatial proximity, whether
there is a straight line between each pair of nodes (vi ,vj), sand if vi and vj are connected,
then Xw,ij = 1. Otherwise, Xw,ij = 0. The adjacency graph is calculated as follows:

Xw,ij =

{
1, vi and vj are adjacnet
0, otherwise

(6)

Figure 5 shows an example of the adjacency matrix:
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(2) Traffic Connectivity Graph

Since the traffic status is time-series data, the current traffic status on the road will inevitably
affect those geographically distant but easily accessible locations. For example, when Xij
= 1, Xjk = 1, and Xik = 0, nodes i and k are not directly connected, and information can be
transmitted through node j. In case of congestion or other accidents, the traffic transmission
between non-adjacent node pairs needs to bypass intermediate node pairs to send the
congestion information. To ensure whether the data can be transmitted, we judge whether
the distant nodes are reachable according to the actual distance. If the node is reachable,
the information can be sent; there is a long-distance correlation. Therefore, the traffic
connectivity graph defined in this paper is:

Xp,ij =

{
1, vijm− disti,j ≥ 0
0, otherwise

, ∀vi, vj ∈ V (7)

where vij is the average speed between node i and j, which refers to the average rate of
the driver driving without any adverse conditions, and m is the number of time steps
moving at the average speed. Thus, m determines the element size of Xp. If the vehicle can
travel from node i to j within m time steps, then the element Xp,ij = 1, otherwise Xp,ij = 0.
Intuitively speaking, Xp,ij is used to detect whether the vehicle can travel from node i to
node j at an average speed within a specific number of time steps. Here, set all the diagonal
values of Xp to 0.

(3) Regional Similarity Graph

To consider the similarity of different nodes simultaneously, we use the Pearson correlation
method to describe them. In previous literature [39,40], the Pearson correlation method
mainly analyzes whether the time series are correlated. In contrast, this paper uses the
Pearson correlation method to examine whether regional spatial positions are related. In
many scenarios, roads with similar spatial locations are not necessarily close in space. For
example, both business districts and school districts have identical traffic patterns. Still,
when there is a large amount of traffic flow in the business district during the peak hours
of workdays, the school district can also have a large amount of traffic flow shortly. It can
be seen that different spatial regions have similar positions. Therefore, we use the Pearson
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correlation method to compose the flow relationship between nodes, which is regarded as
the weight ws(i , j), and the calculation of ws(i , j) is shown in Equation (8):

ws(i , j) =
∑L

τ=1
(

xτ
i − x

)(
yτ

j − y
)

√
∑L

τ=1
(
xτ

i − x
)2

∑L
τ=1

(
yτ

j − y
)2

(8)

where xτ
i and yτ

j are the traffic of node i and j at time τ, respectively. L is the length
of the time series. x and y are the average traffic of node i and j in the time length L,
ws(i , j) ∈ [0,1]. Then, the regional similarity graph Xs can be expressed as Formula (9),
where σ = 0.5.

Xs,ij =

{
ws(i , j), if ws(i, j) ≥ σ

0, otherwise
(9)

We denote the above three feature maps as a set θ:

θ ∈ (Xw, XP, Xs) (10)

4.2.2. Multi-Graph Convolutional Network

To capture the diversity and heterogeneity spatial correlation, we adopted the Multi-
Graph Convolutional Network (MGCN) model, which consists of several separate graph
structures and inputs the characteristics of each node with different spatial position re-
lationships into one separate graph, and then use graph convolution based on spectrum
theory [22] to analyze graph topology on time slices. In graph analysis, the superposition
of the GCN layer and 1-order filter can achieve an effect similar to that of the k-order
Chebyshev polynomial filter [41], which improves the training speed and enhances the
prediction accuracy. The layering propagation law of Chebyshev polynomials [28] is:

H = ReLU
(
∑K

k=0 L̃XWk

)
(11)

where H ∈ Ru×1, X ∈ Rv×1, and Wk ∈ Rv×u denote the hidden layer, input feature vector,
and the trainable parameter matrix extracted in operation; ReLU is the activation function;
and L̃ ∈ Rv×v is the rescaled Laplace matrix, L̃ = 2

λmax
L− IN , where L = IN − D−

1
2 AD−

1
2

is the symmetric normalized Laplacian graph, and λmax is its maximum eigenvalue. IN is
the identity matrix, A is the adjacency matrix, and D is the degree matrix. The propagation
law can be considered as a spectral filter in the Fourier domain. Each road section inputs
three GCNs and three feature matrices generated by the corresponding road graph. The
propagation law of the 1-order GCN layer defined in this paper is:

Hl+1 = ReLU
(

D̃− 1
2

X̃D̃− 1
2

HlW l
)

(12)

where X̃ ∈ Rv×v is the adjacency matrix determined by the topological graph, D̃ is the
diagonal degree matrix of X̃, Hl is the characteristic matrix of layer L, and W l is the
parameter matrix of layer L.

4.3. Cross-Attention Mechanism Fusion

Although multiple graphs can be used as input, how to effectively integrate temporal
and spatial information simultaneously is a new problem in the current stage of research.
In literature [42], spatio-temporal features are fused by the matrix multiplication of a spatio-
temporal fusion graph. The literature [43] directly merges all the features by summing and
integrating the generated topological graphs. These methods cannot support the fusion
of multiple temporal and multiple spatial information simultaneously. To effectively fuse
the correlations between the adjacency graph, connected graph, and regional similarity
graph on multi-layer temporal slices, we propose a dynamic fusion method called the
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cross-attention fusion mechanism. The principle of cross-attention fusion is to use the
most basic attention mechanism to capture information, simultaneously, from the temporal
and spatial perspective in an interlaced manner. Figure 6 shows a general model of the
cross-attention mechanism.
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4.3.1. Cross Attention

We take the multi-layer temporal input (Xt−τ ∈ Xinput (Equation (5)) in parallel
through the multi-graph feature set θ (Equation (5)), to get the hidden spatio-temporal
representations H.

H =
{

Hθ
t−τ ∈ Ru

∣∣∣θ ∈ (XW, XP, Xs)τ ∈ Th

}
(13)

Here, Hθ
t−τ ∈ H, its superscript θ carries spatial correlation information and the

subscript t-τ carries temporal correlation information. To feature the fusion of spatio-
temporal information, we use a spatio-temporal attention mechanism in two steps, as
shown in Figure 7.
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4.3.2. Feature Fusion

In the first step, we divide the spatio-temporal representation Hθ
t−τ into two expres-

sion forms: (1) according to the same temporal but different spatial locations into HXw
t ,

H
Xp
t , and HXs

t ; (2) according to the same spatial but different temporal information into
Hθ

t−r, Hθ
t−d, andHθ

t−w . The former represents the spatial features of heterogeneous multi-
graphs and is called spatial attention; the latter represents multi-level temporal features and
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is called temporal attention. Therefore, the spatial attention (Equation (14)) and temporal
attention (Equation (15)) of the first step are as follows:

α1s = so f tmax
(

Hθ
t−τW1s

H + GθW1s
G + b1s

)
H(S)

t−τ =
N
∑
θ
α1s
θ ·H

θ
t−τ , H(S)

t−τ ∈ H(S)
(14)


α1t = so f tmax

(
Hθ

t−τW1t
H + Mt−τW1t

M + b1t
)

H(T)
θ =

Th
∑
τ
α1t

τ ·Hθ
t−τ , H(T)

θ ∈ H(T)
(15)

where W1t
H,W1t

M,W1s
H , and W1s

G denotes trainable parameters; b1t and b1s denotes deviation

vectors; and α1t
τ and α1s

θ denotes normalized weight scalars, namely
Th
∑
τ
α1t

τ =
N
∑
θ
α1s
θ = 1,

where α1t
τ ∈ (0, 1) and α1s

θ ∈ (0, 1). Mt−τ represents the density of the time slice ht−τ, and
Gθ denotes a succinct vector of the graph θ.

The second step, as shown in Figure 8, due to the first step being in a set of temporal at-
tention, produces a spatial set that incorporates temporal information
H(T) =

{
H(T)

θ

∣∣∣θ ∈ (Xw, XP, Xs)
}

. Spatial attention generates a temporal set that contains

spatial information H(S) =
{

H(S)
t−τ

∣∣∣τ ∈ Th

}
; we then use cross-attention to perform tempo-

ral attention on the newly fused spatial set H(S) and perform spatial attention on the newly
fused temporal set H(T) to get a new set of equations.
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α2t = so f tmax

(
H(S)

t−τW2t
H + Mt−τW2t

M + b2t
)

H(ST) =
Th
∑
τ
α2t

τ ·H
(S)
t−τ

(16)


α2s = so f tmax

(
H(T)

θ W2s
H + GθW2s

G + b2s
)

H(TS) =
N
∑
θ
α2s
θ ·H

(T)
θ

(17)

The notation here is similar to the formula notation in the first step. The principle
of cross-attention mechanism fusion is to simultaneously represent multi-layer temporal
correlation and heterogeneous spatial correlation as two views, and then perform cross-
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fusion. Equations (14) and (16) compress H(S) into H(ST) based on spatial continuity, and
Equations (15) and (17) compress H(T) into H(TS) based on temporal continuity. Finally,
input the two compressed matrices into a fully connected layer to get the final prediction
result, which is:

X̂t = tanh
(

H(TS)WTS + H(ST)WST + b
)

(18)

Among them, WTS and WST are trainable parameters, and b is biased.

5. Experiment
5.1. Datasets Description

We downloaded two California traffic data sets, PeMS04 and PeMS08, on the official
website (https://pems.dot.ca.gov/) (accessed on 23 May 2021) and GitHub. Traffic data is
collected in real-time every 30 s and aggregated every 5 min [41]. Three traffic measure-
ments were considered in our experiment: total flow, average speed, and distance. We use
1 h (Tp = 12) as the historical time window to predict the traffic conditions in the future,
15/30/45/60 min.

PeMSD4 contains 3848 detectors on 29 roads. We selected 307 sensors and collected
data for two months, from 1 January to 28 February 2018.

PeMSD8 contains 1979 detectors on 8 roads. We selected 170 sensors and collected
data for two months, from 1 July to 31 August 2016. Table 1 summarizes some critical
information data of these two data sets.

Table 1. Dataset description and statistics.

Datasets #Nodes #Edges #Time Steps #Missing Ratio

PEMS04 307 340 16992 3.182%
PEMS08 170 295 17856 0.696%

5.2. Settings

Use Pytorch to implement our model. First, set the input time parameter to Tr = Tp × 3,
Td = Tp × 1, and Tw = Tp × 1, where Tp = 12 is the prediction window size. We captured
three types of positional relationships, so N = 3. In the multi-graph convolution stage, the
graph and temporal convolution kernel size are set to 64 and 3. In the training process, we
selected the best batch_size = 32, learn_rate = 1×10−3, and epoch = 100. All experiments
were compiled and tested on a Windows System (CPU: Intel(R) Core(TM) i5-5200U CPU
@2.20 Ghz) using Xshell and WinSCP to connect to the server (GTX 1080 Ti).

5.3. Baselines

We compare CAFMGCN with the following eight baselines:

- SVR: Support Vector Regression uses a linear support vector machine for regression
tasks [6].

- GRU: Gated Recurrent Unit network, a special kind of RNN [10].
- DCRNN: Diffusion Convolution Recurrent Neural Network is a data-driven predic-

tion framework with a diffusion recurrent neural network to capture spatio-temporal
dependence [19].

- STGCN: Spatio-Temporal Graph Convolutional Networks is an integrative frame-
work of graph convolution network and convolutional sequence modeling layer for
modeling spatial and temporal dependencies [20].

- Graph WaveNet: a framework that combines the adaptive adjacency matrix into graph
convolution with 1D dilated convolution [21].

- ASTGCN: Attention Based Spatial-Temporal Graph Convolutional Networks intro-
duce spatial and temporal attention mechanisms into a model. Only the most recent
components of the modeling period are used to maintain a fair comparison [28].

https://pems.dot.ca.gov/
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- STSGCN: Spatial-Temporal Synchronous Graph Convolutional Networks, which
utilizes localized spatio-temporal subgraph module to independently model the local
correlation [29].

- STFGNN: Spatial-Temporal Fusion Graph Neural Networks could effectively fuse
various spatio-temporal graphs in different periods, in parallel. We compare the
fusion methods of this model [42].

5.4. Evaluation Metric

Three evaluations are used as evaluation: mean absolute error (MAE), mean funda-
mental percentage error (MAPE), and root mean square error (RMSE).

5.5. Experiment Results Analysis

This paper compares eight baseline models with our model. It can be seen, from
Figure 9, that our CAFMGCN model has achieved the best results compared with other
models on the three evaluation indicators of MAE, MAPE, and RMSE. The traditional time
series methods SVR and GRU only consider temporal correlation, ignoring the importance
of spatial correlation, so the prediction effect is not ideal. Based on deep learning meth-
ods, DCRNN, STGCN, Graph WaveNet, ASTGCN, STSGCN, STFGNN, and our model,
CAFMGCN, graph structure and graph topology is introduce to capture spatial informa-
tion and achieve better prediction results. Graph WaveNet has the worst prediction effect
because it only uses 1D CNN and cannot stack its spatio-temporal layers and expand the
receptive field. DCRNN, STGCN, and ASTGCN, respectively, use two modules to deal
with temporal and spatial correlations, ignoring the heterogeneity of spatio-temporal data,
and the prediction effect is average. However, STSGCN and STFGNN simultaneously
process temporal and spatial correlation, with higher MAE, MAPE, and RMSE, but ignore
temporal diversity. Our CAFMGCN considers the diverse temporal and heterogeneous spa-
tial correlations and, simultaneously, captures spatio-temporal correlations and performs
multi-graph fusion. The experimental results show that CAFMGCN can better capture the
heterogeneous spatio-temporal correlation of the road network, thus achieving the best
prediction effect.
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Figure 10 shows the traffic flow forecasts for the next 15, 30, 45, and 60 min of the
two data sets. Taking GRU, STGCN, and ASTGCN as the baseline, it can be seen from the
figure that, as time increases, each model’s prediction shows an upward trend, but the
prediction error of our model rises more slowly than the other three models, because we
consider the long-distance time correlation and combine the features of multi-graphs to
reduce the model’s prediction error. Effective forecasting results have been achieved in the
short term, and are very helpful for long-term forecasting.
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5.6. Ablation Experiment

To verify the multi-graph heterogeneity and cross-attention mechanism, we conducted
ablation research on PEMS04 as an example. For heterogeneity, we use a single variable
method to reduce the heterogeneity of multiple graphs with a single chart based on three
single graph experiments, namely, adjacency graph, connectivity graph, and regional
similarity graph. For cross-attention, we use the matrix multiplication method mentioned
in literature [31], to represent multi-graph fusion and GRU model for experiments.

As shown in Figure 11, the prediction effect of single-graph ASTGCN-w, ASTGCN-
p, ASTGCN-s, and the multi-graph non-attention mechanism is not as good as that of
CAFMGCN, indicating that the effectiveness of the multi-graph and the fusion effect of the
cross-attention mechanism are better.
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6. Conclusions and Outlook

In this paper, we propose a new model CAFMGCN for traffic flow prediction. The
model uses multi-graph GCN to process multi-level temporal correlation, encode the
non-Euclidean correlation between heterogeneous spatial roads, and fuse MGCN with
cross-attention to capture hidden temporal and spatial information. The combination of a
multi-graph convolution module and cross-attention mechanism can capture the dynamic
spatio-temporal characteristics of traffic data simultaneously. The experiments based on
two real traffic data sets prove that our model CAFMGCN can achieve better performance.

The following two issues are mainly considered in the future: weather factors have
always been one of the challenges faced by traffic flow forecasting. The environment
dramatically influences travel, which needs to be observed based on specific weather
data. Furthermore, significant events, such as festivals, holidays, and concerts, are often
encountered in life, which can easily cause traffic jams. Solving these problems will further
improve the transportation system.
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