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Overview

The last decade has seen a tremendous increase in the number 
of publications and laboratories that study the bacteria of the 
genus Francisella. One important advancement has been to 
understand that some species of this organism can form biofilms. 
The molecular basis of biofilm formation has been studied, 
and may include pili, two-component systems and extracellular 
carbohydrates and capsule. Further work has explored the 
contribution of chitinases, small molecules such as c-di-
GMP, and outer-membrane vesicles to Francisella spp. biofilm 
formation. New knowledge of the role of co-dwelling eukaryotes 
such as amoebae, and the interaction of biofilm with mosquito 
larvae has also been demonstrated, suggesting interactions 
with potential vectors of transmission. Francisella spp. biofilm 
formation in aquatic habitats is likely a key mechanism of 
environmental survival and persistence. However, the significance 

and importance of this finding especially with respect to the 
microbial physiology and virulence of this organism has not yet 
been fully developed. Areas of possible future research include 
the potential role for biofilm in the infection of mammalian hosts 
by Francisella spp. and a potential regulation of virulence. This 
review will summarize the current knowledge of Francisella spp. 
biofilms, discuss its potential role in Francisella virulence and 
environmental persistence and suggest areas for future research.

Introduction

Tularemia, or “rabbit fever”, is caused by the gram-negative 
bacterium Francisella tularensis. Tularemia is considered a 
“zoonotic” disease; that is, it normally affects animal populations, 
but can infect humans with direct contact. Infrequent but regularly 
occurring cases of human and domestic animal tularemia occur 
worldwide. Tularemia was a prevalent public health issue in the 
early 1900s, with around 2000 cases per year in US. Hunters 
contracted the disease when they cut themselves skinning animals 
such as rabbits or squirrels.1 Today, only around 200 cases per 
year occur in the US, and these cases are usually tick-borne. Ticks 
employ a “transstadial mechanism” of transmission, in which the 
tick acquires the bacterium as a larva or nymph and retains it 
into adulthood, when it can infect humans. CDC categorizes the 
virulent form of F. tularensis as a Tier 1 threat agent due to its 
high infectivity when inhaled by the human lung.1 The historical 
development of Francisella spp. as a biological weapon merits 
detailed understanding of its microbial physiology.

The diversity of Francisella species is continuously increasing, 
especially with the use of genomic analysis of environmental 
samples,2 and thus the taxonomy has changed in the last 
decades. The genus Francisella historically contains two species 
(F. tularensis and F. philomiragia), with four subspecies of 
F. tularensis: F. tularensis tularensis (Type A), F. tularensis holarctica 
(Type B), F. tularensis mediasiatica, and F. tularensis novicida. 
Recently, the nomenclature of the genus Francisella has undergone 
significant revision, reducing F. novicida to a subspecies,2-4 and 
the suggested promotion of a F. philomiragia subspecies to a new 
species, F. noatunensis.5 Bacteria of F. tularensis ssp. are facultative 
pathogens of land and water-associated mammals, especially 
rodents and lagamorphs.6 There is a strong association of 
environmental species such as F. tularensis holarctica, F. novicida, 
and F. philomiragia with waterways.7-11 The causative agent of 
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our understanding of the virulence and pathogenesis 
of Francisella spp. has significantly advanced in recent years, 
including a new understanding that this organism can 
form biofilms. what is known so far about Francisella spp. 
biofilms is summarized here and future research questions 
are suggested. The molecular basis of biofilm production 
has begun to be studied, especially the role of extracellular 
carbohydrates and capsule, quorum sensing and two-
component signaling systems. Further work has explored 
the contribution of amoebae, pili, outer-membrane vesicles, 
chitinases, and small molecules such as c-di-GMp to Francisella 
spp. biofilm formation. a role for Francisella spp. biofilm in 
feeding mosquito larvae has been suggested. as no strong 
role in virulence has been found yet, Francisella spp. biofilm 
formation is most likely a key mechanism for environmental 
survival and persistence. The significance and importance of 
Francisella spp.’s biofilm phenotype as a critical aspect of its 
microbial physiology is being developed. areas for further 
studies include the potential role of Francisella spp. biofilms 
in the infection of mammalian hosts and virulence regulation.
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franciselloisis (an infection of fish), F. noatunensis is found in 
marine environments.5,12 For the purpose of this review, we will 
focus on F. tularensis species and subspecies, with some mention 
of F. philomiragia, where there is relevant biofilm information. 
Not enough is known about the biofilm capability of the other 
newly described strains and species of Francisella at this time.

The European form of tularemia (Holarctic, Type B) is less 
virulent overall for humans than the American form (Type A), 
but is more common in humans. Despite this lower virulence, 
in northern Europe, especially Sweden, there are thousands 
of human cases each year in active years. Natural zoonotic 
epidemics of tularemia occur during the summer months in 
animal populations throughout Europe, the US, and Russia. 
These epidemics are commonly spread by arthropod vectors 
such as mosquitoes, biting flies, and ticks.1 The Swedish human 
tularemia cases are suspected to be mosquito-borne, and are 
closely associated with the afflicted patients having been 
near water and having mosquito bites.13 Between epidemics, 
F. tularensis strains (Type A in the US and Type B in Europe) 
can also be routinely found in the environment by molecular 
sequencing of environmental samples (e.g., water and mud).14,15

Francisella Forms Biofilms

It is unclear how Francisella spp. survive in the natural 
environment given that laboratory growth of this nutritionally 
fastidious organism requires supplementation with bio-available 
iron, cysteine, and up to 12 other nutrients.16,17 Our working 
hypothesis is that the ability of Francisella spp. to form biofilms 
allows it to achieve environmental persistence, similar to the 
closely related pathogen Legionella (L.) pneumophila.18

Biofilms are defined as naturally formed adherent communities 
of bacteria within an extracellular polymeric matrix.19-21 The 
formation of a biofilm community allows for bacteria to resist 
shear stress in a flowing stream or water system and to increase 
the capture of nutrients. Additionally, bacteria embedded within 
biofilms show increased resistance to antibiotics and disinfectants 
due to slow diffusion rate and decreased metabolic activity.22,23 
Biofilm formation has also been shown to increase the survival 
of microorganisms by enhancing resistance to antimicrobials, 
oxidative radicals, and phagocytosis by amoeba or immune 
cells.23,24 Biofilm production has been demonstrated in many 
infectious bacteria such as Escherichia coli and Pseudomonas but 
has not been demonstrated in Francisella until recently.25-28

The current literature contains examples of in vitro biofilm 
formation in the following species and subspecies: F. novicida has 
been shown to form biofilms on a variety of surfaces, including 
plastics, crab shells, and glass.25,27,28 F. tularensis holarctica LVS 
has been shown to form biofilms on plastic 96-well plates.26,29 
F. tularensis tularensis SchuS4 has also been shown to form biofilms 
in vitro, more than LVS and less than F. novicida.29 F. philomiragia 
has been shown to form biofilms on plastic 96-well plates and on 
glass slides and forms biofilms preferentially at 25 °C than 37 °C, 
perhaps reflecting the environmental niche of this species.30

The genus Francisella has several characteristics which 
have been hypothesized could aid in biofilm formation.25 

First, Francisella genomes all encode proteins necessary for the 
production of type IV pili.31,32 In Pseudomonas, Type IV pili have 
been shown to be important for attachment to surfaces during 
biofilm formation.33 Second, it produces a variety of extracellular 
carbohydrates, including a capsule, recently identified as an 
O-antigen capsule,34 and at least in F. tularensis subsp. tularensis a 
capsule-like complex (CLC).35 These extracellular carbohydrates 
potentially could contribute to the extracellular polymeric 
substance (EPS) that forms the biofilm. Third, there is an 
unlinked two-component system in F. tularensis and F. novicida 
that is quite similar to QseBC which has been shown in E. coli 
to aid in biofilm formation through quorum sensing.36 Finally, 
there are some species-specific factors that may contribute to 
biofilm formation in those species uniquely, such as the c-di-
GMP system in F. novicida. These factors will each be addressed 
individually below.

Molecular Mechanisms of Biofilm Formation

Bacteria (both pathogenic and environmental) form water-
associated biofilms that promote their survival under challenging 
environmental conditions including nutrient limitation, 
protozoan predation, and other stressors. Well studied examples 
include L. pneumophila,18,37 Helicobacter pylori,38 Pseudomonas 
aeruginosa,39 and Vibrio cholera.21 Detailed studies of the 
regulation of biofilm formation in these organisms have shown 
that they use multiple molecular mechanisms to integrate varied 
environmental signals (such as nutrient limitation) and signals 
from other bacteria (such as quorum sensing molecules) to 
regulate their physiological status between biofilm vs. planktonic 
phenotype. Studies of Francisella biofilm formation at the 
molecular level have primarily been done in F. novicida to date, 
and are more limited in scope due to the newness of this area of 
research.

Type IV pili in Francisella biofilm production
Type IV pili are composed of pilin proteins, such as those 

encoded by the F. novicida pilE genes. The role of Type IV pili 
in Francisella spp. has been the subject of recent study,31,32,40-49 
and current results suggest that they may play a role in adhesion 
to host or surfaces. Francisella spp. encode multiple pilin genes. 
The pilE4 gene is important for fiber formation in F. tularensis, 
F. novicida, and LVS.32,42,50,51 Transposon mutants in F. novicida 
pilE4 were not defective for F. novicida biofilm production,25 
and thus it was concluded that pilE4 is not essential to biofilm 
production in F. novicida. This result was surprising because of the 
association of Type IV pili with biofilms in other organisms.51,52 
Type IV pili are required in Pseudomonas for full formation of 
biofilm due to their role in initial attachment and colonization 
of surfaces.33 The role of Type IV pili in Francisella spp. bacterial 
physiology is still not fully understood,24,31,45 and the role for 
Type IV pili in Francisella spp. biofilm production has not been 
definitively addressed.

Extracellular carbohydrates in Francisella spp. biofilm 
production

Francisella spp. have long been reported to be capsulated,53 
and this capsule has been thought to play a critical role in 
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virulence.54 The precise composition and 
even the existence of this capsule has been 
a matter of investigation for many years. 
Francisella spp. do not exhibit a tightly-
associated capsule, as is seen for example on 
Staphylococcus aureus in the presence of India 
Ink.55 Extracellular carbohydrate, perhaps in 
capsule, may also represent a potential vaccine 
target for tularemia.56 Recent studies have 
suggested that there is an O-antigen capsule 
for F. tularensis and F. holarctic LVS, which 
appears to be important for virulence.57-59 In 
addition, a capsule-like complex (CLC) in 
F. tularensis has recently been reported.35 This 
may be the same as the HMW carbohydrate 
that was recently identified as separate 
from the F. tularensis O-antigen capsule.60 
It is not yet known whether CLC, HMW 
carbohydrate and/or capsule have not yet 
been demonstrated in F. novicida. Antibody 
responses to Francisella spp. carbohydrates are 
frequently reported.61 Vaccination has been 
attempted with “capsule” material.54,62 More 
recently, renewed vaccine efforts that focus 
the immune response to the carbohydrate and 
polysaccharides suggest that this may be an effective approach.62,63

Capsule-like complex, CLC
Recently, it has been demonstrated that F. tularensis produces 

a capsule-like complex (CLC), an electron-dense surface 
material resembling a capsule, consisting of glucose, galactose 
and mannose.35 CLC is shown to be distinct from LPS and 
contributes to the virulence of F. tularensis. A glycoprotein was 
also identified with a MW of 220 kDa. The authors also suggest a 
polysaccharide locus at FTL_1432-1421 that may be responsible 
for the production of CLC.35 The role of CLC in biofilm matrix 
or biofilm formation is not yet determined.

HMW carbohydrates
F. tularensis grown in BHI pH 6.8 produces a high-molecular 

weight (HMW) carbohydrate,60,64 which is independent of 
O-antigen, as shown by its presence in a wbtA mutant (although 
they may also produce large polymers of O-antigen).60 HMW 
carbohydrate is defined as the material >225 kDa, and is found in 
wild-type (WT), as well as wbtA mutants, which clearly separates 
it from O-antigen. In these studies, additional material between 
100 and 225 kDa is seen in WT bacteria that is not considered 
the HMW carbohydrate, and is likely the O-antigen capsule. 
This HMW carbohydrate material can interfere with antibody 
binding to OMP components, complement deposition and 
pro-inflammatory cytokine production in mouse macrophages, 
suggesting its capsule-like nature.60 A schematic of the proposed 
organization of the multiple layers of capsule in F. tularensis is 
shown below in Figure 1.

What is the role of capsule and carbohydrate-like-complex 
in biofilm? This question has been challenging to answer 
clearly. Recently, it was shown that the surface carbohydrates 
of F. tularensis are altered upon growth in the host, leading to 

a so-called host-adapted phenotype.60 This phenotype can also 
be induced by growth in BHI pH 6.8,60,64 leading to HMW 
carbohydrate production. This host-adapted phenotype and the 
altered bacterial cell surface may also change the ability of the 
bacteria to induce Th1-immunity and to cause disease when 
delivered via aerosol to animal model hosts.65 The capsule of 
Francisella spp. can be altered upon culturing,53,66 suggesting 
that this phenotype of encapsulation may be modulated by 
environmental conditions.

Capsule genes
Despite an unclear biochemical function, mutants in capB 

in F. tularensis tularensis or F. tularensis LVS are significantly 
attenuated, including defective intracellular replication, 
suggesting that this gene product may play some yet undefined 
role in virulence.62,67-72 In addition, according to Bergey’s manual, 
F. novicida is reported to be uncapsulated (although this may 
vary with growth conditions).53,73

The role of CapBC genes as part of a potential capsule 
biosynthesis locus was investigated in biofilm formation in 
F. novicida.74 Transposon mutants in the capC gene (FTN_1200, 
capsule biosynthesis protein), and the capB gene (FTN_1201, 
capsule biosynthesis protein) were tested for their biofilm 
forming activity. F. novicida capC mutants exhibited both a 
~20% inhibition of biofilm production compared with the wild-
type strain but were also ~20% inhibited in their growth, likely 
accounting for the apparent biofilm defect. The capB mutants 
had no significant effect on biofilm production, yet were equally 
inhibited in their in vitro growth (~20%). The small extent of the 
F. novicida biofilm defect with the capBC mutants suggests that 
the extracellular polysaccharide components of the biofilm may 
be comprised of components other than those produced by the 

Figure 1. Schematic of proposed capsule organization in Francisella spp. The clc/HMw carbo-
hydrate is shown as an outer layer for illustration purposes. This layer contains carbohydrates 
>225 kDa. The next layer shown is the o-ag capsule. This o-ag capsule may be intermixed with 
KDo-linked o-ag (i.e., lpS), thus attaching it to the outer membrane, shown in purple. The 
clc/HMw layer and the o-ag layers may not be actually separate as shown here, but rather are 
likely to be intermixed. The peptidoglycan layer is shown as a blue dotted line, and then the 
light purple inner membrane of this gram-negative organism. (adapted from Zarrella et al., 
201160).
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capBC genes. From these studies, it was concluded that capB 
and capC are not essential to biofilm production in F. novicida. 
F. tularensis SchuS4 Cap locus is FTT_0807- FTT_0805 (FtLVS 
Cap locus is FTL_1414–FTL_1416). The genes FTN_1199–
1201 are annotated as genes related to the Bacillus anthracis 
capBCADE locus, proteins which produce a poly-d-glutamic acid 
capsule in that organism.75 However, there is no evidence of a 
poly-d-glutamic acid capsule in Francisella, so the physiological 
role of the Cap locus in Francisella is unclear. Nonetheless, the 
frequent identification of the cap locus in Francisella virulence 

studies suggests that the Cap locus genes are playing some 
significant role in virulence.68,71,72

F. novicida biofilm formation is dependent on the two-
component sensor kinase QseC and an orphan response 
regulator

Quorum sensing systems contribute to bacterial biofilm 
formation by controlling a phenotypic change in response to 
sufficient numbers of bacteria. In the case of P. aeruginosa, a LasI/
LasR, RhlI/RhlR quorum sensing system is required to switch 
from free-living bacteria to sessile bacteria and biofilm formation 
within the lungs of cystic fibrosis patients.51,76 Quorum sensing 
typically involves a “quorum-sensing signal production and 
sensing system” in gram-negative bacteria such as LuxI/LuxR, 
LasI/LasR, RhlI/RhlR, or auto-inducer peptide (AIP) sensing 
two-component regulatory systems in gram-positive bacteria. 
However, it has been shown that the gram-negative pathogen 
E. coli 0157:H7 actually also uses a two-component quorum 
sensing system QseBC for motility and biofilm formation.36,77 
Francisella spp. do not encode any genes that resemble known 
“quorum-sensing signal production and sensing system”, such as 
LuxI/LuxR or the other well-known systems. For example, the 
luxI/luxR system recognizes acyl-homoserine lactones, and there 
are no obvious acyl homoserine lactone synthase genes or luxI/
luxR genes in Francisella so these are not likely to be involved in 
Francisella quorum sensing.

Sensor kinase
An E. coli QseC homolog which is involved in a two-

component system quorum sensing system has been identified in 
Francisella,78 and these genes are also commonly found in other 
biofilm-forming bacteria. The QseBC two-component system in 
E. coli regulates flagellar motility, toxin expression, and a type 
iii secretion system (T3SS)79 but, as Francisella does not produce 
flagella, toxins, or a T3SS, the downstream systems regulated 
by the homolog of QseBC are unknown for Francisella. It was 
found that transposon mutations in the putative qseC mutants 
had a significant effect on biofilm formation. F. tularensis 
subsp. tularensis Schu S4 encodes the gene for QseC which is 
99% identical to the F. novicida gene FTN_1617. Its cognate 
response regulator QseB has not been formally identified as 
there are no transcriptionally linked response regulators to the 
QseC sensor kinase in a co-transcribed operon. Thus, QseC 
is an orphan sensor kinase with no linked response regulator. 
There are only three sensor kinases and three response regulators 
found among Francisella species, as shown in Figure 2 and 
Table 1. Thus, Francisella spp have very limited two-component 
systems compared to other gamma-proteobacteria, and multiple 
dysfunctional genes (due to pseudogenes).

Response regulators
In F. novicida there are a total of 3 response-regulators, two 

of which are transcriptionally linked to sensor kinases (Fig. 2; 
Table 1). FTN_1465 has been identified as an orphan two-
component response regulator in F. novicida that has high 
sequence similarity to QseB in E. coli by BLAST and is also 
present in the various other strains of Francisella.28 The putative 
qseB gene had a significant effect on biofilm production, without 
affecting growth.25 This gene has previously been suggested to 

Figure  2. Sensor kinases and response regulators in Francisella spe-
cies. (A) There are two complete and one incomplete TcS in F. novicida. 
FTN1452/FTN1453 and kdpDE form the two complete TcS, while FTN1465 
(pmrA/qseB) and qseC are orphans members. (B) There are no complete 
TcS in F. tularensis Schu S4. Both the sensor kinase FTT1544 and response 
regulator FTT1735c (kdpE) appear to be pseudogenes. as in F. novicida 
and lvS, pmrA/qseB and qseC appear to be orphan TcS components. 
(C) There are no complete TcS in F. holarctica lvS. other than the addi-
tional mutation of FTN0568, the TcS make up of lvS is the same as found 
in F. tularensis Schu S4. This results in one undisrupted response regula-
tor FTL0552 (pmrA/qseB), and two sensor kinase encoding genes kdpD 
and qseC.



www.landesbioscience.com virulence 837

be called pmrA by Mohapatra et al. as it has a similar sequence, 
but not function, to Salmonella enterica serovar Typhimurium 
pmrA.80 The PmrA–PmrB system functions in many gram-
negative organisms to modify LPS, but Mohapatra and coworkers 
found no defect in LPS production using a FTN_1465 mutant.80 
In vitro biofilm formation of F. novicida is dependent upon this 
orphan response regulator,25 suggesting that it may be acting as 
a biofilm mediating response-regulator. Therefore, the orphan 
response regulator FTN_1465 is potentially acting as a QseB-
type molecule. Clearly, FTN_1465 pmrA/qseB is critical to the 
regulation of gene expression of many genes, including the genes 
of the Francisella pathogenicity island, and its activity is required 
for intramacrophage replication and mouse virulence.81 However, 
QseC has not been demonstrated to be the sensor kinase 
responsible for phosphorylation and activation of FTN_1465 
pmrA/qseB. The sensor kinases appear to be more promiscuous 
in their partnering than just phosphorylating their “cognate” 
response regulators. For example, Bell and Gunn have shown 
that the KdpD sensor kinase can phosphorylate the QseB/PmrA 
orphan response regulator in the absence of its “own” response 
regulator KdpE in F. novicida;81 and in enterohemorrhagic 
E. coli, QseC can phosphorylate KdpE, a non-cognate response-
regulator.82 The nature of quorum sensing and the signaling 
molecules required to carry it out in Francisella remain undefined; 
however, clearly there are as yet unidentified extracullular signals 
that are being integrated by the bacterium to regulate its function 
through these two-component systems.

Other factors that may contribute to Francisella biofilm 
production

Outer membrane vesicles (OMVs) may contribute to biofilm 
formation by contributing to biofilm matrix

OMVs are subcellular vesicles which many gram-negative 
bacteria bleb off during all stages of growth, especially during 
times of stress.83 OMVs have many functions, including a role 
in biofilm formation, enzyme delivery, and antibiotic resistance. 
Importantly, they have also been associated with pathogenesis.83 
Francisella has been shown to produce OMVs, and that these 
OMVs are effective as an intranasal vaccine against subsequent 
intranasal infection.83 In addition, preparations of native outer 
membrane proteins of F. tularensis were found to be protective 
as an intraperitoneal vaccine against Type A challenge84 further 
supporting the idea that preparations of multiple membrane 
proteins presented in a native (membranous) context may provide 
protection as a Francisella vaccine. Schooling and Beveridge 
suggested that OMVs associated with biofilms may be capable 
of binding antibiotics, thus further affording organisms in 
biofilms insulation against antimicrobial agents.85 Beveridge also 
hypothesized that OMVs released from one species in a biofilm 
may also be able to lyse neighboring bacteria, thus releasing 

nutrients for growth and eDNA for the biofilm matrix.86 
Furthermore, Schooling and Beveridge also suggested that 
OMVs themselves may form part of the biofilm matrix.85 The 
novel discovery that Francisella forms OMVs83 and biofilms28 
and the work of Beveridge and Schooling85,86 suggest a possible 
role for Francisella OMVs within Francisella biofilms.

Role of chitinase in Francisella biofilm
There are no reports of chitin production in Francisella species; 

however, chitinase is required for providing a carbon source under 
nutrient-limiting conditions.87 Chitinases are glycosyl hydrolases 
that hydrolyze chitin, a linear β-1,4-linked polymer of N-acetyl-
d-glucosamine (GlcNAc) that is the second most abundant 
polysaccharide in nature after cellulose. Chitinases are found in 
a wide range of species from all kingdom of life,88,89 including 
those that are known not to synthesize chitin, such as bacteria, 
viruses, and higher plants as well as mammals. A recent study 
has demonstrated that F. novicida forms biofilms on biotic chitin 
surfaces such as crab shells in a chitinase-dependent manner, also 
demonstrating a role for the Sec secretion system and several Sec-
dependent secreted proteins, some of which are predicted to bind 
and/or degrade chitin.29

In Francisella, four putative chitinases (ChiA, ChiB, ChiC, 
and ChiD) were identified and characterized in vitro using 
biochemical studies coupled with bioinformatic analyses.90 
Enzymatic analyses revealed these different chitinases possess 
dissimilar chitinase activities against substrates for endo- and 
exo-chitinase. F. novicida has two functional chitinases ChiA 
and ChiB, although it has all four genes of chitinases in the 
genome.90 Biofilm formation of F. novicida on chitin is reported 
to be regulated by two chitinase genes chiA and chiB.29 ChiA 
and ChiB, along with a chitin binding protein CbpA, are known 
to be secreted from Francisella.44 Margolis et al. (2010) showed 
that F. novicida forms biofilms during the colonization of chitin 
surfaces (i.e., crab shells) by using chitin as a sole carbon source. In 
their study, they demonstrated that mutants lacking chiA or chiB 
were attenuated for chitin colonization and biofilm formation in 
the absence of exogenous sugar. This finding was also confirmed 
on abiotic glass surfaces.28 In another study, however, chiA and 
chiB mutants showed no defects in the ability to colonize ticks,91 
which have chitin in their exoskeleton. Microarray analyses 
revealed that c-di-GMP stimulated the transcription of ChiA 
and ChiB,28 which is likely contributing to biofilm formation as 
a result of c-di-GMP treatment. We recently demonstrated that 
chitinase expression is a negative regulator of biofilm production 
in F. novicida (Chung et al., in press), similar to the situation in 
Yersinia.92 However, the underlying mechanisms of precisely how 
chitinases regulate Francisella biofilms are not fully determined, 
especially with regards to the potential substrate of these enzymes. 
Although all Francisella lack the chitin synthesis genes, and so 

Table 1. Francisella two-component systems (role in virulence, if any, is indicated in the references)

Strain RR1 SK1 KdpE (RR) KdpD (SK) QseB/pmrA (RR) QseC (SK)

Ftt SchuS4 FTT1543 FTT1736c71,160 FTT1557c FTT0094c71

Ft lvS FTl0552 FTl1879 FTl1878 FTl1762

F. novicida FTN1452 FTN1453 FTN1714 FTN1715 FTN146581 FTN1617107
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are not predicted to make chitin, chitinases are members of the 
broader glycosyl hydrolase family, and thus could potentially 
cleave other complex EPS substrates than chitin.

ciDiGMP regulates biofilm only in F. novicida
In most bacteria that form biofilm, including the gamma-

proteobacteria and select agent Yersinia pestis,93 cyclic di-GMP 
is a major regulator molecule that stimulates biofilm formation 
and inhibits virulence. However, the situation in Francisella 
is perhaps unique. While F. novicida, F. tularensis LVS, and 
F. philomiragia can all form biofilms, only F. novicida appears 
to regulate biofilm production through the classical c-di-GMP 
pathway.28 The gene cluster for c-di-GMP production appears 
to be F. novicida-specific (FTN_0451 to FTN_0456) and 
these genes are not present in F. tularensis LVS or F. tularensis 
SchuS4 strains. So, while there appears to be a role for c-di-GMP 
in regulating F. novicida biofilm production (perhaps through 
chitinase as described above), this mechanism does not address 
the larger question of how biofilm production is regulated in 
other Francisella species that lack c-di-GMP.28

Antibiofilm host factors
While Francisella is not normally a respiratory pathogen, the 

most severe infections by Francisella species occur via inhalation 
or direct inoculation of the lungs leading to pneumonic 
tularemia.1,94 Antimicrobial peptides represent an ancient host 
defense mechanism for combating infection as part of the 
innate immune response95 to which relatively little bacterial 
resistance has emerged. Antimicrobial peptides are small 
(3–6 kDa) cationic peptides that can exert a direct antimicrobial 
effect on microbes.95 These peptides are produced by almost 
all higher organisms and have specificity toward targeting the 
cellular membranes of microbes without attacking eukaryotic 

membranes.95 Interest in antimicrobial peptides has grown with 
the increasing resistance of bacteria to commonly used antibiotics 
and the potential therapeutic applications of these peptides and 
their synthetic analogs.96

The cathelicidin family is a large and diverse collection of 
cationic antimicrobial peptides found in variety of vertebrate 
hosts.95 In humans, only one cathelicidin (LL-37) has been 
characterized. LL-37 is derived by proteolysis from the 
C-terminal end of the human CAP18 protein (hCAP18).96 
This peptide can be found in the lung and in broncho-alveolar 
lavage fluid.96,97 LL-37 is a 37-residue cationic peptide that forms 
α-helical structures when in association with the bacterial cell 
membrane.95,98 LL-37 has been shown to exert broad-spectrum 
antimicrobial activity against a wide range of gram-positive and 
gram-negative bacteria and protects the host from endotoxic 
shock.96 LL-37 is antimicrobial in the phagolysosomes of immune 
cells and at the sites of inflammation, but it plays a broader role 
in immunomodulation in systemic settings such as the lung96,99 
and has been reported to play a major role in protecting humans 
against naturally occurring respiratory diseases.100 Several groups 
including ours have demonstrated that Francisella directly infects 
the human lung Type II alveolar epithelial cell line A549 in 
vitro101-103 and this infection was found to strongly induce the 
expression of the antimicrobial peptides, including human 
β-defensins 2 (hBD-2), hBD-3, and LL-37, forming part of the 
lungs’ innate immune mechanism to respond to this and other 
inhaled pathogens.101

The capacity of LL-37 to inhibit Francisella biofilm formation 
was recently tested.104 It has been described that the LL-37 
cathelicidin can inhibit the formation of P. aeruginosa biofilms at 
a concentration well below that required to kill or inhibit growth 
in broth microdilution assays.105 While F. novicida growth was 
not inhibited by LL-37 peptide in TSB-C broth even at the 
highest peptide concentration tested (0.24 μg/ml), due to the 
high amount of salt in this bacterial growth media, a significant 
inhibition of Francisella biofilm formation was observed at sub-
antimicrobial peptide concentrations (Fig. 3). The anti-biofilm 
targets of LL-37 in Pseudomonas include the Rhl and Las, quorum 
sensing systems that control biofilm production.105 However, 
these quorum-sensing systems are not present in Francisella, and 
thus the Francisella target of LL-37 remains to be defined.

Biofilm and Virulence

QseC is an orphan sensor kinase with no linked response 
regulator. F. tularensis subsp. tularensis Schu S4 encodes a gene for 
QseC which is 99% identical to the F. novicida gene FTN_1617. 
Its cognate response regulator QseB is likely a pseudogene in 
F. tularensis subsp. tularensis Schu S4, as shown in Figure 2 and 
Table 1. Rasko et al.106 performed an interesting experiment using 
an antagonist of QseC, LED209, which has been shown to block 
autoinducer-3 signaling in E. coli. In an experiment that tests the 
hypothesis that QseC may be important for Francisella virulence, 
they demonstrated that LED209 was able to block F. tularensis 
SchuS4 infection in mice (Fig. 4), suggesting that signaling 
through QseC was critical in some manner for Francisella 

Figure  3. F. novicida biofilm inhibition by ll-37. Biofilm detection on 
polystyrene (pS) 96-well plate at 37 °c (pS 37 °c) after 48 h of growth in 
TSB-c is expressed as the absorbance at 570 nm. Growth is indicated in 
black bars with control set to a 100% and percent biofilm is indicated in 
gray bars with n = 6. This experiment is a representative of three inde-
pendent trials. *indicates P value less than 0.01 compared with control. 
(Figure is from amer et al., 2010,104 used with permission).
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infection.106 In a screen in Drosophila, the F. novicida QseC 
sensor kinase was identified as a virulence factor.107 These are 
some of the first indirect evidence suggesting a role of Francisella 
quorum sensing in virulence, but direct evidence of the role of 
quorum sensing in virulence has yet to be established.

In a survey of virulence screens, no two-component system 
gene (histidine kinase or response regulator) is consistently 
implicated as a virulence factor in Francisella.108-116 KdpD and 
PmrA/QseB are most frequently identified as having a role in 
virulence (Table 1).25,113,117-120

Biofilm and Environmental Persistence

Some species of Francisella are water-associated
The persistence of Francisella spp. in the environment has 

been a topic of great interest with respect to the epidemiology 
of tularemia outbreaks, and the potential for these strains to 
form biofilms. Although Type A tularemia strains (especially 
F. tularensis tularensis Schu S4) are commonly associated with 
dry, arid habitats and may not have a strong connection with 
water (except in Martha’s Vineyard, see below), Type B and the 

other environmental species of Francisella spp. have been closely 
associated with water and water-systems (Fig. 5).121-124 Indeed, 
Francisella spp. DNA has been identified in surface water 
and sediment samples in endemic sites in Sweden,13 even in 
years with little tularemia activity in humans, suggesting that 
environmental persistence (defined as the continued presence 
of Francisella independent of infected vertebrate hosts) may be 
a regular feature of Type B tularemia.15 In support of this fact, 
Francisella spp.-contaminated mud and silt have been found to 
remain infectious for up to 8–10 weeks.7 Additional sources of 
Francisella spp. could come from the carcasses of dead infected 
animals, or from the excreta of immune or sick animals.125-127

In addition, it has been demonstrated that brackish water can 
promote the survival of multiple Francisella species. In particular, 
Type A Francisella tularensis was demonstrated to have increased 
time of survival in brackish water vs. fresh water (although 
brackish water alone does not support proliferation of bacteria), 
and outperformed Type B LVS and F. novicida in this regard.128 
It has been suggested that the persistence of Type A tularemia on 
Martha’s Vineyard may be supported by the multiple brackish 
water ponds that exist there. From the point of view of potential 

Figure 4. leD209 inhibits F. tularensis virulence in vivo and in vitro. Showing only panels (F–I) of the original figure. (F) infection of J774 murine macro-
phages with F. tularensis ScHu S4 in the absence and presence (5 nM) of leD209. (G) QpcR of F. tularensis virulence genes in the absence (gray bars) and 
presence (white bars) of leD209 (5 pM). (H) QpcR measuring expression of qsec in ScHu S4 during growth in vitro and in vivo (spleen, liver, and lungs). 
These data were collected from 5 c3H HeN mice intranasally infected with 30 cFus of ScHu S4. QpcR of qsec was normalized against rpoa. (I) Survival 
plot of mice (c3H HeN) upon oral treatment with leD209 (20 mg/kg) alone, intranasal infection with 30 cFus of ScHu S4, and intranasal infection with 
30 cFus of ScHu S4 plus leD209 (20 mg/kg). *P < 0.01; **P < 0.001; ***P < 0.0001. From Rasko et al.106 with permission.
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biofilm formation, aquatic environments are supportive of 
biofilm formation,21 unlike dry, arid environments. This suggests 
that there could be an amendment to the previously published 
tularemia cycle by Akimana et al.,129 which describes a two-part 
schematic, with a terrestrial (dry) cycle for Type A and an aquatic 
cycle for Type B tularemia. The increasing reports of F. tularensis 
survival in brackish water128,130,131 imply that a third loop in the 
tularemia cycle could be an aquatic cycle for Type A tularemia, 
potentially mediated by brackish water conditions enabling 
biofilm formation in this species (Fig. 5). This suggests interesting 
research questions regarding the ability of F. tularensis to form 
biofilms in situ, potential additional vectors for transmission 
such as protozoans, and whether mosquitoes could transmit Type 
A tularemia under these “aquatic conditions”.

F. tularensis in open water has been characterized as entering 
a viable but not culturable (VBNC) state in which the bacteria 
are not infectious.10,128 However, using molecular methods, 
Francisella species have been detected in many natural water 
samples throughout the Northern Hemisphere,15,132,133 although 
the “culturability” of these samples was not always demonstrated. 
Historically, many older publications regarding the natural 
history of tularemia also included reference to natural water 
sources,7,125,134-136 and water is named as the source of several of the 
well-studied strains, including F. philomiragia and F. novicida.

There is also an emerging group of Francisella species or subspecies 
associated with francisellosis infection in fish, particularly in 

farmed fish. These strains have recently been reclassified from a 
subspecies of F. philomiragia to their own species, F. noatunensis. 
These are completely marine-associated organisms whose known 
hosts include a wide variety of farmed fish across the globe.12 Their 
ability to form biofilms has not yet been studied.

Our hypothesis is that Francisella spp. cannot thrive (i.e., 
replicate) in open water, but is instead found in biofilms or 
harbored inside aquatic eukaryotes such as amoebae within the 
water column. This would be in alignment with the lifestyles 
of many other bacteria.21 As part of this concept, it was further 
hypothesized that Francisella spp. persist in water (seawater, 
brackish, or fresh) within the protection of a biofilm instead 
of in a planktonic state. This biofilm could be the product of 
Francisella bacteria alone or, more likely, a complex, polymicrobial 
mixture that includes Francisella spp. and other organisms, such 
as amoebae.23,25,137,138 As F. tularensis is a Tier 1 bioweapon, it is 
important to understand its ability to form biofilm in the context 
of its persistence mechanisms in the natural environment.138,139 
Biofilms formed within mud, sediment and waterways could 
be one way that Francisella spp. persists in the environment and 
could contribute to outbreaks of this disease in animals and 
humans. Alternatively, in the context of bioremediation after an 
event, understanding that Francisella may be present in biofilms 
(which are inherently more resistant to disinfection) is critical.

F. novicida is associated with water-borne tularemia of 
animals (it was first isolated from water in Utah), and in at least 

Figure 5. The tularemia cycle revisited. The figure illustrates a new adaptation of the tularemia zoonosis cycle from akimana et al., 2011129 illustrating 
the american (Type a) and european (Type B) tularemia cycles and their relationship to animal hosts, human hosts, vectors, and water. in addition to the 
standard Type a~terrestrial (dry) loop, and Type B~aquatic (wet) loop mediated by the appropriate vectors, a third loop has been added representing 
the special case of Type a~brackish water (wet) conditions, such as on Martha’s vineyard.
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two documented cases, it has caused a tularemia-like disease 
in outdoor workers.140-143 Using this species (F. novicida, or 
Francisella tularensis novicida), which is a less virulent strain 
that is widely used as a model organism for the more virulent 
F. tularensis,144 it has been shown that F. novicida (as well as 
F. philomiragia) is able to form biofilms in vitro.

Francisella interaction with single celled eukaryotes
The second part of our hypothesis is that Francisella may 

be harbored inside aquatic eukaryotes such as amoebae within 
the water column. In trying to understand how Francisella 
can survive in the environment, several groups have proposed 
that it finds protection and achieves persistence by infecting 
water-associated eukaryotic hosts such as single-celled protists, 
including Acanthamoeba (A.) castellanii.30,138,145,146 It has recently 
been demonstrated that Francisella species (including live 
vaccine strain [LVS], SchuS4, and F. novicida) can infect the 
water-dwelling amoeba A. castellanii.30,138,145,147,148 Our group 
has recently demonstrated that the environmental organism 
F. philomiragia can also infect A. castellanii amoeba (Fig. 6).30 
Francisella can also survive within another protist Hartmonella 
(H.) vermiformis,149 and an interaction with Tetrahymena (T.) 
pyriformis was also reported.150

In addition, it has been shown that Francisella LVS grown 
in the presence of A. castellanii-conditioned medium has an 
increased overall growth rate, suggesting that the bacteria 
benefited from a close association with the amoebae.30,138,147 For 
other pathogens such as Legionella, the interaction of bacteria 
with amoebae has been demonstrated to promote persistence 
in aquatic systems and increase virulence, i.e., the ability of 
Legionella to invade mammalian host cells.151 Legionella and 
amoebae have been identified together in both artificial and 
naturally occurring biofilms, and this may represent a replication 
niche for Legionella, even within a eukaryotic host.152

In conjunction with our hypothesis that Francisella persists 
in natural water within the protection of a biofilm instead 
of in a planktonic state,28 we wondered if this biofilm could 
be polymicrobial and the product of a complex microbial 
ecology that includes Francisella and other organisms, such as 
amoebae.23,137,138 We recently demonstrated that F. philomiragia 
is capable of growing, surviving, and producing a mixed biofilm 
in the presence of A. castellanii (Fig. 6).25 In the mixed biofilm, 
A. castellanii appears to reside on the outskirts of the biofilm, 
possibly grazing on its edges. It has been suggested that F. tularensis 
biofilms may act as “lures” for attracting environmental amoebae 
and other protists which can then be hosts for further Francisella 
infection.25,153 Thus, when co-cultured with Francisella, amoebas 
are found in the mixed biofilm, and may secrete factors that 
promote biofilm formation.25

This new understanding of the persistence of the Francisella 
organism in aquatic systems potentially through complex-biofilm 
formation and interaction with water-dwelling protists such 
as Acanthamoeba may be important in developing prevention 
strategies for this pathogen.153 This may especially apply in 
northern Europe and Asia, where the environmental conditions 
(aquatic, brackish environments) may favor biofilm formation 
for the Type B Holarctic strains.

Mosquito larvae and Francisella biofilm
It has also been suggested that mosquito larvae may acquire 

Francisella infection by ingesting such protozoa from their aquatic 
habitat or from feeding on the biofilms of Francisella.26,154-156 A 
recent study by Mahajan et al. demonstrated that F. tularensis 

Figure 6. Francisella philomiragia interaction within amoeba (A) Francisella 
philomiragia internalized within amoeba. immunofluorescence micros-
copy is shown with Dic overlay. amoebae were infected with F. philo-
miragia for 6 d. Dic image of amoeba overlaid with red-channel image 
of F. philomiragia (stained with Tetracore anti-Francisella antibody and 
alexaFluor-568 secondary antibody, red). (Figure is from verhoeven 
et  al.30 with permission).(B) Francisella (F.) philomiragia biofilm forma-
tion when grown in the presence of Acanthamoeba castellanii. F. philo-
miragia at a concentration of 1 × 107 was co-incubated with A. castellanii 
at a concentration of 1 × 106 at 25 °c for 48 h in a six-well polystyrene 
plate. (1) Following crystal violet staining, darkly stained amoebae sur-
rounded by bacteria can be observed at the edge of the biofilm but are 
not observed throughout the rest of the biofilm. (2) F. philomiragia in the 
fixed and crystal-violet stained biofilm. (3) F. philomiragia biofilm extra-
cellular matrix. image was taken at 40×. (From verhoeven et al.30 with 
permission).
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LVS can form biofilms in natural water.26 Furthermore, that the 
mosquito larvae of Culex (C.) quinquefasciatus are able to feed on 
both biofilm and planktonic forms of F. tularensis LVS (Fig. 7).26 
These C. quinquefasciatus larvae exhibited defects in growth and 
fertility attributed to feeding on Francisella, so the relevance to 
their “fitness” as vectors is unclear. Additional data has been 
presented for mosquito larvae acquiring infection from water, 
perhaps by the ingestion of predatory protozoa suggesting that 
Francisella–biofilm–protozoan interactions could be important 
for vectors as well as for persistence.15 Unlike Yersinia pestis 
biofilm and fleas, there does not appear to be a phenotype of 
Francisella biofilm increasing the ability of infected vectors such 
as ticks157 to transmit tularemia.

Francisella interaction with other organisms of the marine 
environment

Finally, reports of F. novicida and F. tularensis tularensis 
forming biofilm on crab shells in a chitinase-dependent manner29 
suggests that Francisella can grow on chitin-rich surfaces that 
might be widely found in the natural aquatic environment.158 
In support of this concept, a Russian study demonstrated that 
the addition of shrimp, mollusks, diatoms and zooplankton 

all increased the survival of F. tularensis holarctica in nutrient-
depleted water samples.159

Conclusion

Biofilms may represent a previously unrecognized physiological 
state of Francisella. Understanding the microbial physiology of 
Francisella as being related to biofilm formation may allow the 
testing of new hypotheses, and may lead to the development of 
new prevention strategies for this organism. Overall, the current 
data suggest that biofilms are likely to be a key mechanism of 
environmental persistence in the natural environment for this 
fastidious and delicate organism. A role for Francisella biofilm in 
pathogenesis and infection of the mammalian host should be the 
focus of future studies.

Outstanding Questions

Q1) How is biofilm matrix produced in Francisella? What is 
the precise composition of the biofilm matrix? Is the composition 
of the biofilm different between the species of Francisella?

Q2) How are biofilm and biofilm matrix related to the capsule 
or to high molecular weight carbohydrate/CLC in Francisella?

Q3) What is the role of Type IV pili in Francisella biofilm 
formation?

Q4) What is the quorum sensing system in Francisella?
Q5) Is there an alternate system in “non-novicida” Francisella 

strains that functionally replaces c-di-GMP system found in 
F. novicida?

Q6) Are the bacteria found within mosquito larvae in biofilm 
or planktonic form?

Q7) Is there a role for brackish water in the outbreaks of fully 
virulent Type A tularemia?

Q8) What is the role for biofilm for different Francisella species 
and subspecies in virulence and environmental persistence?
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Figure 7. Culex quinquefasciatus larvae feed on planktonic and biofilm 
F. tularensis lvS. Culex quinquefasciatus feeds on planktonic and biofilm 
F. tularensis lvS resulting gut fluorescence lasting at least 72 h post feed-
ing. (A–C): 24 h post feeding: (A) control; (B) planktonic F. tularensis lvS; 
(C) biofilm F. tularensis lvS; (D–F): 72 h post feeding (D) control; (E) plank-
tonic F. tularensis lvS; (F) biofilm F. tularensis lvS. (Figure from Mahajan et 
al.,26 with permission).
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