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Abstract

To quickly and efficiently recognize abnormal patterns from large-scale time series and

pathological signals in epilepsy, this paper presents here a preliminary RSW&TST frame-

work for Multiple Change-Points (MCPs) detection based on the Random Slide Window

(RSW) and Trigeminal Search Tree (TST) methods. To avoid the remaining local optima,

the proposed framework applies a random strategy for selecting the size of each slide win-

dow from a predefined collection, in terms of data feature and experimental knowledge. For

each data segment to be diagnosed in a current slide window, an optimal path towards a

potential change point is detected by TST methods from the top root to leaf nodes with O

(log3(N)). Then, the resulting MCPs vector is assembled by means of TST-based single CP

detection on data segments within each of the slide windows. In our experiments, the

RSW&TST framework was tested by using large-scale synthetic time series, and then its

performance was evaluated by comparing it with existing binary search tree (BST), Kolmo-

gorov-Smirnov (KS)-statistics, and T-test under the fixed slide window (FSW) approach, as

well as the integrated method of wild binary segmentation and CUSUM test (WBS&CU-

SUM). The simulation results indicate that our RSW&TST is both more efficient and effec-

tive, with a higher hit rate, shorter computing time, and lower missed, error and redundancy

rates. When the proposed RSW&TST framework is executed for MCPs detection on patho-

logical ECG (electrocardiogram)/EEG (electroencephalogram) recordings of people in epi-

leptic states, the abnormal patterns are roughly recognized in terms of the number and

position of the resultant MCPs. Furthermore, the severity of epilepsy is roughly analyzed

based on the strength and period of signal fluctuations among multiple change points in the

stage of a sudden epileptic attack. The purpose of our RSW&TST framework is to provide

an encouraging platform for abnormal pattern recognition through MCPs detection on large-

scale time series quickly and efficiently.
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Introduction

Generally, epilepsy is a common chronic neurological disorder, and all epilepsies involve epi-

sodic abnormal electrical activity in the brain. Epilepsies, also called seizures, may be associ-

ated with cardiac arrhythmias, prominent arterial oxygen desaturations, and sudden death [1].

The authors reported that postictal heart rate oscillations are marked by the appearance of

transient but prominent heart rate oscillations in a group of patients with partial epilepsy (PE).

This finding may be a marker of neuroautonomic instability, and may imply some association

between perturbations of the heart rate and partial seizures [1,2]. The cardiac state is generally

reflected by the shape of the ECG waveform, and heart rate. Abrupt changes in heart rate can

be informative and may be used as an extra clinical sign for predicting sudden epileptic attacks.

In addition, sleep-related hyper-motor epilepsy (SHE), formerly known as nocturnal frontal

lobe epilepsy (NFLE), is a focal epilepsy characterized by the occurrence of abrupt and typically

sleep related seizures with motor patterns of variable complexity and duration [3,4]. The iden-

tification of recurrent, transient perturbations of pathological signals in brain activity during

sleep, so called cyclic alternating patterns (CAP), is of significant interest as they have been

linked to multiple pathologies [3,5].

Pathological signals can be recorded and processed by using present signal processing tech-

niques, such as time series analysis [6], fast Fourier transform (FFT) [7], power spectral density

(PSD) [8], empirical mode decomposition (EMD) [9,10] wavelet analysis [11] etc. However,

the enormous volume of data usually makes the study tedious and time-consuming for these

traditional methodologies. Abnormal patterns or change points in the signals can indicate that

important events have occurred, or that a system has changed in critical ways [12,13]. Change

point detection has been widely studied and has been applied to help medical research, for

example, through the prediction of onset of illness or increasing illness severity, gene expres-

sion detection, and to other fields (eg. climate science) [14–20].

Sliding window strategies are very useful tools for multiple change points (MCPs) detection

in signal processing, and have been investigated in various fields [21–26]. However, a key fac-

tor of these strategies is how to select a suitable size of sliding window, because it needs to cap-

ture the necessary characteristics of a signal to achieve correct detection/classification [24]. If

the window size is too small, the task of pattern recognition will be split into multiple consecu-

tive windows without achieving high efficiency. On the other hand, if the window size is too

large, it might contain multiple patterns and decrease the recognition performance [22,24]. In

addition, wild binary segmentation (WBS) method is a popular technique for multiple change-

point detection [27,28]. By using the CUSUM-like test in the stochastic manner, WBS avoid

the problem of span or window selection by drawing intervals of different lengths [27,28].

However, WBS might encounter a problem that the regular and rhythmic data fluctuations in

the entire datasets might be redundantly selected, even the actual target change points (tCPs)

might be missed or discarded, especially when the criterion of candidate change point is

unsuitable.

In this paper a novel RSW&TST framework for MCPs detection is presented based on ran-

dom slide window (RSW) and trigeminal search tree (TST) methods [18,20,29]. With the

RSW approach, a series of slide windows in random sizes is selected according to the data fea-

tures and experimental knowledge. The TST method is used to detect a series of single change

points from each of the slide windows and to create a vector of MCPs. Based on synthetic time

series, our RSW&TST method was evaluated by comparing it to existing FSW and WBS&CU-

SUM, as well as BST, KS and T methods [15,18,20,23,30], in terms of computing time, and the

values of hit, missed, error, and redundancy, rates. In real experiments on pathological record-

ings in epilepsy, our RSW&TST was applied to not only recognize the abnormal patterns in
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terms of the number and position of the resultant MCPs, but also roughly estimate the severity

of the epilepsy in accordance with the strength and period of signal fluctuations among MCPs

vector during a sudden epileptic attack.

Backgrounds

Definition of MCPs

Suppose a time-series signal X = (X1,. . .,Xi,. . .,XN) can be observed as a trajectory of a multiple

data distribution process, in which the segment Xi is defined by [31–33]:

Xi ¼ fiðtÞ þ εi; ð1Þ

where t2 {ti-1+1,. . ., ti}, 0< i< = M, and fi2{f1,. . .,fM} is a deterministic and piece-wise func-

tion of one-dimensional signals with MCPs (satisfying fi6¼fi+1, and i = 1, . . ., M-1 for insuring

that changes occur), and M2{1, 2,. . ., n} is the number of data segment regimes and therefore

M-1 is the number of abrupt changes, 0 = t0 < t1< ���< ti<���< tM = n. The number M-1 and

locations η1,. . ., ηM-1 of MCPs in the process are supposed to be unknown. The sequence

(εi)i2N is assumed to be random white noise and such that E(εi) is exactly or approximately

zero. In the simplest case (εi)i2N is modeled as i.i.d., but can also follow more complex time

series distributions [33].

Wild binary segmentation (WBS)

Initially, the wild binary segmentation (WBS) method randomly draws a number of vectors

(Xs, Xs+1,. . .,Xe) from the entire data sample (X1, X2,. . .,XT), where s and e are integers such

that 1� s< e� T, and then compute the CUSUM-like test on each subsample [27]. The

whole dataset is split into two sub segments, if and once a change-point is detected typically

via CUSUM-like procedure [27]. Then, the WBS choose the largest one over the entire collec-

tion of statistical tests, and take it to be the first change-point candidate to be tested against a

certain threshold. If it is considered to be significant, the same procedure is then repeated

recursively to the left and to the right.

By using the CUSUM test in the stochastic manner, WBS avoids the problem of span or

window selection by drawing intervals of different lengths [27,28]. However, WBS probablely

encounters an issue as the entire dataset contains the regular and rhythmic data fluctuations. It

seems reasonable that the largest maximiser from the entire collection of CUSUM-like tests is

taken to be the first change-point candidate against a certain threshold, but the rest part satis-

fied with the candidate criterion might be redundantly selected, even the acutal target change

points (tCPs) might be missed or discarded in the process of MCPs detection, especially when

the threshold for candidate change point in the collection of CUSUM test is too low or too

high.

TST-based single CP detection

In the RSW approach, as shown in Fig 1, we consider a diagnosed time series signal X0 =
(Xs,. . .,Xi,. . .,Xe) is divided into multiple data segments accordingly by random slide windows.

As for an observed time series segment Xi ¼ fXi
a; . . . ;Xi

c; . . . ;Xi
bg in each slide window Wi,

we apply the TST method for a potential change point detection from Wi in our RSW frame-

work [22,29]. In this TST-base single CP detection method, as shown in Fig 2, the trigeminal

search trees TSTcA/TSTcD are first constructed by adding virtual middle branches into exist-

ing binary trees [18,20]. Then, the search criteria for multi-channel detection are executed to

find an optimal path towards a potential change point from the top root to the bottom leaf
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levels in the TSTcA/TSTcD respectively. Finally, a resultant change point is obtained from Xi

in the current Wi after logNwi search steps, where Nwi is the length of Xi.

TSTs construction. If the length Nwi of Xi is k times divisible by 2, then Xi can be gener-

ally decomposed into an average signal vector Ak and a set of detail signal vectors D = {D1,

D2,. . .,Dk}, and then represented by a mapping Hk in terms of the k-level Haar Wavelet Trans-

form (HWT) as follows:

Xi
Hk
!ðAkjDkjDk� 1j . . . jD2jD1Þ; ð2Þ

where 1�k�Lk = log2Nwi, and Nwi = |b−a| = |Wei−Wsi|. In terms of Multi-Resolution Analy-

sis (MRA) [34,35], in HWT, the average vector Ak and the set of detail vectors D = {Dk, Dk-

1,. . .,D2, D1} can be conceptualized as a projection of time series X to the different scaling vec-

tors Vk and a series of wavelet basis vectors W = {Wk, Wk−1,. . .,W2, W1}. The vectors Ak and

Fig 1. The scheme of the RSW approach for MCPs detection on time series sample X.

https://doi.org/10.1371/journal.pone.0260110.g001

Fig 2. The scheme of TSTcA/TSTcD construction by adding the virtual middle branches cAk,j:M/cDk,j:M into the existing

binary trees in each of non-leaf levels.

https://doi.org/10.1371/journal.pone.0260110.g002
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Dk can be expressed as follows:

Ak ¼ ðX � VkÞVk ¼
XLj

j¼1
ðX � vkj Þv

k
j ¼

XLj

j¼1
ðcAk;jÞv

k
j ; ð3Þ

Dk ¼ ðX �WkÞWk ¼
XLj

j¼1
ðX � wk

j Þw
k
j ¼

XLj

j¼1
ðcDk;jÞw

k
j ; ð4Þ

where vkj is the jth level signal of scaling vector Vk, and wk
j is the jth level signal of wavelet basis

vector Wk; jvkj j ¼ jw
k
j j ¼ N; Lj = N/2k, and k = 1,2,. . .,log2Nwi. The coefficient vectors in the

average signal set A = {Ak|0�k�Lk} and the detail signal set D = {Dk|0�k�Lk} can be further

presented by the following two matrices McA and McD:

McA ¼

A0

A1

� � �

Ak

� � �

ALk

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

¼

cA0;1 � � � � � � � � � � � � cA0;N

cA1;1 � � � � � � � � � cA1;N=2

. . . � � � � � � � � �

cAk;1 � � � cAk;m

. . . � � �

cALk;1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

; ð5Þ

McD ¼

D0

D1

� � �

Dk

. . .

DLk

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

¼

cD0;1 . . . . . . . . . . . . cD0;N

cD1;1 . . . . . . . . . cD1;N=2

. . . . . . . . . . . .

cDk;1 . . . cDk;n

. . . . . .

cDLk;1

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

; ð6Þ

where 1�j�Lj, 1�k�Lk, and A0 ¼ D0 ¼ Xi ¼ fXi
a; . . . ;Xi

c; . . . ;Xi
bg. Based on both McA and

McD, as shown in Fig 2, the TSTcA and TSTcD are constructed by adding the virtual middle

branches at each non-leaf level in the existing TcA and TcD. Therefore, the time series segment

Xi can be divided into three overlapped parts of SL ¼ fXi
a; . . . ;Xi

cg, SM ¼ fX
i
aM; . . . ;Xi

bMg, and

SR ¼ fXi
cþ1
; . . . ;Xi

bg.

If a current non-leaf node cAk,j/cDk,j is selected in both TSTcA/TSTcD, the related variables

are denoted by the following formulas:

cAk;j:L ¼ cAk� 1;2j� 1 ¼
1

ð
ffiffiffi
2
p
Þ

cAk� 2;4j� 3 þ cAk� 2;4j� 2

� �
; ð7Þ

cAk;j:R ¼ cAk� 1;2j ¼
1

ð
ffiffiffi
2
p
Þ

cAk� 2;4j� 1 þ cAk� 2;4j

� �
; ð8Þ

cAk;j:M ¼
1

ð
ffiffiffi
2
p
Þ

cAk� 2;4j� 2 þ cAk� 2;4j� 1

� �
; ð9Þ

cDk;j:L ¼ cDk� 1;2j� 1 ¼ cDk� 1;ð4j� 3;4j� 2Þ ¼
1

ð
ffiffiffi
2
p
Þ

cAk� 2;4j� 3 � cAk� 1;4j� 2

� �
; ð10Þ
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cDk;j:R ¼ cDk� 1;2j ¼ cDk� 1;ð4j� 1;4jÞ ¼
1

ð
ffiffiffi
2
p
Þ

cAk� 2;4j� 1 � cAk� 1;4j

� �
; ð11Þ

cDk;j:M ¼
1

ð
ffiffiffi
2
p
Þ

cAk� 2;4j� 2 � cAk� 1;4j� 1

� �
; ð12Þ

cAk;j ¼
1

ð
ffiffiffi
2
p
Þ
k

Xb

n¼a
Xi

n

� �
; ð13Þ

cDk;j ¼
1

ð
ffiffiffi
2
p
Þ
k ðð
Xc

l¼a
Xi

l �
Xb

r¼cþ1
Xi

rÞÞ

¼
1

ð
ffiffiffi
2
p
Þ

1

ð
ffiffiffi
2
p
Þ
k� 1

Xc

l¼a
Xi

l �
Xb

r¼cþ1
Xi

r

� �
 !

¼
1

ð
ffiffiffi
2
p
Þ

cAk� 1;2j� 1 � cAk� 1;2j

� �
; ð14Þ

where 2�k�Lk and 1�j�Lj; a = 2k(j−1)+1, b = 2k�j, and c = 2k(j−1)+2(k−1). The implementa-

tion of the TSTcA/TSTcD construction is described in Algorithm 1 in detail.

Trigeminal-branches search strategies. To detect a potential change point from a time

series segment in each of the slide windows quickly and efficiently, three search criteria are

introduced on the basis of data features within existing TSTcA/TSTcD at different non-leaf

levels.

TSTcD-based search criterion. Definition 2.1: Suppose the time series segment Xi ¼

fXi
a; . . . ;Xi

c; . . . ;Xi
bg in a current slide window Wi is selected from the whole observed sample

X = {X1,. . .,XN}. Then the variance fluctuation (VF) within Xi is defined by:

VFmn Xi
c

� �
¼ sup

c2Z;a<c<b
j

1

m

Xc

l¼a
Xi

l �
1

n

Xb

r¼cþ1
Xi

rj; ð15Þ

where 1�a<b�N, a�l�c, c+1�r�b, m = c−a+1, and n = b−c. If VFmnðXi
cÞ > C1ðaÞ holds,

then an abrupt change occurs at the time point Xi
c between two adjacent data segments Xi

L ¼

fXi
a; . . . ;Xi

cg and Xi
R ¼ fX

i
cþ1
; . . . ;Xi

bg in Xi, and C1(α)2R represents a threshold of the vari-

ance fluctuation between Xi
L and Xi

R which obey an identical distribution in Xi. On the other

hand, if VFmnðXi
cÞ � C1ðaÞ holds, then no abrupt change occurs in the current segment Xi.

Definition 2.2: Given a piece of a time series segment Xi in the slide window Wi, suppose a

sub-tree cDk,j is selected from the trigeminal search tree TSTcD at non-leaf node levels, three

variance fluctuations VFk,j:L, VFk,j:R, and VFk,j:M are formulated in accordance with the sub-
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branches cDk,j:L, cDk,j:R and cDk,j:M as follows:

VFk;j:L ¼
1

2k� 2

XaM

l¼a

Xi
l �

Xc

r¼aMþ1

Xi
r

 !�
�
�
�
�

�
�
�
�
�

¼ ð
1
ffiffiffi
2
p Þ

k� 3 1

ð
ffiffiffi
2
p
Þ
k� 1
ð
XaM

l¼a

Xi
l �

Xc

r¼aMþ1

Xi
rÞ

�
�
�
�
�

�
�
�
�
�

¼
1
ffiffiffi
2
p Þ

k� 3
jcDk� 1;2j� 1j ¼

1
ffiffiffi
2
p Þ

k� 3
jcDk;j:Lj; ð16Þ

��

VFk;j:R ¼
1

2k� 2

XbM

l¼cþ1

Xi
l �

Xb

r¼bMþ1

Xi
r

 !�
�
�
�
�

�
�
�
�
�

¼
1
ffiffiffi
2
p Þ

k� 3 1

ð
ffiffiffi
2
p
Þ
k� 1

XbM

l¼cþ1

Xi
l �

Xb

r¼bMþ1

Xi
r

 !�
�
�
�
�

�
�
�
�
�

 

¼ ð
1
ffiffiffi
2
p Þ

k� 3
jcDk� 1;2jj ¼ ð

1
ffiffiffi
2
p Þ

k� 3
jcDk;j:Rj; ð17Þ

VFk;j:M ¼
1

2k� 2

Xc

l¼aMþ1

Xi
l �

XbM

r¼cþ1

Xi
r

 !�
�
�
�
�

�
�
�
�
�

¼ ð
1
ffiffiffi
2
p Þ

k� 3 1

ð
ffiffiffi
2
p
Þ
k� 1

Xc

l¼aMþ1

Xi
l �

XbM

r¼cþ1

Xi
r

 !�
�
�
�
�

�
�
�
�
�

¼ ð
1
ffiffiffi
2
p Þ

k� 3
jcDk;j:Mj; ð18Þ

where 1�j�N/2k, m = n = 2k−2, and 2�k�log2N; a = 2k(j−1)+1, b = 2k�j, and c = 2k(j−1)+2k−1;

aM = 2k−1(2j−2)+2k−2, bM = 2k−1(2j−1)+2k−2.

Criterion 2.1: Given three measurements VFk,j:L, VFk,j:R, and VFk,j:M in definition 2.2, if

max(VFk,j:L, VFk,j:R, VFk,j:M)>C1(α) and 2�k�log2 N hold, then the sub-branch with the maxi-

mal VF value is selected from cDk,j;L, cDk,j;R, or cDk,j;M in the TSTcD, and two others are

discarded.

Proof 2.1: Suppose a target CP Xi
c is contained in an observed segment

Xi ¼ fXi
a; . . . ;Xi

c; . . . ;Xi
bg. Then, in terms of Definition 2.1, there exists a bigger VF value

between two adjacent segments before and after the target Xi
c, than that of any other parts with-

out Xi
c. As for a current non-leaf node cDk,j with trigeminal branches cDk,j:L, cDk,j:R and cDk,j:M

in the TSTcD, in terms of the definition 2.2, one reliable explanation for Criterion 2.1 can be

associated with the reason that the one with the maximal VF value in all sub-branches cDk,j:L,

cDk,j:R and cDk,j:M has a higher probability of containing the target CP than that of two others.

Therefore, it is reasonable to select the sub-branch with the maximal VF value as the current

search path and discard the others.
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TSTcA-based search criterion. Definition 2.3: Suppose a piece of data segment Xi ¼

fXi
a; . . . ;Xi

c; . . . ;Xi
bg in a current slide window Wi is selected to be diagnosed from the whole

time series sample X = {X1,. . .,XN}, then the statistic fluctuation (SF) is defined as follows:

SFmn Xi
c

� �
¼ sup

c2Z;a<c<b
ð

mn
mþ n

Þ
1
2jFm Xi

c

� �
� Gn Xi

c

� �
j

¼ sup
c2Z;a<c<b

ð
mn

mþ n
Þ

1
2j

1

m

Xc

l¼a
IðXi

l � Xi
cÞg �

1

n

Xb

r¼cþ1
IðXi

r � Xi
cÞgj; ð19Þ

where 1�a<b�N, a�l�c, c+1�r�b, m = c−a+1, and n = b−c. Fm and Gn stand for the empiri-

cal cumulative distribution function (e.c.d.f) of two adjacent data segments Xi
L ¼ fX

i
a; . . . ;Xi

cg

and Xi
R ¼ fX

i
cþ1
; . . . ;Xi

bg respectively, and I is an indicator function. Suppose SFmnðXi
cÞ >

C2ðbÞ holds, there exists an abrupt change Xi
c within Xi, where C2(β)2R is a threshold of the SF

value between Xi
L and Xi

R that obey an identical distribution. On the other hand, if SFmnðXi
cÞ �

C2ðbÞ holds, then no abrupt change exists in the current segment Xi.

Definition 2.4: Consider the other TSTcA constructed from the same data segment Xi in

Wi. Suppose a sub-tree cAk,j is selected from one of the non-leaf nodes in TSTcA, then the

related variables Xi
k;j:L;X

i
k;j:R and Xi

k;j:M are introduced, and three statistic fluctuations SFk,j:L, SFk,

j:R, and SFk,j:M are presented according to the three sub-branches cAk,j:L, cAk,j:R and cAk,j:M as

follows:

Xi
k;j:L ¼

1

2k� 1

Xc

l¼a
Xi

l

� �
¼ ð

1
ffiffiffi
2
p Þ

k� 1cAk;j:L ¼ ð
1
ffiffiffi
2
p Þ

k� 1cAk� 1;2j� 1; ð20Þ

Xi
k;j:R ¼

1

2k� 1

Xb

r¼cþ1
Xi

r

� �
¼ ð

1
ffiffiffi
2
p Þ

k� 1cAk;j:R ¼ ð
1
ffiffiffi
2
p Þ

k� 1cAk� 1;2j; ð21Þ

Xi
k;j:M ¼

1

2k� 1

XbM

m¼aMþ1
Xi

m

� �
¼ ð

1
ffiffiffi
2
p Þ

k� 1cAk;j:M ¼ ð
1
ffiffiffi
2
p Þ

k
ðcAk� 2;4j� 2 þ cAk� 2;4j� 1Þ; ð22Þ

SFk;j:L ¼ SFmn Xi
k;j:L

� �
¼ ð

mn
mþ n

Þ
1
2jf

1

m

XaM

l¼a
IðXi

l � Xi
k;j:LÞ �

1

n

Xc

r¼aMþ1
IðXi

r � Xi
k;j:LÞgj; ð23Þ

SFk;j:R ¼ SFmn Xi
k;j:R

� �

¼ ð
mn

mþ n
Þ

1
2jf

1

m

XbM

l¼cþ1
IðXi

l � Xi
k;j:RÞ �

1

n

Xb

r¼bMþ1
IðXi

r � Xi
k;j:RÞgj; ð24Þ

SFk;j:M ¼ SFmn Xi
k;j:M

� �

¼ ð
mn

mþ n
Þ

1
2jf

1

m

Xc

l¼aMþ1
IðXi

l � Xi
k;j:MÞ �

1

n

XbM

r¼cþ1
IðXi

r � Xi
k;j:MÞgj; ð25Þ

where a = 2k(j−1)+1, b = 2k�j, and c = 2k(j−1)+2k−1; aM = 2k−1(2j−2)+2k−2, bM = 2k−1(2j−1)

+2k−2, m = n = 2k−2, 1�j�N/2k, and 2�k�log2 N.

Criterion 2.2: Consider the three variables SFk,j:L, SFk,j:R, and SFk,j:M in Definition 2.3. If

max(SFk,j:L, SFk,j:R, SFk,j:M)>C2(α) and 2�k�log2 N hold, then the sub-branch with the maxi-

mal SF value is selected from cAk,j:L, cAk,j:R, and cAk,j:M in the TSTcA, and the others are

omitted.
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Proof 2.2: Suppose a change point Xi
c exists in an observed segment

Xi ¼ fXi
a; . . . ;Xi

c; . . . ;Xi
bg. Then, in terms of Definition 2.3, the SF value between two adjacent

segments containing Xi
c will be bigger than that of any part without Xi

c. On the other hand,

according to Definition 2.4, Criterion 2.2 reliably shows that the part with the maximal SF

value in all sub-branches cAk,j:L, cAk,j:R, and cAk,j:M has a higher probability of including the

target CP than the other parts. As a result, it is best to choose the sub-branch with the maximal

SF value as the current search path, and dismiss the others.

Leaf-node search criterion. To find a target CP from the bottom leaf nodes in the TSTcA/

TSTcD, another search criterion is introduced by using the revised KS statistics.

Definition 2.5: Given a sub-tree cAk,j/cDk,j selected from TSTcA/TSTcD in the last non-

leaf level, where k = 1, two statistic variables SLðXi
cLÞ and SRðXi

cRÞ are defined in terms of two

leaf nodes cA0,2j−1/cD0,2j−1 and cA0,2j/cD0,2j as follows:

SL Xi
cL

� �
¼ Smn Xi

cL

� �
¼ ð

mn
mþ n

Þ
1
2jFmðX

i
cLÞ � GnðX

i
cLÞj

¼ ð
mn

mþ n
Þ

1
2jf

1

m

X2j� 1

l¼a
IðXi

l � Xi
cLÞ �

1

n

Xb

r¼2j
IðXi

r � Xi
cLÞgj; ð26Þ

SR Xi
cR

� �
¼ Smn Xi

cR

� �
¼ ð

mn
mþ n

Þ
1
2jFmðX

i
cRÞ � GnðX

i
cRÞj

¼ ð
mn

mþ n
Þ

1
2jf

1

m

X2j

l¼a
IðXi

l � Xi
cRÞ �

1

n

Xb

r¼2jþ1
IðXi

r � Xi
cRÞgj; ð27Þ

where Xi
cL ¼ cA0;2j� 1 ¼ cD0;2j� 1 ¼ Xi

2j� 1
, and Xi

cR ¼ cA0;2j ¼ cD0;2j ¼ Xi
2j; FmðXi

cÞ and GnðXi
cÞ

refer to the e.c.d.f of two data segments Xi
L ¼ fX

i
a; . . . ;Xi

cg and Xi
R ¼ fX

i
cþ1
; . . . ;Xi

bg respec-

tively; cL = 2j−1, cR = 2j, m = 2j−1 or 2j, and n = N−m+1.

In addition, it is worth noting that the largest SF between Fm(x) and Gn(x) is achieved either

before or after one of the signal jumps, i.e., an abrupt change, as:

SmnðxÞ ¼ sup
x2R
jGnðxÞ � FmðxÞj ¼ max

1�i�N

jFmðX�i Þ � GnðX�i Þj; before the i
th jump

jFmðXiÞ � GnðXiÞj; after the ith jump
; ð28Þ

(

Definition 2.6: In terms of the formula (34) in Definition 2.5, we then define another two

variables S�L and S�R as,

S�L Xi
cL

� �
¼ Smn Xi�

cL

� �
¼ ð

mn
mþ n

Þ
1=2
jFmðX

i�
cL Þ � GnðX

i�
cL Þj

¼ ð
mn

mþ n
Þ

1
2jf

1

m

X2j� 1

l¼a
IðXi

l < Xi
cLÞ �

1

n

Xb

r¼2j
IðXi

r < Xi
cLÞgj ð29Þ

S�R Xi
cR

� �
¼ Smn Xi�

cR

� �
¼

mn
mþ n

Þ
1=2
jFmðX

i�
cR Þ � GnðX

i�
cR Þj

�

¼ ð
mn

mþ n
Þ

1
2jf

1

m

X2j

l¼a
IðXi

l < Xi
cRÞ �

1

n

Xb

r¼2jþ1
IðXi

r < Xi
cRÞgj ð30Þ
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Thereafter, the maximal values of two statistic measurements in accordance with the leaf

nodes cA0,2j−1/cD0,2j−1 and cA0,2j/cD0,2j can be obtained by S0L ¼ maxðS�L ; SLÞ and

S0R ¼ maxðS�R ; SRÞ, respectively.

Criterion 2.3: For two statistic variables S0L and S0R above, if maxðS0L; S
0
RÞ > C3ðrÞ holds, then

one of the two leaf nodes cA0,2j−1/cD0,2j−1 and cA0,2j/cD0,2j with maxðS0L; S
0
RÞ is chosen from

TSTcA/TSTcD at the last bottom level, and the other one is discarded. Accordingly, one of two

time points Xi
2j� 1

or Xi
2j is selected from the diagnosed segment Xi, and dealt as the final resul-

tant CP. Otherwise, no abrupt change is detected from the current slide window Wi.

Proof 3.3: Providing a change point Xi
c exists in an observed segment

Xi ¼ fXi
a; . . . ;Xi

c; . . . ;Xi
bg, the values of S0L and S0R can be calculated precisely according to Defini-

tion 2.5 and 2.6. Criterion 2.3 ensure that the leaf node with maxðS0L; S
0
RÞ is selected as the resultant

CP, because it has a higher probability of containing the target CP than the other one. Meanwhile,

if maxðS0L; S
0
RÞ > C3ðrÞ holds, then the statistic distance between two adjacent parts Xi

L ¼

fXi
a; . . . ;Xi

cg and Xi
R ¼ fX

i
cþ1
; . . . ;Xi

bg has exceeded the threshold value C3(r) that Xi
L and Xi

R

belong to an identical distribution. Therefore, it can be guaranteed that one of two time points

Xi
2j� 1

or Xi
2j with maxðS0L; S

0
RÞ is chosen from the diagnosed time series segment Xi, and then dealt

as the final resultant CP detected from an observed slide window Wi, and the other one is ignored.

Proposed method

RSW&TST framework

In the proposed RSW&TST framework, the RSW approach is applied for dividing the diag-

nosed time series X0= (Xs,. . .,Xi,. . .,Xe) mentioned above randomly into multiple data seg-

ments. Then, the TST-base method is executed repeatedly to detect the potential single CP

from each slide window. Our RSW&TST framework for MCPs detection is stated as below.

1. First, given a slide window Wi-1 shown in Fig 1, the data segment is denoted as

Xi� 1 ¼ ½Xi� 1
Wsi� 1

; . . . ;Xi� 1
Wei� 1
�, and the total sample length TN_wi−1 from the beginning slide

window W1 to the current one Wi-1 is denoted as,

0 < TN wi� 1 ¼
Xi� 1

k¼1
ðNwkÞ � NX0; ð31Þ

where Nwk = |Wek−Wsk|, 1�k�i−1, and NX0 = length(X0).

2. As for a successive slide window Wi, the candidate set of slide window size Set_Nwi is

defined as below,

Set Nwi ¼ fNwijCd <¼ Nwi <¼ Cug; ð32Þ

where Cd = Td_Nwi and Cu = Tu_Nwi are two predefined constants, and 0<Cd�Cu<NX0,

referring to the lower and upper bounds of Nwi respectively, and 1<i<n, n is the number of

data segments within X0.

3. Next, the rest length of unprocessed part NR from the beginning of Wi to the end of X0 is
presented by,

NR ¼ NX0 � TN wi� 1; ð33Þ

where TN_wi−1 and NX0 are defined as in step (1).

4. Then, the candidate set Set_Nwi can be reformulated as,

Set Nwi ¼ fNwijCd <¼ Nwi <¼ Cu � NRg; if NR � Cu; ð34Þ
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Set Nwi ¼ fNwijCd <¼ Nwi <¼ NR < Cug; if Cd � NR < Cu; ð35Þ

In addition, if 0<NR<Cd holds, then the process of MCPs detection jumps to step (8), and

the RSW approach is ended.

5. Next, the size of slide window Nwi can be selected randomly from Set_Nwi mentioned

above. This step is denoted by,

Nwi ¼ randomðSet NwiÞ; ð36Þ

where random(SetNwi) is a pseudo-function to select a random value of Nwi from Set_Nwi,

and the two endpoints of slide window Wi are readjusted by Wsi = Wei−1+1, and Wei =

Wsi+Nwi, respectively.

6. Thereafter, the data segment within current slide window Wi, Xi ¼ ½Xi
Wsi
; . . . ;Xi

Wei
�, is dis-

posed of by the TST-base approach for a potential CP detection. If there exists a change

point CPi in Wi, then the CPi is assembled into the resultant MCPs vector in order.

7. Similarly, the procedure of TST-based single CP detection is repetitively executed on a

series of data segments in the successive slide windows, until 0<NR<Cd holds. That is, the

TST-based approach for CP detection is stopped when the rest part in the last slide window

is less than the lower bound of the minimal window size Cd.

8. Finally, the vector of resultant MCPs is assembled by all the detected CPs from slide win-

dows, and then the RSW&TST framework for MCPs detection is coming to an end.

Implementations of RSW&TST framework

In the implementations of our RSW&TST framework, the proposed RSW approach aims to

divide the whole time series into a series of data segments by random slide windows. For each

slide window, the procedure of TST-based single CP detection is executed for discerning an

optimal path towards a potential change point from the TSTcD/TSTcA. In this multi-channel

search process, Criterion 2.1 is used for selecting the abnormal part from trigeminal branches

in the TSTcD at each non-leaf level. Criterion 2.2 is used for discerning the abnormal one

from trigeminal branches in the TSTcA at each non-leaf level, if Criterion 2.1 is invalid as the

value of VF measurement is indistinctive to be detected. Criterion 2.3 is executed to estimate a

potential CP from the left and right nodes in the last leaf level. Finally, the vector of resultant

MCPs is assembled orderly by a series of detected CPs from each of slide windows. The related

algorithms including the procedures of TSTs construction, and TST-based single CP detection,

as well as the integrated framework of RSW&TST for MCP detection are described in Algo-

rithms 1–3 in detail.
Algorithm 1: TSTs construction.
Input: a piece of time series segment Xi ¼ fXi

a; . . . ;Xi
c; . . . ;Xi

bg within an
observed slide window Wi.
Initialization: N = length(Xi), K = log2 N, J = N/2K;
j = 1, k = 1;
Declare matrices McA MVcA, McD, and MVcD;
For i = 1 to k do

[cAi, cDi] = Call Haarwavelet(X, i);
McA(i) = cAi; McD(i) = cDi

End for
For i = 2 to k do
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a = k-i+2; j = N/2^(a);
For b = 1 to j do

MVcA(a,b) = 2^(-0.5)(cAa-2,4b-2 +cAa-2,4b-1);
MVcD(a,b) = 2^(-0.5)(cAa-2,4b-2—cAa-2,4b-1);

End for
End for
Construct TSTcA and TSTcD in terms of McA MVcA, McD, and MVcD;
Output TSTcA, and TSTcD;
Algorithm 2: TST-based single CP detection.
Input: two trigeminal search trees TSTcA and TSTcD built by Algorithm
1.
Initialization: C1(α),C2(β),C3(γ), N = length(Xi), K = log2 N, and
J = N/2K, j = 1;
For i = 1 to K do // from the top root to the bottom leaf level;

k = M-i+1;
If (k >2) // dealing with nodes at the non-leaf level;

Calculate variance fluctuations VFk,j:L, VFk,j:R, and VFk,j:M;
VFmax = max(VFk,j:L, VFk,j:R, VFk,j:M);
If (VFmax > C1(α)) Then
{Applying Criterion 2.1 to select the sub-branch with VFmax
as the new current node, and add it into the resultant search

path;}
else if (VFmax < = C1(α)) Then
Calculate statistic fluctuations SFk,j:L, SFk,j:R, and SFk,j:M;
SFmax = max(SFk,j:L, SFk,j:R, SFk,j:M);
If (SFmax > C2(β)) Then

{Applying Criterion 2.2 to select the sub-branch with SFmax as the new
current node, and add it into the resultant search path;}

else if (SFmax < = C2(β)) Then
{no abrupt change is detected and then cease the search procedure;}

End if
End if

else if (k = = 1) // dealing with nodes in the bottom leaf level;
Calculate statistic distances S0L and S0R;
SDmax = max(S0L; S

0
R);

If (SDmax > C3(γ)) Then
{Applying Criterion 2.3 to select the leaf node with SDmax as the
resultant change point, and then add it into the search path;}

else if (SDmax < = C3(γ)) Then
{no abrupt change is detected and then cease the search

procedure;}
End if

End if
End for
Output the resultant change point, and the resultant search path.
Algorithm 3: RSW&TST-based MCPs detection.
Input: An observed time series sample X0 = {Xs, . . ., Xe};
Initialization Cd, Cu, NX0 = length(X0);
i = 1, Wsi = Wei = 0, Nwi = 0, TN_wi = 0, NR = NX0, SetNwi = {}, MCPs =
{};
while (NR > = Cd) do

if (NR > = Cu)
Tu_Nwi = Cu;

else
Tu_Nwi = NR;

end If
Updating SetNwi = {Nwi| Cd < = Nwi < = Cu};
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Nwi = Random(SetNwi); Wsi = Wei +1; Wei = Wsi + Nwi;
TN_wi = TN_wi + Nwi;
NR = NX—TN_wi;
ds = Wsi; de = Wei;
Xi ¼ ½Xi

1
; . . . ;Xi

Nwi� ¼ ½XWsi
; . . . ;XWei

�;
CP_Wi = TST (Xi); // Call TST-based single CP detection in Algorithm 2
MCPs = MCPs+{CP_Wi};// Adding CP_Wi into the resultant MCP vector
i = i+1;
end while
Output the resultant MCPs vector.

Performance evaluation on MCPs detection

To evaluate the proposed RSW&TST performance for MCPs detection, the measurements

including the hit, error, miss, and redundancy rates, as well as the search time are introduced.

For a current slide window Wi to be diagnosed, as shown in Fig 3, some related variables are

defined in terms of the distance between the target CP (tCP) and the estimated CP (eCP) as

follows:

1. Hit area: If a target CP named tCPi is located within a current slide window Wi, the hit area

HAtCpi is formulated by HAtCPi = [tCPi−hdi, tCPi+hdi], where hdi is a distance constant.

2. Absolute distance: For an estimated change point called eCPi detected from Wi, the absolute

distance DtCPi between the resultant eCPi and the actual tCPi is defined by DtCPi = |

eCPi−tCPi|.

3. Hit: Given an absolute distance DtCPi defined above, if DtCPi�hdi holds, then the tCPi is

considered to be hit by eCPi, and marked by Hit(tCPi) = 1.

4. Error: In contrast to a Hit, if DtCPi>hdi holds, then DtCPi is dealt as an error of tCPi, and

recorded by Error(tCPi) = 1.

5. Miss: For the target tCPi in the slide window Wi, if no change point is detected, then the

tCPi is deemed as missed, and recorded by Miss(tCPi) = 1.

6. Redundancy: If a resultant eCPi is falsely detected from Wi when no target CP exists, then

eCPi is identified as a redundancy, and recorded as Redund(eCPi) = 1.

On the basis of these definitions above, the hit, miss, error, and redundancy rates, as well as

search time, are then introduced as follows:

Fig 3. The scheme of single CP detection within a slide window Wi under the RSW approach. The definitions of

hit, error, miss and redundant are introduced according to the distance between the resultant eCP and the actual tCP

respectively.

https://doi.org/10.1371/journal.pone.0260110.g003
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1. Hit rate: This is calculated as Hitrate ¼ Nhit=NtMCPs

� �
� 100%, where NtMCPs is the total num-

ber of the target MCPs named tMCPs, and Nhit ¼
PNtMCPs

i¼1
HitðtCPiÞ, is the number of

tMCPs that are hit by the estimated MCPs called eMCPs without error.

2. Miss rate: This is denoted as Missrate ¼ Nmiss=NtMCPs

� �
� 100%, where

Nmiss ¼
PNtMCPs

i¼1
MissðtCPiÞ, is the number of tMCPs that are missed for all eMCPs.

3. Error rate: This is formulated as Errorrate ¼ Nerror=NtMCPs

� �
� 100%, where

Nerror ¼
PNtMCPs

i¼1
ErrorðtCPiÞ, is the number of tMCPs that exist error with eMCPs.

4. Redundancy rate: This is presented as Redunrate ¼
Nredund=NeMCPs

� �
� 100%, where NeMCPs is

the total number of estimated MCPs, and Nredund ¼
PNeMCPs

i¼1
RedundðeCPiÞ, is the number of

eMCPs that are redundant for all tMCPs.

Obviously, it is true that Hitrate+Missrate++Errorrate = 1 for all of the target MCPs, and

Redunrate ¼ 1 �
Nhit

NeMCPs

� �
� 100% holds for the total eMCPs.

5. Search time. This mainly consists of the TSTs construction and CP detection procedures,

and is denoted by STi = CTi+DTi for a slide window Wi. During the process of MCPs detec-

tion, search time is calculated as the average value of total search time in all slide windows,

that is ST ¼ meanð
PNw

i¼1
STiÞ. Compared to some traditional algorithms of time complexity

O(N2), such as KS, CUSUM or SSA, our TST-based method has a time complexity of about

O(log N), and should theoretically be faster and more efficient.

Results

In our synthetic simulation experiments, we evaluated the proposed RSW&TST framework by

comparing it with the fixed slide window (FSW) approach and the CUSUM-based wild binary

segment (WBS&CUS) method using metrics including hit, miss, error and redundancy rates

respectively. Specifically, our TST method was verified against existing BST, KS and T methods

under different RSW and FSW approaches. When our RSW&TST was applied for MCPs

detection on different pathological signals in the clinical databases on PhysioNet [1,5,31], then

the abnormal patterns were recognized in terms of the data features among resultant MCPs

within abnormal data segments of epilepsy patients.

MCPs detection on synthetic time series

In the synthetic experiments, a synthetic time series sample X = {X1,. . .,Xi,. . .,XN} was assem-

bled by N pieces of data segments, in which Xi ¼ fXi
1
; . . . ;Xi

j ; . . . ;Xi
mg was composed of the

random numbers N(μ, σ) of size m, and the parameters μ and σ were taken randomly from two

sets u = {u1, u2,. . ., uN} and σ = {σ1, σ2,. . ., σN} respectively. Therefore, the total N-1 target

MCPs were assigned in the whole time series X.

In the first, a series of time series samples were synthesized with different numbers of target

MCPs ranging from 30 to 120, then the proposed RSW&TST framework was tested by com-

paring it to BST, KS and T methods, respectively. As shown in Table 1, the results indicate that

our TST has the highest hit-rate and the shortest computing time of all four methods, as well

as relatively smaller miss, error and redundancy rates than most of the others. Specifically, the

trend analyses in Fig 4 indicate that all tracks in the proposed TST keep more satisfactory
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levels, and more stable dynamics without drastic oscillations than the BST, KS and T methods

in response to changeable MCPs, especially when the number of MCPs is much higher or

lower.

The second simulations focus on testing the four methods above in the FSW framework, by

using the sample of the fixed 30 tMCPs with different slide window sizes. Generally, the mean

analyses listed in Table 2 reveal that our TST has relatively better performance due to having

the shortest time and highest hit rate, as well as the lowest values of error and redundancy

rates of all four methods. Unfortunately, all four methods have unsatisfactory and much lower

efficiency than the former simulation results in the RSW approach. Furthermore, as for Nw
ranging from 2^6 to 2^15, the trend analyses in Fig 5 show that our TST has much lower and

more stable tracks of error and redundancy rates, but unstable hit and miss rates with more

drastic fluctuations than the other three methods, especially when the size of Nw is much larger

or smaller.

In addition, based on the synthetic sample with predefined 30 tMCPS under the TST-based

FSW framework, some representative simulations were selected from the former experiments

in Fig 5 above, then the results were plotted under Nw = 2^6, 2^11, and 2^15 respectively. The

results shown in Table 3 and Fig 6 indicate that the TST-based FSW framework has the best

efficiency as Nw takes a suitable value of 2^11, but much more sensitive and worse perfor-

mance as Nw takes other values of 2^6, and 2^15. Therefore, it can be seen that a suitable size

of slide window is very important for the efficiency of MCPs detection methods under the

FSW framework.

Table 1. The mean analyses on MCPs detection under different numbers of MCPs from 2^6 to 2^15 in the RWS framework.

Methods Time Hit-rate Miss-rate Error-rate Redund-rate

RWS&TST 0.0122 0.8930 0.1028 0.0095 0.0107

RWS&BST 0.0153 0.7662 0.1374 0.1089 0.1299

RWS&KS 0.6895 0.6146 0.0799 0.3478 0.3808

RWS&T 0.2831 0.7732 0.2268 0.0031 0.0040

https://doi.org/10.1371/journal.pone.0260110.t001

Fig 4. The results of MCPs detection on a series of synthetic time series in the RSW approach. For different numbers of MCPs from 30 to

120, the trend analyses on (A) Hit-rate, (B) Miss-rate, (C) Error-rate, and (D) Redund-rate, are illustrated by using TST, BST, KS and T

methods respectively.

https://doi.org/10.1371/journal.pone.0260110.g004
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In the final synthetic experiments, the simulations of MCPs detection under different numbers

of tMCPs from 5 to 30 are implemented by using the WBS&CUSUM and the proposed

RSW&TST respectively. Generally, the results in Fig 7 and Table 4 indicate that the WBS&CU-

SUM tends to be unstable and inefficient as the number of tMCPs increases, due to smaller hit

rate, bigger error and redundant rates, as well as longer search time. Especially, as shown in Fig 7

(F), a missed area appears in the last half of the time series sample, and none of the continuous

tMCPs is detected from it. These results suggest that WBS&CUSUM is inefficient for MCPs

detection on these synthetic datasets, probably because this ‘greedy’ method is hard to discern the

transient and drastic data fluctuations from the regular and rhythmical oscillations, especially

when the threshold of candidate change-point is unreasonable in the collection of CUSUM tests.

Meanwhile, the proposed RSW&TST is also executed for MCPs detection on these synthetic

datasets. Compared with the WBS&CUSUM method above, as shown in Fig 8 and Table 5, the

simulations indicate that our RSW&TST relatively keeps more stable and efficient as the num-

ber of tMCPs increases from 5 to 30, with higher hit rate, smaller missed, error and redundant

rates, as well as shorter search time. These results suggest that our RSW&TST can successfully

detect the target MCPs on these synthetic time series. A plausible reason is that it uses a global

threshold of data fluctuation, and estimates the candidate change point orderly from the data

segment in each of random slide windows, without any discarding or eliding operation in the

MCPs detection procedure.

In summary, all these simulation results above verify that our RSW&TST framework has

much better performance than that of both FSW approach and WBS&CUSUM method. It is

an encouraging and efficient method for MCPs detection on large-scale time series.

Table 2. The mean analyses on MCPs detection under different sizes of Nw from 2^6 to 2^15 in the FWS framework.

Methods Time Hit-rate Miss-rate Error-rate Redund-rate

FWS&TST 0.0180 0.6633 0.3133 0.0033 0.0048

FWS&BST 0.0184 0.6233 0.2600 0.0100 0.1491

FWS&KS 0.5075 0.5867 0.2333 0.1933 0.3160

FWS&T 0.4562 0.5200 0.3767 0.1533 0.1527

https://doi.org/10.1371/journal.pone.0260110.t002

Fig 5. The results of MCPs detection by using TST, BST, KS and T methods in the FSW framework. For the synthetic sample

with predefined 30 tMCPs, the trend analyses are illustrated in chart (A) Hit-rate, (B) Miss-rate, (C) Error-rate, and (D) Redund-rate,

under different sizes of Nw from 2^6 to 2^15, respectively.

https://doi.org/10.1371/journal.pone.0260110.g005
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Abnormal pattern recognition on pathological signals

In the real data experiments, the proposed RSW&TST framework was used for MCPs detec-

tion on pathological recordings in the CAP sleep [5] and Post-Ictal Heart Rate Oscillations in

Partial Epilepsy databases on PhysioNet [1,31]. First, it was evaluated by comparing it to the

existing FWS and WBS&CUSUM approaches, as well as the BST, KS and T methods, respec-

tively. Second, in terms of the numbers and positions of the resultant MCPs, the abnormal pat-

terns were roughly recognized in the stage of a sudden epileptic attack. Last, the severity of the

patients having the attack was roughly discerned based on the data features among MCPs

within different abnormal areas.

In the first experiment, one ECG sample was selected from 22 pathological signals in the

nfle10m, which is one of 40 recordings of patients diagnosed with nocturnal frontal lobe epi-

lepsy (NFLE) in the CAP sleep databases [5]. Typically, the diagnosed ECG sample shown in

Fig 9 can be roughly divided into two normal segments near the left and right parts, as well as

an abnormal region within a sudden attack area called Sa1 in the middle. By means of the FSW

framework, our TST was executed for MCPs detection on this ECG segment during a transient

period of an epileptic attack. For different sizes of slide window Nw from 2^10 to 2^14, the

results in Fig 9(A)–9(E) show that the abnormal ECG region within Sa1 can be obviously dis-

cerned as Nw = 2^12, in spite of a redundant CP Rc1 near the normal left part. However, as

the size of Nw is below the threshold of 2^12, the smaller Nw is, the greater the number of

redundant CPs; as a result, the Sa1 is harder to identify. Now, assume the size of Nw is bigger

than 2^12—the bigger Nw is, the more missed CPs there are. Therefore, the Sa1 is harder to

discern. These results above indicate that, as the size of Nw takes a suitable threshold value, our

TST method can roughly distinguish abnormal ECG segment area under a sudden epileptic

Table 3. The analyses on MCPs detection as Nw = 2^6, 2^11, and 2^15 in the TST-based FWS framework.

Value of Nw Hit Miss Error Redund Hit-rate Miss-rate Error-rate Redun-rate

Nw = 2^6 9 21 0 0 0.300 0.700 0.000 0.000

Nw = 2^11 30 0 0 0 1.000 0.000 0.000 0.000

Nw = 2^15 5 25 0 0 0.167 0.833 0.000 0.000

https://doi.org/10.1371/journal.pone.0260110.t003

Fig 6. The selected simulations of MCPs detection as Nw taking a suitable, smaller or larger value in the FSW

framework. Given the similar sample with predefined 30 tMCPs used in Fig 5, the results of MCPs detection by using

TST method are presented as (A) Nw = 2^6, (B) Nw = 2^11 and (C) Nw = 2^15 respectively.

https://doi.org/10.1371/journal.pone.0260110.g006
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attack, but it might be invalid as Nw gets too big or too small. Unfortunately, it is very hard to

determine an optimal threshold value of Nw for the FSW framework, due to the complicated

data features, especially for large-scale pathological bio-signals.

Meanwhile, our RSW&TST framework was tested further by using the same ECG sample

with a sudden epileptic attack as above. Compared with existing BST, KS and T methods, the

results shown in Fig 10 illustrate that our TSTKS can clearly distinguish the target abnormal

segment area ASa1 between the resultant MCPs, without any redundant or missed points.

However, for other three methods, the Asa1 is hard to discern according to the positions of

resultant MCPs, due to the redundant points within the normal areas near the left and/or right

parts, especially the missing beginning and/or ending in the target MCPs. These results suggest

that the proposed RSW&TST framework can successfully distinguish the abnormal ECG seg-

ment under a sudden epilepsy attack, especially it does better without a suitable threshold of

Nw used in the FSW approach.

Moreover, the proposed RSW&TST and existing WBS&CUSUM were executed for MCPs

detection on different ECG signals from sz04m.mat in the Partial Epilepsy databases [1,31].

The ECG segments were selected from the sz04m recording with different start points

Dstart = 3800, 24800, 415000, and 949000, and then the resultant MCPs were detected by

using our RSW&TST and existing WBS&CUSUM, respectively. Generally, as shown in Fig 11,

in terms of different locations of the resultant MCPs, our RSW&TST can efficiently discern

the abnormal areas with drastic fluctuations including AZ-A1, AZ-B1,B2,B3, AZ-C1, and

Fig 7. The simulations of MCPs detection under different numbers of tMCPs in the WBS&CUSUM method. For the synthetic

time series with different tMCPs from 5 to 30, the results of MCPs detection are presented as (A) tMCPs = 5, (B) tMCPs = 10, (C)

tMCPs = 15, (D) tMCPs = 20, (E) tMCPs = 25, and (F) tMCPs = 30, respectively.

https://doi.org/10.1371/journal.pone.0260110.g007

Table 4. The results of MCPs detection as the tMCPs ranged from 5 to 30 in the WBS&CUSUM method.

Number of tMCPs Hit Miss Error Redund Time Hit-rate Miss-rate Error-rate Redund-rate

tMCPs = 5 3 2 1 1 .0032 0.600 0.400 0.200 0.250

tMCPs = 10 7 2 1 1 .0037 0.700 0.200 0.100 0.125

tMCPs = 15 4 3 9 9 .0040 0.267 0.200 0.600 0.692

tMCPs = 20 5 6 9 10 .0042 0.300 0.450 0.850 0.625

tMCPs = 25 8 2 18 23 .0044 0.320 0.080 0.720 0.741
tMCPs = 30 3 13 15 21 .0045 0.100 0.433 0.500 0.875

https://doi.org/10.1371/journal.pone.0260110.t004
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AZ-D1, except of few redundant eCPs in Fig 11(A) and 11(D). However, the WBS&CUSUM

method seems insensitive for the drastic fluctuations, especially some redundant eCPs are

detected from the regular and rhythmic parts in these ECG signals. These results suggest that

our RSW&TST is more efficient to recognize abnormal patterns from pathological ECG

recordings of a patient in Post-Ictal Heart Rate Oscillations.

In the second experiment, our RSW&TST was executed for MPCs detection on pathological

signals including ROC-LOC, SX1-SX2, EMG1-EMG2, Pleth, and Ox status, all of which were

selected from the identical nfle10m of a patient diagnosed with NFLE in the CAP sleep data-

bases [5], and then abnormal patterns were roughly recognized according to the numbers and

positions of resultant MCPs obtained from different pathological signals. For the two EEG sig-

nals shown in Fig 12(A) and 12(B), the ROC-LOC seems more sensitive to a sudden NFLE

attack, because it has the earliest start CP (EScp-a), as well as the continuous and dramatic fluc-

tuations with bigger magnitude. On the other hand, the SX1-SX2 initially shows a slower

response, and then has intermittent and intensive oscillations, as well as the latest end CP

(LEcp-b). In addition, the EMG1-EMG2 in Fig 12(C) presents milder sensitivity due to weaker

fluctuations and smaller swings, but has the largest number of resultant MCPs. For the Pleth in

Fig 12(D), the periodical track is intermittently disrupted by irregular and moderate fluctua-

tions. Fig 12(E) shows that the Ox status only takes several square waves with different widths,

and has the latest start CP (LScp-e) and the earliest end CP (EEcp-e) of all five signals. To

Fig 8. The simulations of MCPs detection under different numbers of tMCPs in the RSW&TST framework. For the synthetic time

series with different tMCPs from 5 to 30, the results of MCPs detection are presented as (A) tMCPs = 5, (B) tMCPs = 10, (C) tMCPs = 15,

(D) tMCPs = 20, (E) tMCPs = 25, and (F) tMCPs = 30, respectively.

https://doi.org/10.1371/journal.pone.0260110.g008

Table 5. The results of MCPs detection as the tMCPs ranged from 5 to 30 in the RSW&TST framework.

Number of tMCPs Hit Miss Error Redund Time Hit-rate Miss-rate Error-rate Redund-rate

tMCPs = 5 5 0 0 0 .0010 1.000 0.000 0.000 0. 000

tMCPs = 10 9 1 0 0 .0014 0.900 0.100 0.000 0.000

tMCPs = 15 14 1 0 0 .0015 0.933 0.067 0.000 0.000

tMCPs = 20 19 1 0 0 .0013 0.950 0.050 0.000 0.000

tMCPs = 25 22 2 1 1 .0013 0.880 0.080 0.040 0.043

tMCPs = 30 27 3 0 0 .0012 0.900 0.100 0.000 0.000

https://doi.org/10.1371/journal.pone.0260110.t005

PLOS ONE A novel RSW&TST framework of MCPs detection for abnormal pattern recognition on large-scale time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0260110 December 22, 2021 19 / 25

https://doi.org/10.1371/journal.pone.0260110.g008
https://doi.org/10.1371/journal.pone.0260110.t005
https://doi.org/10.1371/journal.pone.0260110


Fig 9. The results of MCPs detection on ECG sample from one of 22 pathological signals in the nfle10_edfm by using TST

method in the FSW framework. In accordance with the partitions of ECG sample, the resultant MCPs are illustrated as the size of

Nw is equal to (a) 2^10, (b) 2^11, (c) 2^12, (d) 2^13, and (e) 2^14, respectively.

https://doi.org/10.1371/journal.pone.0260110.g009

Fig 10. The results of MCPs detection on the same ECG sample used in Fig 9 by means of different methods in the RSW

approach. In terms of the partitions of ECG sample, the resultant MCPs are illustrated by using (a) TST, (b) BST, (c) KS, and (d)

T methods, respectively.

https://doi.org/10.1371/journal.pone.0260110.g010
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Fig 11. The results of MCPs detection on different ECG segments from sz04m in the partial epilepsy databases. By using the proposed RSW&TST framework and

the WBS&CUSUM method, the resultant MCPs were detected from ECG signals in the sz04m.mat with the different start points of (A) Dstart = 3800, (B) Dstart = 24800,

(C) Dstart = 415000, and (D) Dstart = 949000, respectively.

https://doi.org/10.1371/journal.pone.0260110.g011

Fig 12. The results of MCPs detection by using our RSW&TST framework on five pathological signals in the nfle10m recordings of a

patient diagnosed with NFLE in the CAP sleep database. During an identical period of NFLE sudden attack, the resultant MCPs are

detected from two EEG signals (a) ROC-LOC, and (b) SX1-SX2, as well as other three signals (c) EMG1-EMG2, (d) Pleth, and (e) Ox Status,

respectively.

https://doi.org/10.1371/journal.pone.0260110.g012
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some extent, these experimental results above probably suggest that two EEG signals

ROC-LOC and SX1-SX2 are most correlated with the NFLE attack, due to the data features of

more drastic fluctuations among different MCPs during the process of NFLE attack. There-

fore, EScp-a in ROC-LOC and LEcp-b in SX1-SX2 can roughly work as two indicators to pre-

dict the start and end during the period of a sudden NFLE attack.

In the last experiment, our RSW&TST was subsequently applied for MCPs detection on

five ECG recordings of different patients in Post-Ictal Heart Rate Oscillations, which were

selected respectively from sz01m to sz05m in Partial Epilepsy databases [1,31]. In our experi-

ments, for the sz01m in Fig 13(A), it appears mainly as a bigger and more intensive abnormal

segment AS-a2 with intermittent and sharp oscillations, which is composed of eleven gathered

change points, and three smaller segments AS-a1, AS-a3 and AS-a4, which are locally scattered

with a single change point. As for another sample sz02m in Fig 13(B), it roughly contains a

whole abnormal area AS-b1 with ten change points in total, and it has more persistent and

intensive fluctuations than those in the sz01m, and the longest lasting time of all five ECG sam-

ples. Compared with the sample sz02m, the sz04m in Fig 13(D) similarly has one abnormal

segment AS-d1 including total five CPs, but it has shorter onset time, as well as more rapid

and dramatic oscillations. For sz03m and sz05m in Fig 13(C) and 13(E) respectively, although

both samples have the same three abnormal parts, sz05m with three abnormal areas is very

similar to the sz01m except for having one more AS-a4, and sz03 looks more mild and has a

slighter fluctuation in response to PE attack.

Fig 13. The results of MCPs detection on five ECG signals from sz01m to sz05m in the partial epilepsy databases. By using our RSW&TST

framework, the resultant MCPs were detected on different ECG samples of patients in Post-Ictal Heart Rate Oscillations in the recordings of (A)

sz01m, (B) sz02m, (C) sz03m, (D) sz04m, and (E) sz05m, respectively.

https://doi.org/10.1371/journal.pone.0260110.g013
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These experimental results suggest that abnormal segments in each of the ECG samples can

be generally distinguished in accordance with the positions and numbers of the detected

MCPs, and the severity of patients in the stage of partial epilepsy attack can be further evalu-

ated in terms of the data features among different abnormal areas. Generally, the greater the

number of MCPs is, the more abnormal zones there are. Specifically, the longer the time and

the stronger the data fluctuations, the greater the severity of the partial epilepsy attack.

Conclusions

In this paper, a novel RSW&TST framework was proposed for MCPs detection on large-scale

time series. In our method, an observed data sample was first divided into a series of data seg-

ments by means of the random slide window strategy, in which the slide window size was sto-

chastically chosen from a predefined collection in terms of data characteristics and

experimental knowledge. Then, the piece of data segment in each slide window is diagnosed

by using a TST-based CP detection procedure, and a potential change point is estimated from

the top root to the bottom leaf nodes by using multi-channel search criteria in the target TST.

Finally, the resultant MCPs were assembled by a series of single change points in each slide

window.

In our synthetic simulations, our RSW&TST was evaluated by comparing it with the exist-

ing FSW and WBS&CUSUM, as well as BST, KS and SSA methods, in terms of computing

time, the hit, missed, error and redundancy rates etc. The experimental results show that our

RSW&TST has better performance because of a higher hit rate, as well as lower rates of com-

puting time, miss, error and redundancy than other BST, KS and T methods in the RSW or

FSW frameworks, as well as the WBS&CUSUM method, respectively. Furthermore, the pro-

posed RSW&TST is applied for MCPs detection on pathological recordings of patients in par-

tial epilepsy, and nocturnal frontal lobe epilepsy (NFLE) respectively. The experimental results

of MCPs detection on different ECG signals also indicate that our RSW&TST has better per-

formance than that of the existing FSW, WBS&CUSUM, and other BST, KS and T methods.

Especailly, for each of the pathological signals, the abnormal parts are distinguished by the

resultant MCPs, and the abnormal patterns are roughly recognized in terms of the numbers

and positions of the resultant MCPs. Thus, the severity of patients in an epileptic state can be

roughly analyzed based on the strength and duration of data fluctuations during the period of

sudden epileptic attacks.

Our RSW&TST framework, although preliminary and simple, provides a novel and effi-

cient method for MCPs detection quickly and efficiently, as well as a very flexible platform for

abnormal pattern recognition from large-scale pathological signals.
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